Integrating Geographic Information Systems and Ecological Niche Modeling into Disease Ecology: A Case Study of Bacillus anthracis in the United States and Mexico

  • Jason K. Blackburn
Conference paper
Part of the NATO Science for Peace and Security Series A: Chemistry and Biology book series (NAPSA, volume 00)


This chapter provides an overview of geographic information systems, spatial analysis and spatial statistics, and predictive ecological niche modeling as they apply to disease ecology. I provide a conceptual model of the epidemiology and outbreak ecology of anthrax and the landscape ecology of the pathogen Bacillus anthracis. I apply Anselin’s exploratory spatial data analysis process to these two components of the anthrax-transmission and spore-survival model. Spatial clustering statistics are reviewed in the context of outbreak epidemiology and potential mechanical vector transmission. I then provide a primer on ecological niche theory and apply ecological niche modeling to estimate the potential geographic distribution of B. anthracis on the landscape of the contiguous United States under current and future climate scenarios and to estimate the unknown distribution of B. anthracis in Mexico.


Geographic Information System Bacillus Anthracis Exploratory Spatial Data Analysis Disease Ecology Geographic Information System Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anselin, L. Spatial statistical modeling in a GIS environment. In Maguire, D., Batty, M., Goodchild, M., editors. GIS, spatial analysis, and modeling. Redlands, CA: ESRI Press; 2005. p. 498.Google Scholar
  2. 2.
    Smith, K.L., De Vos, V., Price, L.B., Hugh-Jones, M.E., Keim, P. 2000. Bacillus anthracis diversity in Kruger National Park. J. Clin. Microbiol. 38:3780–3784.PubMedGoogle Scholar
  3. 3.
    Hugh-Jones, M.E., De Vos, V. 2002. Anthrax and wildlife. Rev. Sci. Tech. 21:359–383.PubMedGoogle Scholar
  4. 4.
    Blackburn, J.K., McNyset, K.M., Hugh-Jones, M.E., Curtis, A. 2007. Modeling the geographic distribution of Bacillus anthracis, the causative agent of anthrax disease, for the contiguous United States using predictive ecological niche modeling. Am. J. Trop. Med. Hyg. 77:1103–1110.PubMedGoogle Scholar
  5. 5.
    Van Ness, G., Stein, C.D. 1956. Soils of the United States favorable for anthrax. J. Am. Vet. Med. Assoc. 128:7–9.Google Scholar
  6. 6.
    Van Ness, G.B. 1971. Ecology of anthrax. Science 172:1303–1307.CrossRefPubMedGoogle Scholar
  7. 7.
    Dragon, D.C., Rennie, R.P. 1995. The ecology of anthrax spores: tough but not invincible. Can. Vet. J. 36:295–301.PubMedGoogle Scholar
  8. 8.
    Turner, A.J., Galvin, J.W., Rubira, R.J., Miller, G.T. 2001. Anthrax explodes in an Australian summer. J. Appl. Microbiol. 87:196–199.CrossRefGoogle Scholar
  9. 9.
    Parkinson, R. Andrijana, R. Jenson, C. 2003. Investigation of an anthrax outbreak in Alberta in 1999 using a geographic information system. Can. Vet. J. 44:315–318.PubMedGoogle Scholar
  10. 10.
    Lindeque, P.M., Turnbull, P.C.B. 1994. Ecology and epidemiology of anthrax in the Etosha National Park, Namibia. Onderstepoort J. Vet. Res. 61:71–83.Google Scholar
  11. 11.
    Smith, K.L., De Vos, V., Bryden, H.B., Hugh-Jones, M.E., Klevytska, A., Price, L.B., Keim, P., Scholl, D.T. 1999. Meso-scale ecology of anthrax in southern Africa: a pilot study of diversity and clustering. J. Appl. Microbiol. 87:204–207.CrossRefPubMedGoogle Scholar
  12. 12.
    Blackburn, J.K. Evaluating the spatial ecology of anthrax in North America: examining epidemiological components across multiple geographic scales using a GIS-based approach. Doctoral Dissertation, Louisiana State University, Department of Geography and Anthropology, 2006.Google Scholar
  13. 13.
    Braack, L.E.O., De Vos, V. 1990. Feeding habits and flight ranges of blow-flies (Chryosoma spp.) in relation to anthrax transmission in the Kruger National Park, South Africa. Onderstepoort J. Vet. Res. 57:141–142.PubMedGoogle Scholar
  14. 14.
    De Vos, V., Bryden, H.B. 1996. Anthrax in the Kruger National Park: temporal and spatial patterns of disease occurrence. Salisbury Med. Bull. 87(suppl.):26–30.Google Scholar
  15. 15.
    Kraneveld F.C., Djaenoedin, R. 1940. Test on the dissemination of anthrax by Tabanus rubidus in horses and buffalo. Overgedrukt uit de Nederlands-Indische Bladen Voor Diergeneeskunde 52:339–380.Google Scholar
  16. 16.
    Rao, N.S., Mohiyudeen, S. 1958. Tabanus flies as transmitters of anthrax - a field experience. Indian Vet. J. 35:348–353Google Scholar
  17. 17.
    Davies, J.C. 1983. A major epidemic of anthrax in Zimbabwe. Part II. Cent. Afr. J. Med. 29:8–12.PubMedGoogle Scholar
  18. 18.
    Turell, M.J., Knudson, G.B. 1987. Mechanical transmission of Bacillus anthrasis by stable flies (Stomoxys calcitrans) and mosquitoes (Aedes aegypti and Aedes taeniorhynchus). Infect. Immun. 55:1859–1861.PubMedGoogle Scholar
  19. 19.
    Ganeva, D.J. 2004. Analysis of the Bulgarian tabanid fauna with regard to its potential for epidemiological involvement. Bulg. J. Vet. Med. 7:1–8.Google Scholar
  20. 20.
    Fullbright, T.E., Ortega-S., J.A. White-tailed deer habitat ecology and management on rangelands. College Station, TX: Texas A&M University Press; 2006.Google Scholar
  21. 21.
    Gates, C.C., Elkin, B.T., Dragon, D.C. 1995. Investigation, control, and epizootiology of anthrax in a geographically isolated, free-roaming bison population in northern Canada. Can. J. Vet. Res. 59:256–264.PubMedGoogle Scholar
  22. 22.
    Getis, A., Morrison, A.C., Gray, K., Scott, T.W. 2003. Characteristics of the spatial pattern of the dengue vector, Aedes aegypti, in Iquitos, Peru. Am. J. Trop. Med. Hyg. 69:494–505.PubMedGoogle Scholar
  23. 23.
    Haines-Young, R., Green, D.R., Cousins, S. Landscape ecology and spatial information systems. In: Haines-Young, R., Green, D.R., Cousins, S, editors. Landscape ecology and geographic information systems. Bristol, UK: Taylor & Francis, Inc.; 1994. pp. 3–8.Google Scholar
  24. 24.
    Dragon D.C., Bader D.E., Mitchell J., Wollen N. 2005. Natural dissemination of Bacillus anthracis spores in northern Canada. Appl. Environ. Microbiol. 71:1610–1615.CrossRefPubMedGoogle Scholar
  25. 25.
    Rogers, D.J. 2006. Models for vectors and vector-borne diseases. In: Hay, S., Graham, A.J., Rogers, D.J., editors. Global mapping of infectious diseases: methods, examples, and emerging application. London: Academic Press; 2006.Google Scholar
  26. 26.
    Clarke, K.C., McLafferty, S.L., Tempalski, B.J. 1996. On epidemiology and geographic information systems: a review and discussion of future directions. Emerg. Infect. Dis. 2:85–92.CrossRefPubMedGoogle Scholar
  27. 27.
    Smith, A.P., Horning, N., Moore, D. 1997. Regional biodiversity planning and lemur conservation with GIS in western Madagascar. Conserv. Biol. 11:498–512.CrossRefGoogle Scholar
  28. 28.
    Blackburn, J.K., Curtis, A., Mujia, F.C., Jones, F., Dorn, P., Coates, R. 2008. The development of the Chagas’ Online Data Entry System (CODES-GIS). Trans. GIS 12:249–265.CrossRefGoogle Scholar
  29. 29.
    Kulldorff, M. 2001. Prospective time periodic geographical disease surveillance using a scan statistic J. Royal Stat. Soc. Series A (Stat. Soc.) 164:61–72.CrossRefGoogle Scholar
  30. 30.
    Guisan, A., Zimmermann, N.E. 2000. Predictive habitat distribution models in ecology. Ecol. Model. 135:147–186.CrossRefGoogle Scholar
  31. 31.
    Curtis, A.C., Blackburn, J.K., Sansyzbayev, Y. Using a geographic information system to spatially investigate infectious disease. In: Tibayrenc, M., editor. Encyclopedia of infectious diseases: modern methodologies. London: John Wiley & Sons, Inc; 2007.Google Scholar
  32. 32.
    Cutter, S.L., Boruff, B.J., Shirley, W.L. 2003. Social vulnerability to environmental hazards. Soc. Sci. Q. 84:242–261.CrossRefGoogle Scholar
  33. 33.
    Longley, P.A., Goodchild, M.F., Maguire, D.J., Rhind, D.W. Geographic information systems and science, second edition. New York: Wiley; 2005.Google Scholar
  34. 34.
    Maguire, D.J., Batty, M., Goodchild, M.F., editors. GIS, spatial analysis, and modeling. Redlands, CA: ESRI Press; 2005.Google Scholar
  35. 35.
    Curtis, A., Mills, J.W., Leitner, M. 2007. Katrina and vulnerability: the geography of stress. J. Health Care Poor Underserved 18:315–330.CrossRefPubMedGoogle Scholar
  36. 36.
    Eisen, R.J., Bearden, S.W., Wilder, A.P., Montenieri, J.A., Antolin, M.F., Gage, K.L. 2006. Early-phase transmission of Yersinia pestis by unblocked fleas as a mechanism explaining rapidly spreading plague epizootics. Proc. Natl. Acad. Sci. U S A 103:15380–15385.CrossRefPubMedGoogle Scholar
  37. 37.
    Randolph, S., Rogers, D.J. Ecology of tick-borne disease and the role of climate. In: Ergonul, O., Whitehouse, C.A., editors. Crimean-Congo hemorrhagic fever: a global perspective. New York: Springer;2007. pp. 167–186.CrossRefGoogle Scholar
  38. 38.
    Peterson, A.T., Sanchez-Cordero, V., Beard, C.B., Ramsey, J.M. 2002. Ecologic niche modeling and potential reservoirs for Chagas disease, Mexico. Emerg. Infect. Dis. 8:662–667.Google Scholar
  39. 39.
    Lam N.S.N., Liu, K.B. 1994. Spread of AIDS in rural America, 1982-1990. J. Acquir. Immune Defic. Syndr. 7:485–490.PubMedGoogle Scholar
  40. 40.
    Peterson, A.T., Bauer, J.T., Mills, J.N. 2004. Ecologic and geographic distribution of Filovirus disease. Emerg. Infect. Dis. 10:40–47.PubMedGoogle Scholar
  41. 41.
    Goodchild, M.F. 1992. Geographical information science. Int. J. Geo. Inform. Sys. 6:31–45.CrossRefGoogle Scholar
  42. 42.
    Mark, D.M. Geographic information science: defining the field. In: Duckham, M., Goodchild, M.F., Worboys, M.F., editors. Foundations of geographic information science. New York: Taylor and Francis; 2003. pp. 3–18.Google Scholar
  43. 43.
    Goodchild, M.F. 2004. GIScience: geography, form, and process. Ann. Assoc. Am. Geographers 94:709–714.Google Scholar
  44. 44.
    Goodchild, M.F. Geographical information science: fifteen years later. In Fisher, P.F., editor. Classics from IJGIS: twenty years of the International Journal of Geographical Information Science and Systems. Boca Raton, FL: CRC Press; 2006. pp. 199–204.Google Scholar
  45. 45.
    Getis, A., Ord, J.K. 1992. The analysis of spatial association by use of distance statistics. Geo. Anal. 24:189–260.Google Scholar
  46. 46.
    Durbeck, H., Greiling, D., Estberg, L., Long, A., Jacquez, G. ClusterSeer™ software for identifying event clusters: user guide 2. Crytsal Lake, IL: TerraSeer, Inc.; 2002. p. 316.Google Scholar
  47. 47.
    Sagiyev, Z., Pazilov, Y., Lukhnova, L., Temiraliyeva, G., Meka-Menchenko, T., Sansyzbayev, Y., Joyner, T.A., Curtis, A., Hugh-Jones, M.E., Blackburn, J.K. Spatial hotspots of anthrax cases in Kazakh livestock: identifying control strategy needs. Oral Presentation. URISA’s GIS in Public Health Conference, May 20–23, 2007, New Olreans, Louisiana.Google Scholar
  48. 48.
    Hutchinson, G.E. 1978. An introduction to population ecology. New Haven, CT: Yale University Press; 1978.Google Scholar
  49. 49.
    Johnson, R.H. Determinate evolution in the color pattern of the lady-beetles. Publication No. 122. Washington, DC: Carnegie Institute of Washington; 1910.Google Scholar
  50. 50.
    Grinnell, J. 1917. The niche-relationships of the California Thrasher. Auk. 34:427–433.Google Scholar
  51. 51.
    Hutchinson, G.E. 1944. Limnological studies in Connecticut. VII. A critical examination of the supposed relationship between phytoplakton periodicity and chemical changes in lake waters. Ecology 25:3–26.CrossRefGoogle Scholar
  52. 52.
    Hutchinson, G.E. 1957. Concluding remarks. Cold Spring Harbour Symposium on Quantitative Biology 22:415–427.Google Scholar
  53. 53.
    MacArthur, R.H. 1958. Population ecology of some warblers of northeastern coniferous forests. Ecology 39:599–619.CrossRefGoogle Scholar
  54. 54.
    Morrison, M.L., Hall, L.S. Standard terminology: toward a common language to advance ecological understanding and application. In: Scott, J.M., Heglund, P.J., Morrison, M.L., Haufler, J.B., Raphael, M.G., Wall, W.A., Samson, F.B., editors. Predicting species occurrences: issues of accuracy and scale. Washington, DC: Island Press; 2002. pp. 43–52.Google Scholar
  55. 55.
    Chase, J.M., Leibold, M.A. Ecological niches: linking classical and contemporary approaches. Chicago: University of Chicago Press; 2003.Google Scholar
  56. 56.
    Peterson, A.T. 2008. Biogeography of diseases: a framework for analysis. Naturwissenschaften 95:483–491.CrossRefPubMedGoogle Scholar
  57. 57.
    Peterson, A.T. 2006. Ecologic niche modeling and spatial patterns of disease transmission. Emerg. Infect. Dis. 12:1822–1826.PubMedGoogle Scholar
  58. 58.
    Stockwell, D., Peters, D. 1999. The GARP modelling system: problems and solutions to automated spatial prediction. Int. J. Geo. Inform. Sci. 13:143–158.CrossRefGoogle Scholar
  59. 59.
    Rogers, D.J. Satellites, space, time and the African trypanosomiases. In: Hay, S.I., Randolph, S.E., Rogers, D.J., editors. Remote sensing and geographical information systems in epidemiology. London: Academic Press; 2000.Google Scholar
  60. 60.
    Phillips, S.J., Anderson, R.P., Schapire, R.E. 2006. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190:231–259.CrossRefGoogle Scholar
  61. 61.
    Adjemian, J.C.Z., Girvetz, E.H., Beckett, L., Foley, J.E. 2006. Analysis of genetic algorithm for rule-set prodution (GARP) modeling approach for predicting distributions of fleas implicated as vectors of plague, Yersinia pestis, in California. J. Med. Entomol. 43:93–103.CrossRefPubMedGoogle Scholar
  62. 62.
    Ron, R.S. 2005. Predicting the distribution of the amphibian pathogen Batrachochytrium dendrobatidis in the New World. Biotropica 37:209–221.CrossRefGoogle Scholar
  63. 63.
    Stockwell D.R.B., Peterson A.T. 2002. Effects of sample size on accuracy of species distribution models. Ecol. Model. 148:1–13.CrossRefGoogle Scholar
  64. 64.
    Anderson, R.P., Lew, D., Peterson, A.T. 2003. Evaluating predictive models of species’ distributions: criteria for selecting optimal models. Ecol. Model. 162:211–232.CrossRefGoogle Scholar
  65. 65.
    Kluza, D.A., McNyset, K.M. 2005. Ecological niche modeling of aquatic invasion species. Aquat. Invad. 16:1–7.Google Scholar
  66. 66.
    McNyset, K.M. 2005. Use of ecological niche modelling to predict distributions of freshwater fish species in Kansas. Ecol. Freshwater Fish 14:243–255.CrossRefGoogle Scholar
  67. 67.
    Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones P.G., Jarvis, A. 2005. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25:1965–1978.CrossRefGoogle Scholar
  68. 68.
    Hay, S.I., Tatem, A.J., Graham, A.J., Goetz, S.J., Rogers, D.J. Global environmental data for mapping infectious disease distribution. In: Hay, S., Graham, A.J., Rogers, D.J., editors. Global mapping of infectious diseases: methods, examples, and emerging application. London: Academic Press; 2006.Google Scholar
  69. 69.
    Nakicenovic, N., Swart, R., editors. Emissions scenarios: a special report of Working Group III of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press; 2000.Google Scholar
  70. 70.
    Peterson, A.T., Martínez-Meyer, E., González-Salazar, C., Hall, P. 2004. Modeled climate change effects on distributions of Canadian butterfly species. Can. J. Zool. 82:851–858.CrossRefGoogle Scholar
  71. 71.
    Wiley, E.O., McNyset, K.M., Peterson, A.T., Robins, C.R., Stewart, A.M. 2003. Niche modeling and geographic range predictions in the marine environment using a machine-learning algorithm. Oceanography 16:120–127.Google Scholar
  72. 72.
    Centor, R.M. 1991. Signal detectability: the use of ROC curves and their analyses. Med. Decis. Mak. 11:102–106.CrossRefGoogle Scholar
  73. 73.
    Zweig, M.H., Campbell, G. 1993. Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clin. Chem. 39:561–577.PubMedGoogle Scholar
  74. 74.
    Hanley, J.A., McNeil, B.J. 1982. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143:29–36.PubMedGoogle Scholar
  75. 75.
    Patterson, B.D., Ceballos, G., Sechrest, W., Tognelli, M.F., Brooks, T., Luna, L., Ortega, P., Salazar, I., Young, B.E. Digital distribution maps of the mammals of the western hemisphere, version 3.0. Arlington, VA: NatureServe; 2007.Google Scholar
  76. 76.
    Stein, C.D. 1945. The history and distribution of anthrax in livestock in the United States. Vet. Med. 40:340–349.Google Scholar
  77. 77.
    Van Ert, M.N., Easterday, W.R., Huynh, L.Y., Okinaka, R.T., Hugh-Jones, M.E., Ravel, J., Zanecki, S.R., Pearson, T., Simonson, T., Uren, J.M., Kachur, S.M., Leadem-Dougherty, R.R., Rhoton, S.D., Zinser, G., Farlow, J., Coker, P.R., Smith, K.L., Wang, B., Kenefic, L.J., Fraser-Liggett, C.M., Wagner, D.M., Keim, P. 2007. Global genetic population structure of Bacillus anthracis. PLoS ONE 2:e461.Google Scholar
  78. 78.
    Machado, M.A. 1976. An industry in limbo: the Mexican cattle industry 1920–1924. Ag. His. 50:615–625.Google Scholar
  79. 79.
    Hugh-Jones, M. 1999. 1996–97 global anthrax report. J. Appl. Microbiol. 87:189–191.CrossRefPubMedGoogle Scholar
  80. 80.
    Fragoso Uribe, R., Villicana Fuentes, H. 1984. Antrax en dos communidades de Zacatecas, Mexico. Bol. Oficina Sanit. Panam. 97:526–533.Google Scholar
  81. 81.
    Anthrax-cattle, human, livestock, Mexico (Michoacan). ProMED-mail, June 22, 2003. 20030622.1543. Available at Accessed August 27, 2007.
  82. 82.
    Siefert, H.S., Bader, K., Cyplik, J., González Salinas, J., Roth, F., Salinas Meléndez, J.A., Sukop, U. 1996. Environment, incidence, aetiology, epizootiology and immunoprophylaxis of soil-borne diseases in north-east Mexico. Zentralbl. Veterinarmed B. 43:593–606.Google Scholar
  83. 83.
    de la Rocque, S., Hendrickx, G., Morand, S., editors. 2008. Climate change: impact on epidemiology and control in animal diseases. Revue Scientifique et Technique, OIE, 27(2).Google Scholar
  84. 84.
    Holt, R.D., Gaines, M.S. 1992. Analysis and adaptation in heterogeneous landscapes: implications for the evolution of fundamental niches. Evolution. Ecol. 6:433–337.CrossRefGoogle Scholar
  85. 85.
    Peterson, A.T., Soberon, J., Sanchez-Cordero, V. 1999. Conservatism of ecological niches in evolutionary time. Science 285:1265–1267.CrossRefPubMedGoogle Scholar
  86. 86.
    Peterson, A.T. 2003. Predicting the geography of species’ invasions via ecological niche modeling. Q. Rev. Biol. 78:419–433.CrossRefPubMedGoogle Scholar
  87. 87.
    Van Ness, G.B. 1959. Soil relationship in the Oklahoma-Kansas anthrax outbreak of 1957. J. Soil Water Conserv. 14:70–71.Google Scholar
  88. 88.
    Isard, S.A., Schaetzl, R.J., Andresen, J.A. 2007. Soils cool as climate warms in the Great Lakes region: 1951–2000. Ann. Assoc. Am. Geog. 97:467–476.CrossRefGoogle Scholar
  89. 89.
    Strode, P.K. 2003. Implications of climate change for North American wood warblers (Parulidae). Global Change Biol. 9:1137–1144.CrossRefGoogle Scholar
  90. 90.
    Bradley, N.L., Leopold, A.C., Ross, J., Huffaker, W. 1999. Phenological changes reflect climate change in Wisconsin. Proc. Natl. Acad. Sci. U S A 96:9701–9704.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Jason K. Blackburn
    • 1
  1. 1.Spatial Epidemiology and Ecology Research Laboratory, Department of GeographyCalifornia State University, FullertonFullertonUSA

Personalised recommendations