Skip to main content

Protection of Crops Against Insect Pests Using RNA Interference

  • Chapter
  • First Online:

Part of the book series: Biologically-Inspired Systems ((BISY,volume 2))

Abstract

RNA interference (RNAi) caused by exogenous double-stranded RNA (dsRNA) has developed into a powerful technique for down-regulating gene expression in a wide range of organisms, following its discovery in the nematode Caenorhabditis elegans. Not only does import of dsRNA into cells to produce small interfering RNAs (siRNAs) take place readily in C. elegans, but also systemic RNAi effects can be shown to occur, which persist over distinct developmental stages. These effects are mediated by amplification of siRNAs and export to other cells in the organism. However, the sensitivity to RNAi in C. elegans, where specific genes can be down-regulated by feeding dsRNA, or even by soaking nematodes in dsRNA solutions, have not been duplicated in other organisms, nor have systemic and persistent RNAi effects been widely observed. Uptake of dsRNA was limited in the model insect species Drosophila melanogaster (fruit fly), and no evidence of systemic and persistent RNAi effects was observed. However, more recent research has shown that full RNAi effects can occur in insects, although they are variable from species to species. Down-regulation of gene expression through delivery of dsRNA to insects can cause mortality, through a range of altered phenotypes, such as interference with developmental processes, or metabolism, or responses to the environment, and systemic and persistent RNAi effects have been reported, most notably in the beetle Tribolium confusum. Whereas injection of dsRNA remains the method of choice for delivery to insects, in some species feeding dsRNA has also been shown to produce RNAi effects. Further, expression of dsRNAs directed against insect genes in transgenic plants has been shown to result in RNAi effects and to afford protection against insect herbivores. This technology has the potential to be the basis of a new generation of pest-resistant GM crops, complementing existing technologies, but further development to improve efficacy of protection, and range of species affected, will be necessary.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Altun ZF, Hall DH (2008) Handbook of C. elegans anatomy. In WormAtlas. http://www.wormatlas.org/hermaphrodite/hermaphroditehomepage.htm

  • Amdam GV, Simoes ZLP, Guidugli KR, Norberg K, Omholt SW (2003) Disruption of vitellogenin gene function in adult honeybees by intra-abdominal injection of double-stranded RNA. BMC Biotechnol 3:1

    Article  PubMed  Google Scholar 

  • Araujo RN, Santos A, Pinto FS, Gontijo NF, Lehane MJ, Pereira MH (2006) RNA interference of the salivary gland nitrophorin 2 in the triatomine bug Rhodnius prolixus (Hemiptera: Reduviidae) by dsRNA ingestion or injection. Insect Biochem Mol Biol 36:683–693

    Article  PubMed  CAS  Google Scholar 

  • Araujo RN, Soares AC, Paim RMM, Gontijo NF, Gontijo AF, Lehane MJ, Pereira MH (2009) The role of salivary nitrophorins in the ingestion of blood by the triatomine bug Rhodnius prolixus (Reduviidae: Triatominae). Insect Biochem Mol Biol 39:83–89

    Google Scholar 

  • Aronstein K, Pankiw T, Saldivar E (2006) Sid-1 is implicated in systemic gene silencing in the honey bee. J Apic Res 45:20–24

    CAS  Google Scholar 

  • Bagga S, Bracht J, Hunter S, Massirer K, Holtz J, Eachus R, Pasquinelli AE (2005) Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell 122:553–563

    Article  PubMed  CAS  Google Scholar 

  • Bakhetia M, Charlton WL, Urwin PE, McPherson MJ, Atkinson HJ (2005) RNA interference and plant parasitic nematodes. Trends Plant Sci 10:362–367

    Article  PubMed  CAS  Google Scholar 

  • Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  PubMed  CAS  Google Scholar 

  • Baum JA, Bogaert T, Clinton W, Heck GR, Feldmann P, Ilagan O, Johnson S, Plaetinck G, Munyikwa T, Pleau M, Vaughn T, Roberts J (2007a) Control of coleopteran insect pests through RNA interference. Nat Biotechnol 25:1322–1326

    Article  PubMed  CAS  Google Scholar 

  • Baum JA, Cajacob CA, Feldmann P, Heck GR, Nooren I, Plaetinck G, Maddelein W, Vaughn TT (2007b) Methods for genetic control of insect infestations in plants and compositions thereof. US Patent Application 20070124836

    Google Scholar 

  • Baum JA, Gilbertson LA, Kovalic DK, LaRosa TJ, Lu M, Munyikwa TRI, Roberts JK, Wu W, Zhang B (2008) Compositions and methods for control of insect infestations in plants. US Patent Application 20080214443

    Google Scholar 

  • Bautista MAM, Miyata T, Miura K, Tanaka T (2009) RNA interference-mediated knockdown of a cytochrome P450, CYP6BG1, from the diamondback moth, Plutella xylostella, reduces larval resistance to permethrin. Insect Biochem Mol Biol 39:38–46

    Article  PubMed  CAS  Google Scholar 

  • Bucher G, Scholten J, Klingler M (2002) Parental RNAi in Tribolium (Coleoptera). Curr Biol 12:R

    Article  Google Scholar 

  • Chung WJ, Okamura K, Martin R, Lai EC (2008) Endogenous RNA interference provides a somatic defense against Drosophila transposons. Curr Biol 18:795–802

    Article  PubMed  CAS  Google Scholar 

  • Citovsky V, Knorr D, Schuster G, Zambryski P (1990) The P30 movement protein of tobacco mosaic virus is a single strand nucleic acid binding protein. Cell 60:637–647

    Article  PubMed  CAS  Google Scholar 

  • Cruz J, Mane-Padros D, Belles X, Martin D (2006) Functions of the ecdysone receptor isoform-A in the hemimetabolous insect Blattella germanica revealed by systemic RNAi in vivo. Dev Biol 297:158–171

    Article  PubMed  CAS  Google Scholar 

  • Doench JG, Petersen CP, Sharp PA (2003) siRNAs can function as miRNAs. Genes Dev 17:438–442

    Article  PubMed  CAS  Google Scholar 

  • Dong Y, Friedrich M (2005) Nymphal RNAi: systemic RNAi mediated gene knockdown in juvenile grasshopper. BMC Biotechnol 5:25

    Article  PubMed  CAS  Google Scholar 

  • Escobar MA, Civerolo EL, Summerfelt KR, Dandekar AM (2001) RNAi-mediated oncogene silencing confers resistance to crown gall tumorigenesis. Proc Natl Acad Sci USA 98:13437–13442

    Article  PubMed  CAS  Google Scholar 

  • Fairbairn DJ, Cavallaro AS, Bernard M, Mahalinga-Iyer J, Graham MW, Botella JR (2007) Host-delivered RNAi: an effective strategy to silence genes in plant parasitic nematodes. Planta 226:1525–1533

    Article  PubMed  CAS  Google Scholar 

  • Fanelli E, Di Vito M, Jones JT, De Giorgi C (2005) Analysis of chitin synthase function in a plant parasitic nematode, Meloidogyne artiellia, using RNAi. Gene 349:87–95

    Article  PubMed  CAS  Google Scholar 

  • Feinberg EH, Hunter CP (2003) Transport of dsRNA into cells by the transmembrane protein SID-1. Science 301:1545–1547

    Article  PubMed  CAS  Google Scholar 

  • Fire A, Xu SQ, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  PubMed  CAS  Google Scholar 

  • Franco Nunes FM, Paulino Simoes ZL (2009) A non-invasive method for silencing gene transcription in honeybees maintained under natural conditions. Insect Biochem Mol Biol 39:157–160

    Article  CAS  Google Scholar 

  • Gatehouse JA (2008) Biotechnological prospects for engineering insect-resistant plants. Plant Physiol 146:881–887

    Article  PubMed  CAS  Google Scholar 

  • Gheysen G, Vanholme B (2007) RNAi from plants to nematodes. Trends Biotechnol 25:89–92

    Article  PubMed  CAS  Google Scholar 

  • Gordon KHJ, Waterhouse PM (2007) RNAi for insect-proof plants. Nat Biotechnol 25:1231–1232

    Article  PubMed  CAS  Google Scholar 

  • Huang GZ, Allen R, Davis EL, Baum TJ, Hussey RS (2006) Engineering broad root-knot resistance in transgenic plants by RNAi silencing of a conserved and essential root-knot nematode parasitism gene. Proc Natl Acad Sci USA 103:14302–14306

    Article  PubMed  CAS  Google Scholar 

  • Jaubert-Possamai S, Le Trionnaire G, Bonhomme J, Christophides GK, Rispe C, Tagu D (2007) Gene knockdown by RNAi in the pea aphid Acyrthosiphon pisum. BMC Biotechnol 7:63

    Article  PubMed  CAS  Google Scholar 

  • Johansen LK, Carrington JC (2001) Silencing on the spot: induction and suppression of RNA silencing in the Agrobacterium-mediated transient expression system. Plant Physiol. 126:930–938

    Article  PubMed  CAS  Google Scholar 

  • Jose AM, Hunter CP (2007) Transport of sequence-specific RNA interference information between cells. Annu Rev Genet 41:305–330

    Article  PubMed  CAS  Google Scholar 

  • Jose AM, Smith JJ, Hunter CP (2009) Export of RNA silencing from C. elegans tissues does not require the RNA channel SID-1. Proc Natl Acad Sci USA 106:2283–2288

    Article  PubMed  Google Scholar 

  • Kalantidis K, Psaradakis S, Tabler M, Tsagris M (2002) The occurrence of CMV-specific short RNAs in transgenic tobacco expressing virus-derived double-stranded RNA is indicative of resistance to the virus. Mol Plant Microbe Interact 15:826–833

    Article  PubMed  CAS  Google Scholar 

  • Kehr J, Buhtz A (2008) Long distance transport and movement of RNA through the phloem. J Exp Bot 59:85–92

    Article  PubMed  CAS  Google Scholar 

  • Kim JK, Gabel HW, Kamath RS, Tewari M, Pasquinelli A, Rual JF, Kennedy S, Dybbs M, Bertin N, Kaplan JM, Vidal M, Ruvkun G (2005) Functional genomic analysis of RNA interference in C. elegans. Science 308:1164–1167

    Article  PubMed  CAS  Google Scholar 

  • Kimber MJ, McKinney S, McMaster S, Day TA, Fleming CC, Maule AG (2007) flp gene disruption in a parasitic nematode reveals motor dysfunction and unusual neuronal sensitivity to RNA interference. FASEB J 21:1233–1243

    Article  PubMed  CAS  Google Scholar 

  • Klink VP, Kim KH, Martins V, MacDonald MH, Beard HS, Alkharouf NW, Lee SK, Park SC, Matthews BF (2009) A correlation between host-mediated expression of parasite genes as tandem inverted repeats and abrogation of development of female Heterodera glycines cyst formation during infection of Glycine max. Planta 230:53–71

    Article  PubMed  CAS  Google Scholar 

  • Kumar M, Gupta GP, Rajam MV (2009) Silencing of acetylcholinesterase gene of Helicoverpa armigera by siRNA affects larval growth and its life cycle. J Insect Physiol 55:273–278

    Article  PubMed  CAS  Google Scholar 

  • Lilley CJ, Bakhetia M, Charlton WL, Urwin PE (2007) Recent progress in the development of RNA interference for plant parasitic nematodes. Mol Plant Pathol 8:701–711

    Article  PubMed  CAS  Google Scholar 

  • Lynch JA, Desplan C (2006) A method for parental RNA interference in the wasp Nasonia vitripennis. Nat Protoc 1:486–494

    Article  PubMed  CAS  Google Scholar 

  • Mao YB, Cai WJ, Wang JW, Hong GJ, Tao XY, Wang LJ, Huang YP, Chen XY (2007) Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nat Biotechnol 25:1307–1313

    Article  PubMed  CAS  Google Scholar 

  • Miller SC, Brown SJ, Tomoyasu Y (2008) Larval RNAi in Drosophila? Dev Genes Evol 218:505–510

    Article  PubMed  CAS  Google Scholar 

  • Misquitta L, Paterson BM (1999) Targeted disruption of gene function in Drosophila by RNA interference (RNA-i): a role for nautilus in embryonic somatic muscle formation. Proc Natl Acad Sci USA 96:1451–1456

    Article  PubMed  CAS  Google Scholar 

  • Moar W, Roush R, Shelton A, Ferre J, MacIntosh S, Rogers Leonard B, Abel C (2008) Field-evolved resistance to Bt toxins. Nat Biotechnol 26:1072–1074

    Google Scholar 

  • Mutti NS, Park Y, Reese JC, Reeck GR (2006) RNAi knockdown of a salivary transcript leading to lethality in the pea aphid, Acyrthosiphon pisum. J Insect Sci 6:38

    Article  Google Scholar 

  • Patel A, Fondrk MK, Kaftanoglu O, Emore C, Hunt G, Frederick K, Amdam GV (2007) The making of a queen: TOR pathway is a key player in diphenic caste development. PLoS ONE 2(6):e509. doi:10.1371/journal.pone.0000509

    Article  PubMed  CAS  Google Scholar 

  • Patrick ML, Aimanova K, Sanders HR, Gill SS (2006) P-type Na+/K+-ATPase and V-type H+-ATPase expression patterns in the osmoregulatory organs of larval and adult mosquito Aedes aegypti. J Exp Biol 209:4638–4651

    Article  PubMed  CAS  Google Scholar 

  • Pham JW, Sontheimer EJ (2005) Molecular requirements for RNA-induced silencing complex assembly in the Drosophila RNA interference pathway. J Biol Chem 280:39278–39283

    Article  PubMed  CAS  Google Scholar 

  • Price DRG, Gatehouse JA (2008) RNAi-mediated crop protection against insects. Trends Biotechnol 26:393–400

    Article  PubMed  CAS  Google Scholar 

  • Rajagopal R, Sivakumar S, Agrawal N, Malhotra P, Bhatnagar RK (2002) Silencing of midgut aminopeptidase-N of Spodoptera litura by double-stranded RNA establishes its role as Bacillus thuringiensis toxin receptor. J Biol Chem 277:46849–46851

    Article  PubMed  CAS  Google Scholar 

  • Roignant JY, Carre C, Mugat B, Szymczak D, Lepesant JA, Antoniewski C (2003) Absence of transitive and systemic pathways allows cell-specific and isoform-specific RNAi in Drosophila. RNA 9:299–308

    Article  PubMed  CAS  Google Scholar 

  • Saleh M, Tassetto M, van Rij RP, Goic B, Gausson V, Berry B, Jacquier C, Antoniewski C, Andino R (2009) Antiviral immunity in Drosophila requires systemic RNA interference spread. Nature 458:346–350

    Article  PubMed  CAS  Google Scholar 

  • Saleh M, van Rij RP, Hekele A, Gillis A, Foley E, O’Farrell PH, Andino R (2006) The endocytic pathway mediates cell entry of dsRNA to induce RNAi silencing. Nat Cell Biol 8:793–802

    Article  PubMed  CAS  Google Scholar 

  • Sasaki T, Chino M, Hayashi H, Fujiwara T (1998) Detection of several mRNA species in rice phloem sap. Plant Cell Physiol 39:895–897

    PubMed  CAS  Google Scholar 

  • Shakesby AJ, Wallace IS, Isaacs HV, Pritchard J, Roberts DM, Douglas AE (2009) A water-specific aquaporin involved in aphid osmoregulation. Insect Biochem Mol Biol 39:1–10

    Article  PubMed  CAS  Google Scholar 

  • Shih JD, Fitzgerald MC, Sutherlin M, Hunter CP (2009) The SID-1 double-stranded RNA transporter is not selective for dsRNA length. Rna 15:384–390

    Article  PubMed  CAS  Google Scholar 

  • Sijen T, Fleenor J, Simmer F, Thijssen KL, Parrish S, Timmons L, Plasterk RHA, Fire A (2001) On the role of RNA amplification in dsRNA-triggered gene silencing. Cell 107:465–476

    Article  PubMed  CAS  Google Scholar 

  • Sindhu AS, Maier TR, Mitchum MG, Hussey RS, Davis EL, Baum TJ (2009) Effective and specific in planta RNAi in cyst nematodes: expression interference of four parasitism genes reduces parasitic success. J Exp Bot 60:315–324

    Article  PubMed  CAS  Google Scholar 

  • Smith N, Singh S, Wang MB, Stoutjesdijk P, Green A, Waterhouse PM (2000) Total silencing by intron-spliced hairpin RNAs. Nature 407:319–320

    Article  PubMed  CAS  Google Scholar 

  • Soares CAG, Lima CMR, Dolan MC, Piesman J, Beard CB, Zeidner NS (2005) Capillary feeding of specific dsRNA induces silencing of the isac gene in nymphal Ixodes scapularis ticks. Insect Mol Biol 14:443–452

    Article  PubMed  CAS  Google Scholar 

  • Tabara H, Grishok A, Mello CC (1998) RNAi in C. elegans: soaking in the genome sequence. Science 282:430–431

    Article  PubMed  CAS  Google Scholar 

  • Tabashnik BE, Gassmann AJ, Crowder DW, Carriere Y (2008) Insect resistance to Bt crops: evidence versus theory. Nat Biotechnol 26:199–202

    Google Scholar 

  • Tenllado F, Llave C, Diaz-Ruiz JR (2004) RNA interference as a new biotechnological tool for the control of virus diseases in plants. Virus Res 102:85–96

    Article  PubMed  CAS  Google Scholar 

  • Tijsterman M, May RC, Simmer F, Okihara KL, Plasterk RHA (2004) Genes required for systemic RNA interference in Caenorhabditis elegans. Curr Biol 4:111–116

    Article  CAS  Google Scholar 

  • Timmons L, Fire A (1998) Specific interference by ingested dsRNA. Nature 395:854–854

    Google Scholar 

  • Toenniessen GH, O’Toole JC, DeVries J (2003) Advances in plant biotechnology and its adoption in developing countries. Curr Opin Plant Biol 6:191–198

    Article  PubMed  Google Scholar 

  • Tomari Y, Matranga C, Haley B, Martinez N, Zamore PD (2004) A protein sensor for siRNA asymmetry. Science 306:1377–1380

    Article  PubMed  CAS  Google Scholar 

  • Tomoyasu Y, Denell RE (2004) Larval RNAi in Tribolium (Coleoptera) for analyzing adult development. Dev Genes Evol 214:575–578

    Article  PubMed  CAS  Google Scholar 

  • Tomoyasu Y, Miller SC, Tomita S, Schoppmeier M, Grossmann D, Bucher G (2008) Exploring systemic RNA interference in insects: a genome-wide survey for RNAi genes in Tribolium. Genome Biol 9:R10

    Article  PubMed  CAS  Google Scholar 

  • Turner CT, Davy MW, MacDiarmid RM, Plummer KM, Birch NP, Newcomb RD (2006) RNA interference in the light brown apple moth, Epiphyas postvittana (Walker) induced by double-stranded RNA feeding. Insect Mol Biol 15:383–391

    Article  PubMed  CAS  Google Scholar 

  • Ulvila J, Parikka M, Kleino A, Sormunen R, Ezekowitz RA, Kocks C, Ramet M (2006) Double-stranded RNA is internalized by scavenger receptor-mediated endocytosis in Drosophila S2 cells. J Biol Chem 281:14370–14375

    Article  PubMed  CAS  Google Scholar 

  • Urwin P, Lilley C, Atkinson H (2002) Ingestion of double-stranded RNA by preparasitic juvenile cyst nematodes leads to RNA interference. Mol Plant Microbe Interact 15:747–752

    Article  PubMed  CAS  Google Scholar 

  • van den Berg A, Mols J, Han JH (2008) RISC-target interaction: cleavage and translational suppression. Biochim Biophys Acta 1779:668–677

    PubMed  Google Scholar 

  • Walshe DP, Lehane SM, Lehane MJ, Haines LR (2009) Prolonged gene knockdown in the tsetse fly Glossina by feeding double stranded RNA. Insect Mol Biol 18:11–19

    Article  PubMed  CAS  Google Scholar 

  • Waterhouse PM, Graham M, Wang MB (1998) Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc Natl Acad Sci USA 95:13959–13964

    Article  PubMed  CAS  Google Scholar 

  • Winston WM, Molodowitch C, Hunter CP (2002) Systemic RNAi in C. elegans requires the putative transmembrane protein SID-1. Science 295:2456–2459

    Article  PubMed  CAS  Google Scholar 

  • Winston WM, Sutherlin M, Wright AJ, Feinberg EH, Hunter CP (2007) Caenorhabditis elegans SID-2 is required for environmental RNA interference. Proc Natl Acad Sci USA 104:10565–10570

    Article  PubMed  CAS  Google Scholar 

  • Xu WN, Han ZJ (2008) Cloning and phylogenetic analysis of sid-1-like genes from aphids. J Insect Sci 8:30

    Article  Google Scholar 

  • Yadav BC, Veluthambi K, Subramaniam K (2006) Host-generated double stranded RNA induces RNAi in plant-parasitic nematodes and protects the host from infection. Mol Biochem Parasitol 148:219–222

    Article  PubMed  CAS  Google Scholar 

  • Yi R, Yi Q, Macara IG, Cullen BR (2003) Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 17:3011–3016

    Article  PubMed  CAS  Google Scholar 

  • Yoo BC, Kragler F, Varkonyi-Gasic E, Haywood V, Archer-Evans S, Lee YM, Lough TJ, Lucas WJ (2004) A systemic small RNA signaling system in plants. Plant Cell 16:1979–2000

    Article  PubMed  CAS  Google Scholar 

  • Zhao Y, Yang G, Wang-Pruski G, You M (2008) Phyllotreta striolata (Coleoptera: Chrysomelidae): Arginine kinase cloning and RNAi-based pest control. Eur J Entomol 105:815–822

    CAS  Google Scholar 

  • Zhou X, Wheeler MM, Oi FM, Scharf ME (2008) RNA interference in the termite Reticulitermes flavipes through ingestion of double-stranded RNA. Insect Biochem Mol Biol 38:805–815

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Biochemical and Biotechnological Sciences Research Council (Crop Science Initiative; Grant BB/E006280/1) for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John A. Gatehouse .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Gatehouse, J.A., Price, D.R. (2011). Protection of Crops Against Insect Pests Using RNA Interference. In: Vilcinskas, A. (eds) Insect Biotechnology. Biologically-Inspired Systems, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9641-8_8

Download citation

Publish with us

Policies and ethics