Advertisement

Salt-Affected Soils and Their Native Vegetation in Hungary

  • Tibor Tóth
Chapter
Part of the Tasks for Vegetation Science book series (TAVS, volume 46)

Abstract

Approximately 13% of Hungary is considered to be salt-affected and with this large extent it is unique in Europe. There are large areas of naturally saline and sodic soils, but also secondary salinization is known to occur. Due to the geological and hydrological conditions, the country demonstrates the most characteristic features of natural continental (not marine) salinization, sodification and alkalinization. Since the most important direct source of soil salinization is the shallow groundwater level below the lowland surface, there is a chance of irrigation-related salinization in two dominant situations: when the abundant use of river waters causes waterlogging and rise of saline groundwater (salinization from below); and when typically saline tubewell-waters are used for irrigation (salinization from above). The spatial assessment of salt-affected areas began with the systematic mapping of salt-affected areas. There are a series of ten maps describing different aspects (salt-affected soil types, vegetation types, salt-efflorescences) of the salinity-status nation-wide from 1897 onward, with the latest survey finished last year. Besides the national scale of 1:500,000, soil salinity is also mapped at the scale of 1:100,000 on the “AGROTOPO” map sheets and 1:25,000 in the “Kreybig”-practical soil information (spatial vector data for maps and database for profiles and borings) systems. In spite of the two systems being digitally available, the most detail information collected at the scale of 1:10,000 is available only for 2/3 of the country and is not digitised. Very early maps at field scale, later at regional scale showed numerical salinity/sodicity values. At present field scale numerical maps are analysed in order to optimise salinity mapping in space and time. Parallel to soil studies, the assessment of the vegetation of saline and sodic lands is a traditional topic of Hungarian botanists. The vegetation of these areas is used for millennia by grazing and provides medicine and raw material for several purposes.

Keywords

Saline Groundwater Sodic Soil Soil Information Solonetz Soil Great Hungarian Plain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Bagi I (1989) The pedological reasons and ecological implications of the occurrence of Gypsophila muralis L. in the salt-affected areas of Kiskunság. Botanikai Közlemények 76:51–63, in HungarianGoogle Scholar
  2. Bagi I, Molnár Zs (2003) Habitat F4. In: Bölöni J, KunA, Molnár Zs (eds) Comparative survey and evaluation of the vegetation of Hungary. Working Group for data quality. Manual of habitats 2.0. Vácrátót (in Hungarian)Google Scholar
  3. Bakacsi, Zs, Kuti L (1998) Agrogeological investigation on a salt affected landscape in the Danube Valley, Hungary. Agrokémia és Talajtan 47:29–38Google Scholar
  4. Ballenegger R, Finály I (1963) The history of soil science until 1944. Budapest, Akadémiai Kiadó (in Hungarian)Google Scholar
  5. Bölöni J, Kun A, Molnár Zs (2003) Habitat guide. Institute of Ecology and Botany of the HAS, Vácrátót, Hungary, p 186, (in Hungarian)Google Scholar
  6. Borhidi A (1995) Social behaviour types, the naturalness and relative ecological indicator values of the higher plants in the Hungarian Flora. Acta Botanica Hungarica 39:97–181Google Scholar
  7. Csontos P (2001) Research methods of the study of natural seedbanks. Scientia Kiadó, Budapest, in HungarianGoogle Scholar
  8. Csontos P, Tamás J, Tobisch T (2002) Presentation of the database of the way of seed distribution of Hungarian flora. Exemplary evaluations and analysis of social behaviour. In: Salamon-Albert É (ed) A 70 éves Borhidi Attila köszöntése. PTE kiadványa, Pécs, pp 557–569 (in Hungarian)Google Scholar
  9. de Sigmond A (1938) The principles of soil science. Thomas Murby, LondonGoogle Scholar
  10. Devillers P, Devillers-Terschuren J (1996) A classification of Palaearctic habitats. Nature and environment, No. 78. Council of Europe. See http://www.botanika.hu/project/habhun/
  11. Dvihally Zs (1960) Seasonal changes of the chemical composition of saline lakes. Hidrológiai Közlemények 40:313–316 (in Hungarian)Google Scholar
  12. EUNIS Habitat Classification (2002) Version 2.3. 2002. http://mrw.wallonie.be/dgrne/sibw/EUNIS/home.html
  13. Gerasimov IP (1960) The soils of Central Europe and related geographical problems. Izd. AK. Nauk SSSR, Moscow (in Russian)Google Scholar
  14. Guidelines (1989) Guidelines to the field-scale mapping of soils. Agroinform, BudapestGoogle Scholar
  15. Horváth F, Dobolyi K, Morschhauser T, Lõkös L, Karas L, Szerdahelyi T (1995) “Flora” database V1.2. Taxonlist and attribute file. Vácrátót (in Hungarian)Google Scholar
  16. Hungarian Central Statistical Office (2006) nvironmental statistical yearbook of Hungary 2005. Hungarian Central Statistical Office, Budapest, 2006 NovemberGoogle Scholar
  17. Jozefaciuk G, Tóth T, Szendrei G (2006) Surface and micropore properties of saline soil profiles. Geoderma 135:1–15CrossRefGoogle Scholar
  18. Kreybig L (1937) The methods of soil survey and mapping used at the geological insitute. MÁFI, Budapest, in HungarianGoogle Scholar
  19. Kubiena WL (1953) Bestimmungsbuch and Systematik der Böden Europas. Ferdinand Enke Verlag, StuttgartGoogle Scholar
  20. Mádlné Szőnyi J, Simon Sz, Tóth J, Pogácsás Gy (2005) Connection between surface and groundwaters in the case of Kelemen-lake and Kolon-lake. Általános Földtani Szemle 30:93–110, in HungarianGoogle Scholar
  21. Marbut CF (1927) A scheme for soil classification. Proceedings and papers of the I. Intern. Congr. of Soil Sci. Vol IV. WashingtonGoogle Scholar
  22. Molnár Zs, Borhidi A (2003) Hungarian alkali vegetation: origins, landscape history, syntaxonomy, conservation. Phytocoenologia 33:377–408CrossRefGoogle Scholar
  23. Molnár Zs, Bagi I, Tímár G (2003) Habitat F1.a. In: Bölöni J, Kun A, Molnár Zs (eds) Comparative survey and evaluation of the vegetation of Hungary. Working Group for data quality. Manual of habitats 2.0, Vácrátót (in Hungarian)Google Scholar
  24. Molnár Zs, Biró M, Bölöni J, Horváth F (2008) Distribution of the (semi-)natural habitats in Hungary I.: marshes and grasslands. Acta Botanica Hungarica 50(Suppl):59–105CrossRefGoogle Scholar
  25. Pásztor L, Szabó J, Bakacsi Zs, László P, Dombos M (2006) Large-scale soil maps improved by digital soil mapping and GIS-based soil status assessment. Agrokémia és Talajtan 55:79–88CrossRefGoogle Scholar
  26. Pásztor L, Szabó J, Németh T (1998) GIS-based stochastic approach for mapping soil vulnerability. Agrokémia és Talajtan 47(1–4):87–96Google Scholar
  27. Richards LA (ed) (1954) Diagnosis and improvement of saline and alkali soils. US Salinity Laboratory Staff. Soil and Water Conservation Research Branch. Agricultural Research Service, Washington DC, p 160Google Scholar
  28. Simon T (1988) Categorization of the higher plants of the Hungarian Flora according to naturalness. Abstracta Botanica 12:1–23, in HungarianGoogle Scholar
  29. Simon T (1992) Keys to the Hungarian Flora. Tankönyvkiadó, Budapest, in HungarianGoogle Scholar
  30. Soil Survey Staff (1951) Soil survey manual. In: USDA-SCS Agriculture Handbook 18. U. S. Gov. Print. Office, Washington, DCGoogle Scholar
  31. Soó R (1980) Conspectus associationum regionis Pannonicae. In Soó: A magyar flóra és vegetáció rendszertaninövényföldrajzi kézikönyve. Synopsis systematico-geobotanica florae vegetationisque Hungariae. Akadémiai Kiadó Budapest, VI: 525–538 (in Hungarian)Google Scholar
  32. Stefanovits P (1963) The soils of Hungary, 2nd edn. Akadémiai Kiadó, Budapest, in HungarianGoogle Scholar
  33. Szabó J (1861) Counties of Békés and Csanád. Description of geological conditions and soil types accompanied with a coloured geological map. Magyar Gazdasági Egyesület, Budapest (in Hungarian)Google Scholar
  34. Szabó J, Molnár J (1865–6) Description and classification of the soils of Tokaj-Hegyalja. Matematikai és Természettudományi Közlemények IV (in Hungarian)Google Scholar
  35. Szabolcs I (ed) (1966) Handbook of genetic soil mapping of fields. OMMI, Budapest, in HungarianGoogle Scholar
  36. Szabolcs I (1974) Salt-affected soils in Europe. Martinus Nijhoff. Hague, the NetherlandsGoogle Scholar
  37. Szabolcs I (1989) Salt-affected soils. CRC Press, Boca Raton, FLGoogle Scholar
  38. Szöőr Gy, Sümegi P, Balázs É (1991) Sedimentological and geochemical facies analysis of Upper Pleistocene fossil soil zones discovered in the Hajdúság region, NE Hungary. pp. 47–59. In: Pécsi M, Schweitzer F (eds). Quaternary environment in Hungary. Studies in geography in Hungary 26. Akadémiai Kiadó, Budapest, p 103Google Scholar
  39. Szujkó-Lacza J, Fekete G, Kováts D, Szabó L, Siroki Z (1982) The vascular plants of the Hortobágy National Park. In: Szujkó-Lacza J (ed) Natural history of the Hungarian National Parks, vol 3, The flora of the Hortobágy National Park. Akadémiai Kiadó, BudapestGoogle Scholar
  40. Tanji KK (ed) (1990) Agricultural salinity assessment and management. American Society of Civili Engineers, New YorkGoogle Scholar
  41. Thompson K, Bakker JP, Bekker RM (1997) The soil seed banks of North West Europe: methodology, density and longevity. Cambridge University Press, CambridgeGoogle Scholar
  42. Tóth T (2008) Salt-Affected Soils in Hungary, pp 75–81. In: Needs and priorities for research and education in biotechnology applied to emerging environmental challenges in see countries. Workshop Proceedings. NOVI SAD, SERBIA 2008. UNESCO Office in Venice-Bresce, Italy and Institute of Lowland Forestry and Environment, Novi Sad, SerbiaGoogle Scholar
  43. Tóth T, Kuti L (2002) Factors of the changes in soil salinity at Apaj, Kiskunság region, pp. 106–116. In: Kátai J, Jávor A (eds) Soil and environment. Debreceni Egyetem Agrártudományi Centrum, Debrecen (in Hungarian)Google Scholar
  44. Tóth T, Kuti L, Fügedi U (2003) Monthly observations at Zab-szék saline lake. Temporal changes of lake water and groundwater, soils and vegetation. Természetvédelmi Közlemények 10:191–206, in HungarianGoogle Scholar
  45. Tóth T, Szendrei G (2006) Types and distribution of salt affected soils in Hungary, and the characterisation of the processes of salt accumulation. Topographia Mineralogica Hungariae IX:7–20, in HungarianGoogle Scholar
  46. Tóth T, Kuti L, Kabos S, Pásztor L (2001) Use of digitalized hydrogeological maps for evaluation of salt-affected soils of large areas. Arid Land Res Manage 15:329–346CrossRefGoogle Scholar
  47. Várallyay Gy (1989) Soil mapping in Hungary. Agrokémia és Talajtan 38:696–714Google Scholar
  48. Várallyay Gy, Szabó J, Pásztor L, Michéli E (1994) SOTER (Soil and Terrain Digital Database) 1:500,000 and its application in Hungary. Agrokémia és Talajtan 43:87–108Google Scholar
  49. Várallyay Gy, Szücs L, Zilahy P, Rajkai K, Murányi A (1985) Soil factors determining the agro-ecological potential of Hungary. Agrokémia és Talajtan 34(Suppl):90–94Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Research Institute for Soil Science and Agricultural Chemistry of the Hungarian Academy of Sciences (RISSAC)BudapestHungary

Personalised recommendations