Advertisement

Design with Highly Flowable Fiber-Reinforced Concrete: Overview of the Activity of fib TG 8.8

  • Liberato Ferrara
  • Steffen Grünewald
  • Frank Dehn
Conference paper
Part of the RILEM Bookseries book series (RILEM, volume 1)

Abstract

Self-compacting fiber-reinforced concrete (SC-FRC) combines the benefits of highly flowable concrete in the fresh state with the enhanced performance in the hardened state in terms of crack control and fracture toughness provided by the wirelike fiber-reinforcement. Thanks to the suitably adapted rheology of the concrete matrix, it is possible to achieve a uniform dispersion of fibers, which is of the foremost importance for a reliable performance of structural elements. Balanced viscosity of concrete may also be helpful to drive the fibers along the concrete flow direction. An ad-hoc designed casting process may hence lead to an orientation of the fibers “tailored” to the intended application, which is along the anticipated directions of the principal tensile stressed within the structural element when in service. This converges towards a “holistic” approach to the design of structure made with highly flowable/self-consolidating FRC, which encompasses the influence of fresh state performance and casting process on fiber dispersion and orientation and the related outcomes in terms of hardened state properties. The fib task Group 8.8 “Structural design with highly flowable concrete”, sub-group fiber concrete, appointed in April 2009, aims at drafting recommendations to facilitate and spread the use of these innovative materials, merging together research findings and practical experience.

Keywords

Steel Fiber Hardened State Fiber Dispersion Concrete Matrix Principal Tensile Stress 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Ferrara, L., Park, Y.D. and Shah, S.P. (2008), ASCE J. Mat. Civ. Eng., vol. 20, n. 7, pp. 493–501.CrossRefGoogle Scholar
  2. [2]
    Ferrara, L., Ozyurt, N. and di Prisco, M. (2010), Mat. & Struct., accepted.Google Scholar
  3. [3]
    Bayasi, M.Z. and Soroshian, S.P. (1992), ACI Mat. J., vol. 89, n. 4, pp. 369–374.Google Scholar
  4. [4]
    Yu, B., Zou, R.P. and Standish, N. (1992), J. Am. Cer. Soc., vol. 75 n. 10, pp. 265–272.CrossRefGoogle Scholar
  5. [5]
    Yu, B., Standish, N. and McLean, A. (1993), J. Am. Cer. Soc., vol. 76, n. 11, pp. 2813–2816.CrossRefGoogle Scholar
  6. [6]
    Ferrara, L., Park, Y.D. and Shah, S.P. (2007), Cem. Concr. Res., vol. 37, n. 6, pp. 957–971.CrossRefGoogle Scholar
  7. [7]
    Martinie, L., Rossi, P. and Roussel, N. (2010), Cem. Concr. Res., vol. 40, n. 2, pp. 226–234.CrossRefGoogle Scholar
  8. [8]
    Grunewald, S. (2004), PhD Thesis, Delft University of Technology.Google Scholar
  9. [9]
    Pereira, E.N.B., Barros, J.A.O., Ribeiro, A.F. and Camoes A. (2004), In: Proceedings BEFIB04, di Prisco, M. et al. (Eds.), RILEM Pubs., Paris, pp. 1371–1380.Google Scholar
  10. [10]
    De Larrard, F. (1999), E&FN Spoon.Google Scholar
  11. [11]
    Saak, A.W., Jennings, H.M. and Shah S.P. (2001), ACI Mat. J., vol. 98, n. 6, pp. 429–439.Google Scholar
  12. [12]
    Bui, V.K., Akkaya, J. and Shah, S.P. (2002), ACI Mat. J., vol. 99, n. 6, pp. 549–559.Google Scholar
  13. [13]
    Bui, V.K., Geiker, M.R. and Shah, S.P. (2003), In: Proceedings HPFRCC4, Naaman, A. and Rheinhardt, H.W. (Eds.), RILEM Pubs., Paris, pp. 221–231.Google Scholar
  14. [14]
    Grunewald, S. and Walraven J. (2010), In: ACI SP SC-FRC, Aldea, C.M. and Ferrara, L. (eds.), ACI Farmington Hills, to appear.Google Scholar
  15. [15]
    Ferrara, L. and Ozyurt, N. (2008), In: Proceedings SCC2008 (paper 1124).Google Scholar
  16. [16]
    Ozyurt, N. et al. (2009), In: Proceedings Rheo-Iceland 2009. Wallevik, O.H. et al. (Eds.) RILEM Pubs., Paris, pp. 313.321.Google Scholar
  17. [17]
    di Prisco, C. et al. (2006), In: Proceedings 1stFib World Conf., (paper 823).Google Scholar
  18. [18]
    Dhonde, H.B., Mo, Y.L., Hsu, T.T.C. and Vogel, J. (2007), ACI Mat. J., vol. 104, n. 4, pp. 491–500.Google Scholar
  19. [19]
    Ferrara, L. and Meda, A. (2006), Mat. & Struct., vol. 39, n. 4, pp. 411–420.CrossRefGoogle Scholar
  20. [20]
    Lataste, J.F., Behloul, M. and Breysse, D. (2008), NDT&E International, vol. 41, n. 8, pp. 638–647.CrossRefGoogle Scholar
  21. [21]
    Stahli, P., Custer, R. and van Mier, J.G.M. (2008), Mat. & Struct., vol. 41, n. 1, pp. 189–196.CrossRefGoogle Scholar
  22. [22]
    Torrijos, M.C., Tobes, J.M., Barragàn, B.E. and Zerbino, R.L. (2008), In: Proceedings BEFIB 2008, Gettu, R. (Ed.), RILEM Pubs., Paris, pp. 729–738Google Scholar
  23. [23]
    Vandewalle, L., Heirman, G. and van Rickstal, F. (2008), In: Proceedings BEFIB 2008, Gettu, R. (Ed.), RILEM Pubs., Paris, pp. 719–728.Google Scholar
  24. [24]
    Yardimci, M.Y., Baradan, B. and Tasdemir, M. (2008), In: Proceedings BEFIB 2008, Gettu, R. (Ed.), RILEM Pubs., Paris, pp. 711–718.Google Scholar
  25. [25]
    Kooiman, A.G. (2000), PhD Thesis, Delft University of Technology.Google Scholar
  26. [26]
    Stroeven, P. and Shah, S.P. (1978), In: Testing and Test Methods of Fibre Reinforced CompositesConstr. Press, Lancaster, pp. 345–353.Google Scholar
  27. [27]
    Özyurt, N., Woo, L.Y., Mason, T.O. and Shah, S.P. (2006), ACI Mat. J., vol. 103, n. 5, pp. 340–347.Google Scholar
  28. [28]
    Ozyurt, N., Mason, T.O. and Shah, S.P. (2006), Cem. Concr. Res., vol. 36, pp. 1653–1660.CrossRefGoogle Scholar
  29. [29]
    Franchois, A., Taerwe, L. and Van Damme, S. (2004), In: Proceedings BEFIB 2004, di Prisco, M. et al. (Eds.), RILEM Pubs., Paris, pp. 249–256.Google Scholar
  30. [30]
    Faifer, M. et al. (2009), In: Proceedings IMTC09, pp. 313–318.Google Scholar
  31. [31]
    Faifer, M. et al. (2010), Accepted for presentation at IMTC10.Google Scholar
  32. [32]
    Felicetti, R. and Ferrara, L. (2008), In: Proceedings BEFIB 2008, Gettu, R. (Ed.), RILEM Pubs., Paris, pp. 525–536.Google Scholar
  33. [33]
    Molins Borrel, C., Martinez Martinez, J.A. and Arnaiz Alvaro, N. (2008), In: Proceedings 4th ACHE Conference, Valencia.Google Scholar
  34. [34]
    Roussel, N. et al. (2007), Cem. Concr. Res., vol. 37, pp. 1298–1307.CrossRefGoogle Scholar
  35. [35]
    Roussel, N. (2007), Mat. & Struct., vol. 40, n. 10, pp. 1001–1012.CrossRefGoogle Scholar
  36. [36]
    Roussel, N. et al. (2007), Mat. & Struct., vol. 40, n. 9, pp. 877–887.CrossRefGoogle Scholar
  37. [37]
    Cremonesi, M., Ferrara, L. and Frangi, A. (2010), Accepted BAC 2010.Google Scholar
  38. [38]
    Shah, S.P. et al. (2009), In: Proceedings SCC2009, Shi, C. et al. (Eds.), RILEM Pubs., Paris, pp. 3–15.Google Scholar
  39. [39]
    Mechtcherine, V. and Shyshko, S. (2009), In: Proceedings RheoIceland 2009, Wallevik, O.H. et al. (Eds.), RILEM Pubs., Paris, pp. 171–179.Google Scholar
  40. [40]
    Balaguru, P. N. and Shah. S.P. (1992), McGraw Hill.Google Scholar
  41. [41]
    Laranjeira, F. (2010), PhD Thesis, Universitat Politecnica de Catalunia, Barcelona.Google Scholar
  42. [42]
    Cunha, V.M.C.F., Barros, J.O.A. and Sena-Cruz, J.M. (2010), ASCE J. Mat. Civ. Engrg., vol. 22, n. 1, pp. 1–9.CrossRefGoogle Scholar
  43. [43]
    Pereira, E.N.B., Barros, J.O.A. and Camoes, A. (2008), ASCE J. Struct. Engrg., vol. 134, n. 8, pp. 1310–1321.CrossRefGoogle Scholar
  44. [44]
    Aoude, H., Cook, W. and Mitchell, D. (2009), ACI Struct. J., vol. 106, n. 3, pp. 349–357.Google Scholar
  45. [45]
    di Prisco, M., Plizzari, G. and Vandewalle, L. (2009), Mat. and Struct., vol. 42, n. 9, Special Issue: FRC: Structural applications and standards, pp. 1261–1281.Google Scholar
  46. [46]
    Ozyurt, N., Mason, T.O. and Shah, S.P. (2007), Cem. Concr. Comp., vol. 29, n. 2, pp. 70–79.CrossRefGoogle Scholar
  47. [47]
    Ferrara, L., Dozio, D. and di Prisco, M. (2007), In: Proceedings HPFRCC5, Naaman, A. and Reinhardt, H.W. (Eds.), RILEM Pubs., Paris, pp. 249–258.Google Scholar
  48. [48]
    Groth, P. and Nemegeer, D. (1999), In: Proceeding 1stInt. RILEM Symposium on Self-Compacting Concrete, RILEM Pubs., Paris, pp. 497–507.Google Scholar
  49. [49]
    Carlsward, C. and Emborg, M. (2007), In: Proceedings SCC 2007, De Schutter, G. and Boel, V. (Eds.), RILEM Pubs., Paris, pp. 793–798.Google Scholar
  50. [50]
    Barragàn, B. et al. (2004), In: Proceedings BEFIB 2004, di Prisco, M. et al. (Eds.), RILEM Pubs., pp. 455–464.Google Scholar
  51. [51]
    Borralleras, P., Barragàn, B. and Gettu, R. (2007), In Proceedings SCC2007, De Schutter, G. and Boel, V. (Eds.), RILEM Pubs., Paris, pp. 1092–1098.Google Scholar
  52. [52]
    Romano, G.Q. et al. (2007), In: Proceedings SCC2007, De Schutter, G. and Boel, V. (Eds.), RILEM Pubs., Paris, pp. 881–886.Google Scholar
  53. [53]
    Bigas, J.P. et al. (2007), In: Proceedings SCC2007, De Schutter, G. and Boel, V. (Eds.), RILEM Pubs., Paris, pp. 1013–1018.Google Scholar
  54. [54]
    Greenough, T. and Nehdi, M. (2008), ACI Struct. J., vol. 105, n. 5, pp. 468–477.Google Scholar

Copyright information

© RILEM 2010

Authors and Affiliations

  • Liberato Ferrara
    • 1
  • Steffen Grünewald
    • 2
  • Frank Dehn
    • 3
  1. 1.Department of Structural EngineeringPolitecnico di MilanoMilanoItaly
  2. 2.Delft University of Technology/Hurks BetonDelftThe Netherlands
  3. 3.University of Leipzig/MFPALeipzigGermany

Personalised recommendations