Skip to main content

Insect Transgenesis and the Sterile Insect Technique

  • Chapter
  • First Online:

Part of the book series: Biologically-Inspired Systems ((BISY,volume 2))

Abstract

The establishment of broadly applicable insect transgenesis systems will enable the analyses of gene function in diverse insect species. This will greatly increase our understanding of diverse aspects of biology so far not functionally addressable. Moreover, insect transgenesis will provide novel strategies for insect pest management and the means to impair transmission of pathogens by human disease vectors. Especially the Sterile Insect Technique (SIT) might be improved by the use of transgenic approaches. The SIT represents an effective and ecologically safe method for area-wide pest control that reduces the pest population by mass release of sterilized organisms, leading to infertile matings and in consequence to a decline of the pest population. Although the SIT is already successfully applied for some species, each of its steps – mass-rearing, sex-separation for male-only releases, sterilization, and marking for monitoring – can be improved biotechnologically to optimize the efficiency and to reduce the costs of ongoing programs or to transfer this effective technique to a wider range of species. However, this powerful transgenic technology must be applied with great care to avoid harm to our environment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG, Scherer SE, Li PW, Hoskins RA, Galle RF et al (2000) The genome sequence of Drosophila melanogaster. Science 287:2185–2195

    Article  PubMed  Google Scholar 

  • Allen ML, O’Brochta DA, Atkinson PW, Levesque CS (2001) Stable, germ-line transformation of Culex quinquefasciatus (Diptera: Culicidae). J Med Entomol 38:701–710

    Article  PubMed  CAS  Google Scholar 

  • Alphey L, Benedict M, Bellini R, Clark GG, Dame DA, Service MW, Dobson SL (2010) Sterile-insect methods for control of mosquito-borne diseases: an analysis. Vector Borne Zoonotic Dis 10(3):295–311

    Article  Google Scholar 

  • Angelini DR, Liu PZ, Hughes CL, Kaufman TC (2005) Hox gene function and interaction in the milkweed bug Oncopeltus fasciatus (Hemiptera). Dev Biol 287:440–455

    Article  PubMed  CAS  Google Scholar 

  • APHIS (2009) Use of Genetically Engineered Fruit Fly and Pink Bollworm in APHIS Plant Pest Control Programs: Record of Decision. Shea K (ed) Washington, DC. http://www.epa.gov/EPA-IMPACT/2009/May/Day-07/i10633.htm

  • Ashburner M, Hoy MA, Peloquin JJ (1998) Prospects for the genetic transformation of arthropods. Insect Mol Biol 7:201–213

    Article  PubMed  CAS  Google Scholar 

  • Atkinson PW (2002) Genetic engineering in insects of agricultural importance. Insect Biochem Mol Biol 32:1237–1242

    Article  PubMed  CAS  Google Scholar 

  • Atkinson PW, Pinkerton AC, O’Brochta DA (2001) Genetic transformation systems in insects. Annu Rev Entomol 46:317–346

    Article  PubMed  CAS  Google Scholar 

  • Atkinson PW, Warren WD, O’Brochta DA (1993) The hobo transposable element of Drosophila can be cross-mobilized in houseflies and excises like the Ac element of maize. Proc Natl Acad Sci USA 90:9693–9697

    Article  PubMed  CAS  Google Scholar 

  • Baer A, Bode J (2001) Coping with kinetic and thermodynamic barriers: RMCE, an efficient strategy for the targeted integration of transgenes. Curr Opin Biotechnol 12:473–480

    Article  PubMed  CAS  Google Scholar 

  • Bakri A, Mehta K, Lance DR (2005) Sterilizing insects with ionizing radiation. In: Dyck VA Hendrichs J, Robinson AS(ed) Sterile insect technique - principles and practice in area-wide integrated pest management. Springer, Dordrecht, NL, pp 233–268

    Google Scholar 

  • Bello B, Resendez-Perez D, Gehring WJ (1998) Spatial and temporal targeting of gene expression in Drosophila by means of a tetracycline-dependent transactivator system. Development 125:2193–2202

    PubMed  CAS  Google Scholar 

  • Benedict MQ, Robinson AS (2003) The first releases of transgenic mosquitoes: an argument for the sterile insect technique. Trends Parasitol 19:349–355

    Article  PubMed  Google Scholar 

  • Benedict MQ, Robinson AS (2008) Impact of technological improvements on traditional control strategies. Adv Exp Med Biol 627:84–92

    Article  PubMed  Google Scholar 

  • Berghammer AJ, Klingler M, Wimmer EA (1999) A universal marker for transgenic insects. Nature 402:370–371

    Article  PubMed  CAS  Google Scholar 

  • Bettencourt R, Terenius O, Faye I (2002) Hemolin gene silencing by ds-RNA injected into Cecropia pupae is lethal to next generation embryos. Insect Mol Biol 11:267–271

    Article  PubMed  CAS  Google Scholar 

  • Beye M, Hartel S, Hagen A, Hasselmann M, Omholt SW (2002) Specific developmental gene silencing in the honey bee using a homeobox motif. Insect Mol Biol 11:527–532

    Article  PubMed  CAS  Google Scholar 

  • Bischof J, Maeda RK, Hediger M, Karch F, Basler K (2007) An optimized transgenesis system for Drosophila using germ-line-specific phiC31 integrases. Proc Natl Acad Sci USA 104:3312–3317

    Article  PubMed  CAS  Google Scholar 

  • Bonizzoni M, Gomulski LM, Malacrida AR, Capy P, Gasperi G (2007) Highly similar piggyBac transposase-like sequences from various Bactrocera (Diptera, Tephritidae) species. Insect Mol Biol 16:645–650

    PubMed  CAS  Google Scholar 

  • Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118:401–415

    PubMed  CAS  Google Scholar 

  • Brown SJ, Mahaffey JP, Lorenzen MD, Denell RE, Mahaffey JW (1999) Using RNAi to investigate orthologous homeotic gene function during development of distantly related insects. Evol Dev 1:11–15

    Article  PubMed  CAS  Google Scholar 

  • Bucher G, Scholten J, Klingler M (2002) Parental RNAi in Tribolium (Coleoptera). Curr Biol 12:R

    Article  Google Scholar 

  • Burns J (2000) Pantropic retroviral vectors for gene transfer.. In: Handler AM, James AA (ed) Insect transgenesis: methods and applications. CRC Press, Boca Raton, FL

    Google Scholar 

  • Cary LC, Goebel M, Corsaro BG, Wang HG, Rosen E, Fraser MJ (1989) Transposon mutagenesis of baculoviruses: analysis of trichoplusiani transposon IFP2 insertions within the FP-locus of nuclear polyhedrosis viruses. Virology 172:156–169

    Article  PubMed  CAS  Google Scholar 

  • Catteruccia F, Benton JP, Crisanti A (2005) An anopheles transgenic sexing strain for vector control. Nat Biotechnol 23:1414–1417

    Article  PubMed  CAS  Google Scholar 

  • Catteruccia F, Nolan T, Loukeris TG, Blass C, Savakis C, Kafatos FC, Crisanti A (2000) Stable germline transformation of the malaria mosquito Anopheles stephensi. Nature 405:959–962

    Article  PubMed  CAS  Google Scholar 

  • Christophides GK, Savakis C, Mintzas AC, Komitopoulou K (2001) Expression and function of the Drosophila melanogaster ADH in male Ceratitis capitata adults: a potential strategy for medfly genetic sexing based on gene-transfer technology. Insect Mol Biol 10:249–254

    Article  PubMed  CAS  Google Scholar 

  • Clark AG, Eisen MB, Smith DR, Bergman CM, Oliver B, Markow TA, Kaufman TC, Kellis M, Gelbart W, Iyer VN et al. (2007) Evolution of genes and genomes on the Drosophila phylogeny. Nature 450:203–218

    Article  PubMed  CAS  Google Scholar 

  • Consortium HGS (2006) Insights into social insects from the genome of the honeybee Apis mellifera. Nature 443:931–949

    Article  CAS  Google Scholar 

  • Cooley L, Kelley R, Spradling A (1988) Insertional mutagenesis of the Drosophila genome with single P elements. Science 239:1121–1128

    Article  PubMed  CAS  Google Scholar 

  • Cormack BP, Valdivia RH, Falkow S (1996) FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173:33–38

    Article  PubMed  CAS  Google Scholar 

  • Dafa’alla TH, Condon GC, Condon KC, Phillips CE, Morrison NI, Jin L, Epton MJ, Fu G, Alphey L (2006) Transposon-free insertions for insect genetic engineering. Nat Biotechnol 24:820–821

    Article  PubMed  CAS  Google Scholar 

  • Dai H, Jiang R, Wang J, Xu G, Cao M, Wang Z, Fei J (2007) Development of a heat shock inducible and inheritable RNAi system in silkworm. Biomol Eng 24:625–630

    Article  PubMed  CAS  Google Scholar 

  • Dietzl G, Chen D, Schnorrer F, Su KC, Barinova Y, Fellner M, Gasser B, Kinsey K, Oppel S, Scheiblauer S et al. (2007) A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature 448:151–156

    Article  PubMed  CAS  Google Scholar 

  • Duffy JB (2002) GAL4 system in Drosophila: a fly geneticist’s Swiss army knife. Genesis 34:1–15

    Article  PubMed  CAS  Google Scholar 

  • Dyck VA, Hendrichs J, Robinson AS (2005b) Sterile insect technique - principles and practice in area-wide integrated pest management. Springer, Dordrecht, NL

    Google Scholar 

  • Dyck VA, Regidor Fernández EE, Reyes Flores J, Teruya T, Barnes B, Gomez Riera P, Lindquist D, Reuben R (2005a) Public relations and political support in area-wide integrated pest management programmes that integrate the sterile insect technique. In: Dyck VA, Hendrichs J, Robinson AS (ed) Sterile Insect Technique - principles and practice in area-wide integrated pest management. Springer, Dordrecht, NL, pp 547–559

    Google Scholar 

  • Ewen-Campen B, Schwager EE, Extavour CG (2010) The molecular machinery of germ line specification. Mol Reprod Dev 77(1):3–18

    Article  PubMed  CAS  Google Scholar 

  • Extavour CG, Akam M (2003) Mechanisms of germ cell specification across the metazoans: epigenesis and preformation. Development 130:5869–5884

    Article  PubMed  CAS  Google Scholar 

  • FAO (2005) Provisional additions, glossary of phytosanitary terms. Secretariat of the International Plant Protection Convention (IPPC). FAO, Rome

    Google Scholar 

  • Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  PubMed  CAS  Google Scholar 

  • Flint HM, Wright B, Sallam H, Horn B (1975) A comparison of irradiated or chemosterilized pink bollworm moths for suppressing native populations in field cages. Can Entomol 107:1069–1072

    Article  Google Scholar 

  • Fortier E, Belote JM (2000) Temperature-dependent gene silencing by an expressed inverted repeat in Drosophila. Genesis 26:240–244

    Article  PubMed  CAS  Google Scholar 

  • Franz G (2005) Genetic sexing strains in Mediterranean fruit fly, an example for other species amenable to large-scale rearing for the sterile insect technique. In: Dyck VA, Hendrichs J, Robinson AS (ed) Sterile insect technique - principles and practice in area-wide integrated pest management. Springer, Dordrecht, NL, pp 427–451

    Google Scholar 

  • Franz G, Gencheva E, Kerremans P (1994) Improved stability of genetic sex-separation strains for the Mediterranean fruit fly, Ceratitis capitata. Genome 37:72–82

    Article  PubMed  CAS  Google Scholar 

  • Franz G, Savakis C (1991) Minos, a new transposable element from Drosophila hydei, is a member of the Tc1-like family of transposons. Nucleic Acids Res 19:6646

    Article  PubMed  CAS  Google Scholar 

  • Fu G, Condon KC, Epton MJ, Gong P, Jin L, Condon GC, Morrison NI, Dafa’alla TH, Alphey L (2007) Female-specific insect lethality engineered using alternative splicing. Nat Biotechnol 25:353–357

    Article  PubMed  CAS  Google Scholar 

  • Gasser CS, Fraley RT (1989) Genetically engineering plants for crop improvement. Science 244:1293–1299

    Article  PubMed  CAS  Google Scholar 

  • Gehring WJ (2001) The genetic control of eye development and its implications for the evolution of the various eye-types. Zoology (Jena) 104:171–183

    CAS  Google Scholar 

  • Gempe T, Hasselmann M, Schiott M, Hause G, Otte M, Beye M (2009) Sex determination in honeybees: two separate mechanisms induce and maintain the female pathway. PLoS Biol 7:e1000222

    Article  PubMed  CAS  Google Scholar 

  • Gong P, Epton MJ, Fu G, Scaife S, Hiscox A, Condon KC, Condon GC, Morrison NI, Kelly DW, Dafa’alla T et al. (2005) A dominant lethal genetic system for autocidal control of the Mediterranean fruitfly. Nat Biotechnol 23:453–456

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Estevez C, Momose T, Gehring WJ, Salo E (2003) Transgenic planarian lines obtained by electroporation using transposon-derived vectors and an eye-specific GFP marker. Proc Natl Acad Sci USA 100:14046–14051

    Article  PubMed  CAS  Google Scholar 

  • Gossen M, Bujard H (1992) Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci USA 89:5547–5551

    Article  PubMed  CAS  Google Scholar 

  • Groth AC, Fish M, Nusse R, Calos MP (2004) Construction of transgenic Drosophila by using the site-specific integrase from phage phiC31. Genetics 166:1775–1782

    Article  PubMed  CAS  Google Scholar 

  • Hacker U, Nystedt S, Barmchi MP, Horn C, Wimmer EA (2003) piggyBac-based insertional mutagenesis in the presence of stably integrated P elements in Drosophila. Proc Natl Acad Sci USA 100:7720–7725

    Article  PubMed  CAS  Google Scholar 

  • Hagler JR, Jackson CG (2001) Methods for marking insects: current techniques and future prospects. Annu Rev Entomol 46:511–543

    Article  PubMed  CAS  Google Scholar 

  • Halder G, Callaerts P, Gehring WJ (1995) Induction of ectopic eyes by targeted expression of the eyeless gene in Drosophila. Science 267:1788–1792

    Article  PubMed  CAS  Google Scholar 

  • Halfon MS, Kose H, Chiba A, Keshishian H (1997) Targeted gene expression without a tissue-specific promoter: creating mosaic embryos using laser-induced single-cell heat shock. Proc Natl Acad Sci USA 94:6255–6260

    Article  PubMed  CAS  Google Scholar 

  • Hammond SM, Caudy AA, Hannon GJ (2001) Post-transcriptional gene silencing by double-stranded RNA. Nat Rev Genet 2:110–119

    Article  PubMed  CAS  Google Scholar 

  • Handler AM (2001) A current perspective on insect gene transformation. Insect Biochem Mol Biol 31:111–128

    Article  PubMed  CAS  Google Scholar 

  • Handler AM (2004) Understanding and improving transgene stability and expression in insects for SIT and conditional lethal release programs. Insect Biochem Mol Biol 34:121–130

    Article  PubMed  CAS  Google Scholar 

  • Handler AM, Gomez SP, O’Brochta DA (1993) A functional analysis of the P-element gene-transfer vector in insects. Arch Insect Biochem Physiol 22:373–384

    Article  PubMed  CAS  Google Scholar 

  • Handler AM, Harrell RA (1999) Germline transformation of Drosophila melanogaster with the piggyBac transposon vector. Insect Mol Biol 8:449–457

    Article  PubMed  CAS  Google Scholar 

  • Handler AM, Harrell RA (2001a) Polyubiquitin-regulated DsRed marker for transgenic insects. Biotechniques 31(820):824–828

    Google Scholar 

  • Handler AM, Harrell RA (2001b) Transformation of the Caribbean fruit fly, Anastrepha suspensa, with a piggyBac vector marked with polyubiquitin-regulated GFP. Insect Biochem Mol Biol 31:199–205

    Article  PubMed  CAS  Google Scholar 

  • Handler AM, James AA (2000) Insect transgenesis: methods and applications. CRC Press, Boca Raton, FL

    Book  Google Scholar 

  • Handler AM, McCombs SD (2000) The piggyBac transposon mediates germ-line transformation in the Oriental fruit fly and closely related elements exist in its genome. Insect Mol Biol 9:605–612

    Article  PubMed  CAS  Google Scholar 

  • Handler AM, Zimowska GJ, Armstrong KF (2008) Highly similar piggyBac elements in Bactrocera that share a common lineage with elements in noctuid moths. Insect Mol Biol 17:387–393

    Article  PubMed  CAS  Google Scholar 

  • Handler AM, Zimowska GJ, Horn C (2004) Post-integration stabilization of a transposon vector by terminal sequence deletion in Drosophila melanogaster. Nat Biotechnol 22:1150–1154

    Article  PubMed  CAS  Google Scholar 

  • Hannon GJ (2002) RNA interference. Nature 418:244–251

    Article  PubMed  CAS  Google Scholar 

  • Hediger M, Burghardt G, Siegenthaler C, Buser N, Hilfiker-Kleiner D, Dubendorfer A, Bopp D (2004) Sex determination in Drosophila melanogaster and Musca domestica converges at the level of the terminal regulator doublesex. Dev Genes Evol 214:29–42

    Article  PubMed  CAS  Google Scholar 

  • Hediger M, Niessen M, Wimmer EA, Dubendorfer A, Bopp D (2001) Genetic transformation of the housefly Musca domestica with the lepidopteran derived transposon piggyBac. Insect Mol Biol 10:113–119

    Article  PubMed  CAS  Google Scholar 

  • Heinrich JC, Li X, Henry RA, Haack N, Stringfellow L, Heath AC, Scott MJ (2002) Germ-line transformation of the Australian sheep blowfly Lucilia cuprina. Insect Mol Biol 11:1–10

    Article  PubMed  CAS  Google Scholar 

  • Heinrich JC, Scott MJ (2000) A repressible female-specific lethal genetic system for making transgenic insect strains suitable for a sterile-release program. Proc Natl Acad Sci USA 97:8229–8232

    Article  PubMed  CAS  Google Scholar 

  • Hendrichs J, Franz G, Rendon P (1995) Increased effectiveness and applicability of the sterile insect technique through male-only releases for control of Mediterranean fruit flies during fruiting seasons. J Appl Gerontol 119:371–377

    Google Scholar 

  • Henneberry T (2007) Integrated Systems for Control of the Pink Bollworm Pectinophora Gossypiella in Cotton. In: Vreysen MJB, Robinson AS, Hendrichs J (ed) In: Area-wide control of insect pests: from research to field implementation. Springer, Dordrecht, NL, pp 567–579

    Chapter  Google Scholar 

  • Holt RA, Subramanian GM, Halpern A, Sutton GG, Charlab R, Nusskern DR, Wincker P, Clark AG, Ribeiro JM, Wides R et al. (2002) The genome sequence of the malaria mosquito Anopheles gambiae. Science 298:129–149

    Article  PubMed  CAS  Google Scholar 

  • Horn C, Handler AM (2005) Site-specific genomic targeting in Drosophila. Proc Natl Acad Sci USA 102:12483–12488

    Article  PubMed  CAS  Google Scholar 

  • Horn C, Jaunich B, Wimmer EA (2000) Highly sensitive, fluorescent transformation marker for Drosophila transgenesis. Dev Genes Evol 210:623–629

    Article  PubMed  CAS  Google Scholar 

  • Horn C, Offen N, Nystedt S, Hacker U, Wimmer EA (2003) piggyBac-based insertional mutagenesis and enhancer detection as a tool for functional insect genomics. Genetics 163:647–661

    PubMed  CAS  Google Scholar 

  • Horn C, Schmid BG, Pogoda FS, Wimmer EA (2002) Fluorescent transformation markers for insect transgenesis. Insect Biochem Mol Biol 32:1221–1235

    Article  PubMed  CAS  Google Scholar 

  • Horn C, Wimmer EA (2000) A versatile vector set for animal transgenesis. Dev Genes Evol 210:630–637

    Article  PubMed  CAS  Google Scholar 

  • Horn C, Wimmer EA (2003) A transgene-based, embryo-specific lethality system for insect pest management. Nat Biotechnol 21:64–70

    Article  PubMed  CAS  Google Scholar 

  • Huang G, Zhang L, Birch RG (2000) Rapid amplification and cloning of Tn5 flanking fragments by inverse PCR. Lett Appl Microbiol 31:149–153

    Article  PubMed  CAS  Google Scholar 

  • Hughes CL, Kaufman TC (2000a) A diverse approach to arthropod development. Evol Dev 2:6–8

    Article  PubMed  CAS  Google Scholar 

  • Hughes CL, Kaufman TC (2000b) RNAi analysis of Deformed, proboscipedia and Sex combs reduced in the milkweed bug Oncopeltus fasciatus: novel roles for Hox genes in the hemipteran head. Development 127:3683–3694

    PubMed  CAS  Google Scholar 

  • Imamura M, Nakai J, Inoue S, Quan GX, Kanda T, Tamura T (2003) Targeted gene expression using the GAL4/UAS system in the silkworm Bombyx mori. Genetics 165:1329–1340

    PubMed  CAS  Google Scholar 

  • Irvin N, Hoddle MS, O’Brochta DA, Carey B, Atkinson PW (2004) Assessing fitness costs for transgenic Aedes aegypti expressing the GFP marker and transposase genes. Proc Natl Acad Sci U S A 101:891–896

    Article  PubMed  CAS  Google Scholar 

  • Ito J, Ghosh A, Moreira LA, Wimmer EA, Jacobs-Lorena M (2002) Transgenic anopheline mosquitoes impaired in transmission of a malaria parasite. Nature 417:452–455

    Article  PubMed  CAS  Google Scholar 

  • Jordan TV, Shike H, Boulo V, Cedeno V, Fang Q, Davis BS, Jacobs-Lorena M, Higgs S, Fryxell KJ, Burns JC (1998) Pantropic retroviral vectors mediate somatic cell transformation and expression of foreign genes in dipteran insects. Insect Mol Biol 7:215–222

    Article  PubMed  CAS  Google Scholar 

  • Kalosaka K, Chrysanthis G, Rojas-Gill AP, Theodoraki M, Gourzi P, Kyriakopoulos A, Tatari M, Zacharopoulou A, Mintzas AC (2006) Evaluation of the activities of the medfly and Drosophila hsp70 promoters in vivo in germ-line transformed medflies. Insect Mol Biol 15:373–382

    Article  PubMed  CAS  Google Scholar 

  • Kalosaka K, Soumaka E, Politis N, Mintzas AC (2009) Thermotolerance and HSP70 expression in the Mediterranean fruit fly Ceratitis capitata. J Insect Physiol 55:568–573

    Article  PubMed  CAS  Google Scholar 

  • Kennerdell JR, Carthew RW (1998) Use of dsRNA-mediated genetic interference to demonstrate that frizzled and frizzled 2 act in the wingless pathway. Cell 95:1017–1026

    Article  PubMed  CAS  Google Scholar 

  • Kennerdell JR, Carthew RW (2000) Heritable gene silencing in Drosophila using double-stranded RNA. Nat Biotechnol 18:896–898

    Article  PubMed  CAS  Google Scholar 

  • Klassen W, Curtis CF (2005) History of the sterile insect technique. In: Dyck VA, Hendrichs J, Robinson AS (ed) Sterile insect technique. principles and practice in area-wide integrated pest management. Springer, Dordrecht, pp 3–36

    Google Scholar 

  • Knipling EF (1955) Possibilities of insect control or eradication through the use of sexually sterile males. J Econ Entomol 48:459–462

    Google Scholar 

  • Kokoza V, Ahmed A, Wimmer EA, Raikhel AS (2001) Efficient transformation of the yellow fever mosquito Aedes aegypti using the piggyBac transposable element vector pBac[3xP3-EGFPafm]. Insect Biochem Mol Biol 31:1137–1143

    Article  PubMed  CAS  Google Scholar 

  • Krafsur ES (1998) Sterile insect technique for suppressing and eradicating insect population: 55 years and counting. J Agric Entomol 15:303–317

    Google Scholar 

  • Kuwayama H, Yaginuma T, Yamashita O, Niimi T (2006) Germ-line transformation and RNAi of the ladybird beetle, Harmonia axyridis. Insect Mol Biol 15:507–512

    Article  PubMed  CAS  Google Scholar 

  • Lee JM, Takahashi M, Mon H, Koga K, Kawaguchi Y, Kusakabe T (2005) Efficient gene transfer into silkworm larval tissues by a combination of sonoporation and lipofection. Cell Biol Int 29:976–979

    Article  PubMed  CAS  Google Scholar 

  • Lewandoski M (2001) Conditional control of gene expression in the mouse. Nat Rev Genet 2: 743–755

    Article  PubMed  CAS  Google Scholar 

  • Lin S, Yang S, Hopkins N (1994) lacZ expression in germline transgenic zebrafish can be detected in living embryos. Dev Biol 161:77–83

    Article  PubMed  Google Scholar 

  • Lindsley D, Zimm G (1992) The genome of Drosophila melanogaster. Academic Press, San Diego

    Google Scholar 

  • Lis JT, Simon JA, Sutton CA (1983) New heat shock puffs and beta-galactosidase activity resulting from transformation of Drosophila with an hsp70-lacZ hybrid gene. Cell 35:403–410

    Article  PubMed  CAS  Google Scholar 

  • Lohe AR, Lidholm DA, Hartl DL (1995a) Genotypic effects, maternal effects and grand-maternal effects of immobilized derivatives of the transposable element mariner. Genetics 140:183–192

    PubMed  CAS  Google Scholar 

  • Lohe AR, Moriyama EN, Lidholm DA, Hartl DL (1995b) Horizontal transmission, vertical inactivation, and stochastic loss of mariner-like transposable elements. Mol Biol Evol 12:62–72

    PubMed  CAS  Google Scholar 

  • Lycett GJ, Kafatos FC, Loukeris TG (2004) Conditional expression in the malaria mosquito Anopheles stephensi with Tet-On and Tet-Off systems. Genetics 167:1781–1790

    Article  PubMed  CAS  Google Scholar 

  • Marcus JM, Ramos DM, Monteiro A (2004) Germline transformation of the butterfly Bicyclus anynana. Proc Biol Sci 271(Suppl 5):S263–S265

    Article  PubMed  Google Scholar 

  • Matzke MA, Birchler JA (2005) RNAi-mediated pathways in the nucleus. Nat Rev Genet 6:24–35

    Article  PubMed  CAS  Google Scholar 

  • McInnis DO, Lim R, Muromoto D, Komatsu J, Tam S, Murasaki N (2005) Oriental fruit fly: males-only sterile fly releases in Hawaii. In: The 8th Exotic Fruit Fly Symposium, Riverside, CA, p 34.

    Google Scholar 

  • McInnis DO, Tam S, Grace C, Miyashita D (1994) Population suppression and sterility rates induced by variable sex ratio, sterile insect releases of Ceratitis capitata (Diptera: Tephritidae) in Hawaii. Ann Entomol Soc Am 87:231–240

    Google Scholar 

  • McInnis DO, Tam S, Lim R, Komatsu J, Kurashima R, Albrecht C (2004) Development of a pupal color-based genetic sexing strain of the melon fly, Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae). Ann Entomol Soc Am 97:1026–1033

    Article  Google Scholar 

  • Medhora MM, MacPeek AH, Hartl DL (1988) Excision of the Drosophila transposable element mariner: identification and characterization of the Mos factor. EMBO J 7:2185–2189

    PubMed  CAS  Google Scholar 

  • Miller DF, Holtzman SL, Kaufman TC (2002) Customized microinjection glass capillary needles for P-element transformations in Drosophila melanogaster. Biotechniques 33:366–367, 369–370, 372 passim

    Google Scholar 

  • Misra S, Rio DC (1990) Cytotype control of Drosophila P element transposition: the 66 kd protein is a repressor of transposase activity. Cell 62:269–284

    Article  PubMed  CAS  Google Scholar 

  • Nene V, Wortman JR, Lawson D, Haas B, Kodira C, Tu ZJ, Loftus B , Xi Z, Megy K, Grabherr M et al (2007) Genome sequence of Aedes aegypti, a major arbovirus vector. Science 316:1718–1723

    Article  PubMed  CAS  Google Scholar 

  • Nimmo DD, Alphey L, Meredith JM, Eggleston P (2006) High efficiency site-specific genetic engineering of the mosquito genome. Insect Mol Biol 15:129–136

    Article  PubMed  CAS  Google Scholar 

  • Nolan T, Bower TM, Brown AE, Crisanti A, Catteruccia F (2002) piggyBac-mediated germline transformation of the malaria mosquito Anopheles stephensi using the red fluorescent protein dsRED as a selectable marker. J Biol Chem 277:8759–8762

    Article  PubMed  CAS  Google Scholar 

  • NRC (2002) Animal Biotechnology: Science Based Concerns. The National Academic Press, Washington, DC

    Google Scholar 

  • Oberstein A, Pare A, Kaplan L, Small S (2005) Site-specific transgenesis by Cre-mediated recombination in Drosophila. Nat Methods 2:583–585

    Article  PubMed  CAS  Google Scholar 

  • O’Brochta DA, Atkinson PW (1998) Building the better bug. Sci Am 279:90–95

    Article  PubMed  Google Scholar 

  • O’Brochta DA, Atkinson PW (2004) Transformation systems in insects. Methods Mol Biol 260:227–254

    PubMed  Google Scholar 

  • O’Brochta DA, Atkinson PW, Lehane MJ (2000) Transformation of Stomoxys calcitrans with a Hermes gene vector. Insect Mol Biol 9:531–538

    Article  PubMed  Google Scholar 

  • O’Kane CJ, Gehring WJ (1987) Detection in situ of genomic regulatory elements in Drosophila. Proc Natl Acad Sci USA 84:9123–9127

    Article  PubMed  Google Scholar 

  • Opiyo E, Luger D, Nadel D, Feldmann U (1999) Automation in tsetse mass-rearing process: preliminary observations with Glossina austeni. In: Proceedings: Animal trypanosomosis: vector and disease control using nuclear techniques. Second FAO/IAEA seminar for Africa, 27 November–1 December 1995, Zanzibar, Tanzania. Backhuys Publishers, Leiden, NL, pp 187–192

    Google Scholar 

  • Opiyo E, Luger D, Robinson AS (2000) New systems for the large-scale production of male tsetse flies (Diptera: Glossinidae). In: Tan KH (ed) Proceedings: Area-wide control of fruit flies and other insect pests, and the 5th International Symposium on Fruit Flies of Economic Importance, 28 May–5 June 1998, Penang, Malaysia. Penerbit Universiti Sains Malaysia, Pulau Pinang, pp 337–344

    Google Scholar 

  • Pane A, Salvemini M, Delli BP, Polito C, Saccone G (2002) The transformer gene in Ceratitis capitata provides a genetic basis for selecting and remembering the sexual fate. Development 129:3715–3725

    PubMed  CAS  Google Scholar 

  • Parker AG (2005) Mass-rearing for sterile insect release. In: Dyck VA, Hendrichs J, Robinson AS (ed) In: Sterile insect technique - principles and practice in area-wide integrated pest management. Springer, Dordrecht, NL, pp 209–232

    Google Scholar 

  • Parker A, Mehta K (2007) Sterile insect technique: a model for dose optimization for improved sterile insect quality. Fla Entomol 90:88–95

    Article  Google Scholar 

  • Pavlopoulos A, Berghammer AJ, Averof M, Klingler M (2004) Efficient transformation of the beetle Tribolium castaneum using the Minos transposable element: quantitative and qualitative analysis of genomic integration events. Genetics 167:737–746

    Article  PubMed  CAS  Google Scholar 

  • Pavlopoulos A, Oehler S, Kapetanaki MG, Savakis C (2007) The DNA transposon Minos as a tool for transgenesis and functional genomic analysis in vertebrates and invertebrates. Genome Biol 8(Suppl 1):S2

    Article  PubMed  Google Scholar 

  • Pedigo LP (2002) Entomology & Pest Management. Prentice Hall, Upper Saddle River, NJ,

    Google Scholar 

  • Peloquin JJ, Thibault ST, Staten R, Miller TA (2000) Germ-line transformation of pink bollworm (Lepidoptera: gelechiidae) mediated by the piggyBac transposable element. Insect Mol Biol 9:323–333

    Article  PubMed  CAS  Google Scholar 

  • Perera OP, Harrell R, Handler AM (2002) Germ-line transformation of the South American malaria vector, Anopheles albimanus, with a piggyBac/EGFP transposon vector is routine and highly efficient. Insect Mol Biol 11:291–297

    Article  PubMed  CAS  Google Scholar 

  • Phuc HK, Andreasen MH, Burton RS, Vass C, Epton MJ, Pape G, Fu G, Condon KC, Scaife S, Donnelly CA et al (2007) Late-acting dominant lethal genetic systems and mosquito control. BMC Biol 5:11

    Article  PubMed  CAS  Google Scholar 

  • Pinkerton AC, Michel K, O’Brochta DA, Atkinson PW (2000) Green fluorescent protein as a genetic marker in transgenic Aedes aegypti. Insect Mol Biol 9:1–10

    Article  PubMed  CAS  Google Scholar 

  • Prasher DC, Eckenrode VK, Ward WW, Prendergast FG, Cormier MJ (1992) Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111:229–233

    Article  PubMed  CAS  Google Scholar 

  • Quan GX, Kim I, Komoto N, Sezutsu H, Ote M, Shimada T, Kanda T, Mita K, Kobayashi M, Tamura T (2002) Characterization of the kynurenine 3-monooxygenase gene corresponding to the white egg 1 mutant in the silkworm Bombyx mori. Mol Genet Genomics 267:1–9

    Article  PubMed  CAS  Google Scholar 

  • Rajagopal R, Sivakumar S, Agrawal N, Malhotra P, Bhatnagar RK (2002) Silencing of midgut aminopeptidase N of Spodoptera litura by double-stranded RNA establishes its role as Bacillus thuringiensis toxin receptor. J Biol Chem 277:46849–46851

    Article  PubMed  CAS  Google Scholar 

  • Ramos DM, Kamal F, Wimmer EA, Cartwright AN, Monteiro A (2006) Temporal and spatial control of transgene expression using laser induction of the hsp70 promoter. BMC Dev Biol 6:55

    Article  PubMed  CAS  Google Scholar 

  • Raz E (2000) The function and regulation of vasa-like genes in germ-cell development. Genome Biol 1:1016 reviews1017.1011–reviews1017

    Article  Google Scholar 

  • Rendon P, McInnis D, Lance D, Stewart J (2004) Medfly (Diptera: Tephritidae) genetic sexing: large-scale field comparison of males-only and bisexual sterile fly releases in Guatemala. J Econ Entomol 97:1547–1553

    Article  PubMed  CAS  Google Scholar 

  • Rendon P, McInnis DO, Lance D, Stewart J (2000) Comparison of medfly male only and bisexual releases in large scale field trials. In: Tan KH (ed) Area-wide control of fruit files and other insect pests. Penerbit Universiti Sains Malaysia, Pulau Pinang, pp 517–525

    Google Scholar 

  • Richards S, Gibbs RA, Weinstock GM, Brown SJ, Denell R, Beeman RW, Gibbs R, Bucher G, Friedrich M, Grimmelikhuijzen CJ et al. (2008) The genome of the model beetle and pest Tribolium castaneum. Nature 452:949–955

    Article  PubMed  CAS  Google Scholar 

  • Rio DC, Rubin GM (1988) Identification and purification of a Drosophila protein that binds to the terminal 31-base-pair inverted repeats of the P transposable element. Proc Natl Acad Sci USA 85:8929–8933

    Article  PubMed  CAS  Google Scholar 

  • Robinson AS, Franz G (2000) The application of transgenic insect technology in the sterile insect technique. In: Handler AM, James AA (ed) Insect transgenesis: methods and applications. CRC Press LLC, Boca Raton, FL, pp 307–319

    Google Scholar 

  • Robinson AS, Hendrichs J (2005) Prospects for the future development and application of the sterile insect technique. In: Dyck VA Hendrichs J, Robinson AS (ed) Sterile insect technique - principles and practice in area-wide integrated pest management. Springer, Dordrecht, NL, pp 727–760

    Google Scholar 

  • Rössler Y (1979) The genetics of the Mediterranean fruit fly: a white pupae mutant. Ann Entomol Soc Am 72:583–585

    Google Scholar 

  • Rubin GM, Spradling AC (1982) Genetic transformation of Drosophila with transposable element vectors. Science 218:348–353

    Article  PubMed  CAS  Google Scholar 

  • Ryder E, Russell S (2003) Transposable elements as tools for genomics and genetics in Drosophila. Brief Funct Genomic Proteomic 2:57–71

    Article  PubMed  CAS  Google Scholar 

  • Sadowski P (1986) Site-specific recombinases: changing partners and doing the twist. J Bacteriol 165:341–347

    PubMed  CAS  Google Scholar 

  • Salvemini M, Robertson M, Aronson B, Atkinson P, Polito LC, Saccone G (2009) Ceratitis capitata transformer-2 gene is required to establish and maintain the autoregulation of Cctra, the master gene for female sex determination. Int J Dev Biol 53:109–120

    Article  PubMed  CAS  Google Scholar 

  • Sarkar A, Coates CJ, Whyard S, Willhoeft U, Atkinson PW, O’Brochta DA (1997) The Hermes element from Musca domestica can transpose in four families of cyclorrhaphan flies. Genetica 99:15–29

    PubMed  CAS  Google Scholar 

  • Schetelig MF, Caceres C, Zacharopoulou A, Franz G, Wimmer EA (2009a) Conditional embryonic lethality to improve the sterile insect technique in Ceratitis capitata (Diptera: Tephritidae). BMC Biology 7:4

    Article  PubMed  CAS  Google Scholar 

  • Schetelig MF, Horn C, Handler AM, Wimmer EA (2007) Development of an embryonic lethality system for SIT in Ceratitis capitata. In: Vreysen MJB Robinson AS, Hendrichs J (ed) Area-wide control of insect pests: from research to field implementation. Springer, Dordrecht, NL, pp 85–93

    Chapter  Google Scholar 

  • Schetelig MF, Scolari F, Handler AM, Gasperi G, Wimmer EA (2008) New genetic tools for improving SIT in Ceratitis capitata: embryonic lethality and sperm marking. In: Sugayama R, Zucchi R, Ovruski S, Sivinski J (ed) Fruit flies of economic importance: from basic to applied knowledge. Proceedings of 7th International Symposium on Fruit Flies of Economic Importance, Salvador, Brazil, 10–15 September 2006. SBPC, Salvador, pp 299–305

    Google Scholar 

  • Schetelig MF, Scolari F, Handler AM, Kittelmann S, Gasperi G, Wimmer EA (2009b) Site-specific recombination for the modification of transgenic strains of the Mediterranean fruit fly Ceratitis capitata. Proc Natl Acad Sci USA 106:18171–18176

    Article  PubMed  Google Scholar 

  • Schinko JB, Weber M, Viktorinova I, Kiupakis A, Averof M, Klingler M, Wimmer EA, Bucher G (2010) Functionality of the GAL4/UAS system in Tribolium requires the use of endogenous core promoters. BMC Dev Biology 10:53

    Google Scholar 

  • Schütt C, Nöthiger R (2000) Structure, function and evolution of sex-determining systems in Dipteran insects. Development 127:667–677

    PubMed  Google Scholar 

  • Scolari F, Schetelig MF, Bertin S, Malacrida AR, Gasperi G, Wimmer EA (2008) Fluorescent sperm marking to improve the fight against the pest insect Ceratitis capitata (Wiedemann; Diptera: Tephritidae). N Biotechnol 25:76–84

    Article  PubMed  CAS  Google Scholar 

  • Sheng G, Thouvenot E, Schmucker D, Wilson DS, Desplan C (1997) Direct regulation of rhodopsin 1 by Pax-6/eyeless in Drosophila: evidence for a conserved function in photoreceptors. Genes Dev 11:1122–1131

    Article  PubMed  CAS  Google Scholar 

  • Smith RC, Walter MF, Hice RH, O’Brochta DA, Atkinson PW (2007) Testis-specific expression of the β2 tubulin promoter of Aedes aegypti and its application as a genetic sex-separation marker. Insect Mol Biol 16:61–71

    Article  PubMed  CAS  Google Scholar 

  • Subramanian RA, Cathcart LA, Krafsur ES, Atkinson PW, O’Brochta DA (2009) Hermes transposon distribution and structure in Musca domestica. J Hered 100:473–480

    Article  PubMed  CAS  Google Scholar 

  • Sundararajan P, Atkinson PW, O’Brochta DA (1999) Transposable element interactions in insects: crossmobilization of hobo and Hermes. Insect Mol Biol 8:359–368

    Article  PubMed  CAS  Google Scholar 

  • Swartz M, Eberhart J, Mastick GS, Krull CE (2001) Sparking new frontiers: using in vivo electroporation for genetic manipulations. Dev Biol 233:13–21

    Article  PubMed  CAS  Google Scholar 

  • Szuts D, Bienz M (2000) LexA chimeras reveal the function of Drosophila Fos as a context-dependent transcriptional activator. Proc Natl Acad Sci USA 97:5351–5356

    Article  PubMed  CAS  Google Scholar 

  • Tabashnik BE, Biggs RW, Fabrick JA, Gassmann AJ, Dennehy TJ, Carriere Y, Morin S (2006) High-level resistance to Bacillus thuringiensis toxin crylac and cadherin genotype in pink bollworm. J Econ Entomol 99:2125–2131

    Article  PubMed  CAS  Google Scholar 

  • Tabashnik BE, Gassmann AJ, Crowder DW, Carriere Y (2008) Insect resistance to Bt crops: evidence versus theory. Nat Biotechnol 26:199–202

    Article  PubMed  CAS  Google Scholar 

  • Tamura T, Thibert C, Royer C, Kanda T, Abraham E, Kamba M, Komoto N, Thomas JL, Mauchamp B, Chavancy G et al. (2000) Germline transformation of the silkworm Bombyx mori L. using a piggyBac transposon-derived vector. Nat Biotechnol 18:81–84

    Article  PubMed  CAS  Google Scholar 

  • Terenius O, Bettencourt R, Lee SY, Li W, Soderhall K, Faye I (2007) RNA interference of Hemolin causes depletion of phenoloxidase activity in Hyalophora cecropia. Dev Comp Immunol 31:571–575

    Article  PubMed  CAS  Google Scholar 

  • Thomas JL, Bardou J, L’Hoste S, Mauchamp B, Chavancy G (2001) A helium burst biolistic device adapted to penetrate fragile insect tissues. J Insect Sci 1:9

    PubMed  CAS  Google Scholar 

  • Thomas JL, Da Rocha M, Besse A, Mauchamp B, Chavancy G (2002) 3xP3-EGFP marker facilitates screening for transgenic silkworm Bombyx mori L. from the embryonic stage onwards. Insect Biochem Mol Biol 32:247–253

    Article  PubMed  CAS  Google Scholar 

  • Thomas DD, Donnelly CA, Wood RJ, Alphey LS (2000) Insect population control using a dominant, repressible, lethal genetic system. Science 287:2474–2476

    Article  PubMed  CAS  Google Scholar 

  • Tomoyasu Y, Miller SC, Tomita S, Schoppmeier M, Grossmann D, Bucher G (2008) Exploring systemic RNA interference in insects: a genome-wide survey for RNAi genes in Tribolium. Genome Biol 9:R10

    Article  PubMed  CAS  Google Scholar 

  • Trauner J, Schinko J, Lorenzen M, Shippy T, Wimmer E, Beeman R, Klingler M, Bucher G, Brown S (2009) Large-scale insertional mutagenesis of a coleopteran stored grain pest, the red flour beetle Tribolium castaneum, identifies embryonic lethal mutations and enhancer traps. BMC Biology 7:73

    Article  PubMed  CAS  Google Scholar 

  • Uchino K, Sezutsu H, Imamura M, Kobayashi I, Tatematsu K, Iizuka T, Yonemura N, Mita K, Tamura T (2008) Construction of a piggyBac-based enhancer trap system for the analysis of gene function in silkworm Bombyx mori. Insect Biochem Mol Biol 38:1165–1173

    Article  PubMed  CAS  Google Scholar 

  • Uhlirova M, Asahina M, Riddiford LM, Jindra M (2002) Heat-inducible transgenic expression in the silkmoth Bombyx mori. Dev Genes Evol 212:145–151

    Article  PubMed  CAS  Google Scholar 

  • Venken KJ, Carlson JW, Schulze KL, Pan H, He Y, Spokony R, Wan KH, Koriabine M, de Jong PJ, White KP et al (2009) Versatile P[acman] BAC libraries for transgenesis studies in Drosophila melanogaster. Nat Methods 6:431–434

    Article  PubMed  CAS  Google Scholar 

  • Viktorinova I, Wimmer EA (2007) Comparative analysis of binary expression systems for directed gene expression in transgenic insects. Insect Biochem Mol Biol 37:246–254

    Article  PubMed  CAS  Google Scholar 

  • Vreysen MJ (2001) Principles of area-wide integrated tsetse fly control using the sterile insect technique. Med Trop (Mars) 61:397–411

    CAS  Google Scholar 

  • Vreysen MJB (2005) Monitoring sterile and wild insects in area-wide integrated pest management programmes. In: Dyck VA Hendrichs J, Robinson AS (ed) Sterile insect technique - principles and practice in area-wide integrated pest management. Springer, Dordrecht, NL, pp 325–361

    Google Scholar 

  • Warren WD, Atkinson PW, O’Brochta DA (1994) The Hermes transposable element from the house fly, Musca domestica, is a short inverted repeat-type element of the hobo, Ac, and Tam3 (hAT) element family. Genet Res 64:87–97

    Article  PubMed  CAS  Google Scholar 

  • Wimmer EA (2003) Innovations: applications of insect transgenesis. Nat Rev Genet 4:225–232

    Article  PubMed  CAS  Google Scholar 

  • Wimmer EA (2005a) Eco-friendly insect management. Nat Biotechnol 23:432–433

    Article  PubMed  CAS  Google Scholar 

  • Wimmer EA (2005b) Insect transgenesis by site-specific recombination. Nat Methods 2:580–582

    Article  PubMed  CAS  Google Scholar 

  • Wu C, Proestou D, Carter D, Nicholson E, Santos F, Zhao S, Zhang HB, Goldsmith MR (2009) Construction and sequence sampling of deep-coverage, large-insert BAC libraries for three model lepidopteran species. BMC Genomics 10:283

    Article  PubMed  CAS  Google Scholar 

  • Wyss JH (2000) Screwworm eradication in the Americas – overview. In: Tan K (ed) Area-wide control of fruit flies and other insect pests. Penerbit Universiti Sains Malaysia, Pulau Pinang

    Google Scholar 

  • Xia Q, Guo Y, Zhang Z, Li D, Xuan Z, Li Z, Dai F, Li Y, Cheng D, Li R et al (2009) Complete resequencing of 40 genomes reveals domestication events and genes in silkworm (Bombyx). Science 326:433–436

    Article  PubMed  CAS  Google Scholar 

  • Yang TT, Cheng L, Kain SR (1996a) Optimized codon usage and chromophore mutations provide enhanced sensitivity with the green fluorescent protein. Nucleic Acids Res 24:4592–4593

    Article  PubMed  CAS  Google Scholar 

  • Yang TT, Kain SR, Kitts P, Kondepudi A, Yang MM, Youvan DC (1996b) Dual color microscopic imagery of cells expressing the green fluorescent protein and a red-shifted variant. Gene 173:19–23

    Article  PubMed  CAS  Google Scholar 

  • Yuen JL, Read SA, Brubacher JL, Singh AD, Whyard S (2008) Biolistics for high-throughput transformation and RNA interference in Drosophila melanogaster. Fly (Austin) 2(5):247–254

    Google Scholar 

  • Zimowska GJ, Handler AM (2006) Highly conserved piggyBac elements in noctuid species of Lepidoptera. Insect Biochem Mol Biol 36:421–428

    Article  PubMed  CAS  Google Scholar 

  • Zimowska GJ, Nirmala X, Handler AM (2009) The beta2-tubulin gene from three tephritid fruit fly species and use of its promoter for sperm marking. Insect Biochem Mol Biol 39:508–515

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

Our own work on this subject has been supported by the Robert Bosch Foundation (EAW) within the program “International Research into the Development of Sustainable Agriculture and Forestry,” the Fonds der Chemischen Industrie (EAW), the BMBF (EAW), and the EMBO Young Investigator Programme (EAW). For many of the ideas presented here, we are indebted to many informative and interesting discussions with excellent colleagues especially at the International Atomic Energy Agency funded meetings of the Coordinated Research Projects “The Use of Molecular Tools to Improve the Effectiveness of SIT” and “Development and Evaluation of Improved Strains of Insect Pests for SIT.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc F. Schetelig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Schetelig, M.F., Wimmer, E.A. (2011). Insect Transgenesis and the Sterile Insect Technique. In: Vilcinskas, A. (eds) Insect Biotechnology. Biologically-Inspired Systems, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9641-8_9

Download citation

Publish with us

Policies and ethics