Environmental Influences on the Relative Stability of Baculoviruses and Vaccinia Virus: A Review

  • Gary D. Ouellette
  • Patricia E. Buckley
  • Kevin P. O’Connell
Conference paper
Part of the NATO Science for Peace and Security Series A: Chemistry and Biology book series (NAPSA, volume 00)

Abstract

The environmental fate of viruses is a topic of recent interest because the transport and fate of viruses in the environment may impact human and animal health. In studying the transport of pathogenic viruses in the environment some workers have used non-pathogenic surrogate or “simulant” viruses as tracer organisms for safety reasons. In an effort to identify simulants for orthopoxviruses, the use of baculoviruses has been proposed. Like poxviruses, they are also large, ds-DNA viruses. Unlike poxviruses, however, they are generally regarded as harmless to plants and animals outside their narrow insect host range and have been broadly disseminated for decades in organic agriculture as natural insecticides. The use of baculoviruses as simulants for the development of decontaminants requires an understanding of the relative resistance of both poxviruses and baculoviruses to environmental stressors, so that their relative, inherent rates of environmental degradation can be accounted for in determining whether a candidate decontamination regime is effective. To this end, we review here what is known about the susceptibility of baculoviruses and poxviruses to environmental stressors (temperature, UV light, moisture and pH) and the influence of their physical environments (soil, phyllosphere, or aquatic surroundings).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ambrose, C.T., 2005. Osler and the infected letter. Emer. Infect. Dis., 11: 689–693.Google Scholar
  2. 2.
    Amies, C.R., 1960. Loss of immunogenic properties of vaccinia virus inactivated by ormaldehyde. Can. J. Microbiol., 7: 141–152.CrossRefGoogle Scholar
  3. 3.
    Andrews, G. L., and Sikorowoski, P.P., 1973. Effects of cotton leaf surface on the nuclear polyhedrosis virus of Heliothis zea and Heliothis virescens (Lepidoptera: Noctuidae). J. Invertebr. Pathol., 22: 290–291.CrossRefGoogle Scholar
  4. 4.
    Bachrach, U., and Rosenkovitch, E., 1972. Effect of oxidized spermine and other aldehydes on the infectivity of vaccinia virus. Appl. Microbiol., 23: 232–235.PubMedGoogle Scholar
  5. 5.
    Bartzokas, C.A., McCarthy, K., Shackleton, W.B., and Baker, B.F., 1978. Observations of the effects of formaldehyde on cockroaches and their flora: I. Survival of vaccinia virus-infected cockroaches during fumigation with formaldehyde. J. Hyg. Camb., 80: 125–129.PubMedCrossRefGoogle Scholar
  6. 6.
    Beard, J.W., Finkelstein, H., and Wyckoff, R.W.G., 1938. The pH-stability of the elementary bodies of vaccinia. J. Immunol., 35: 415–425.Google Scholar
  7. 7.
    Beckman, A.G.B., 1980. The infectivity of polyhedra of nuclear polyhedrosis virus (N.P.V.) after passage through gut of an insect-predator. Experientia, 36: 858–859.CrossRefGoogle Scholar
  8. 8.
    Bedford, G.O., 1981. Control of the rhinoceros beetle by Baculovirus. In: Microbial control of pests and plant diseases 1970–1980. H.D. Bruges Ed., Academic Press, New York, pp. 409–426.Google Scholar
  9. 9.
    Bird, F.T., 1961. Transmission of some insect viruses with particular reference to ovarial transmission and its importance in the development of epizootics. J. Invertebr. Pathol., 3: 352–380.Google Scholar
  10. 10.
    Brion, G. M., and Silverstein, J., 2001. Selecting a sensitive bacteriophage assay for evaluation of a prototype water recycling system. Life Support Biosph. Sci. 8: 9–14.Google Scholar
  11. 11.
    Bullock, H.R., 1967. Persistence of Heliothis nuclear polyhedrosis virus on cotton foliage. J. Invertebr. Pathol., 9: 434–436.CrossRefGoogle Scholar
  12. 12.
    Bullock, H.R., Hollingsworth, J.P., and Hartstack, A.W., 1970. Virulence of heliothis nuclear polyhedrosis virus exposed to monochromatic ultraviolet irradiation. J. Invertebr. Pathol., 16: 419–422.CrossRefGoogle Scholar
  13. 13.
    Burgerjon, A., and Grison, P., 1965. Adhesiveness of preparations of Smithiavirus pityocampae vago on pine foliage. J. Invertebra. Pathol., 7: 281–284.CrossRefGoogle Scholar
  14. 14.
    Burges, H.D., Crozier, G., and Hube, J., 1980. A review of safety tests on baculoviruses. Entomophaga, 25: 329–340.CrossRefGoogle Scholar
  15. 15.
    Butcher, W., and Ulaeto, D., 2005. Contact inactivation of orthopoxviruses by household disinfectants. J. Appl. Microbiol., 99: 279–284.PubMedCrossRefGoogle Scholar
  16. 16.
    Carver, D.H., and Seto, D.S.Y., 1968. Viral inactivation by disulfide bond reducing agents. J. Virol., 2: 1482–1484.PubMedGoogle Scholar
  17. 17.
    Chaidez, C., M. Moreno, W. Rubio, M. Angulo, and B. Valdez. 2003. Comparison of the disinfection efficacy of chlorine-based products for inactivation of viral indicators and pathogenic bacteria in produce wash water. Int. J. Environ. Health Res. 13: 295–302.PubMedCrossRefGoogle Scholar
  18. 18.
    Cory, J.S. and Hails, R.S., 1997. The ecology and biosafety of baculoviruses. Curr. Opin. Biotechnol. 8: 323–327.PubMedCrossRefGoogle Scholar
  19. 19.
    David, W.A.L., 1969. The effect of ultraviolet radiation of known wavelengths on a granulosis virus of Pieris brassicae. J. Invertebr. Pathol., 14: 336–342.PubMedCrossRefGoogle Scholar
  20. 20.
    David, W.A.L., and Gardiner, B.O.C., 1966. Persistence of a granulosis virus of Pierris brassicae on cabbage leaves. J. Invertebr. Pathol., 8: 180–183.PubMedCrossRefGoogle Scholar
  21. 21.
    David, W.A.L., Gardiner, B.O.C., and Woolner, M., 1968. The effects of sunlight on a purified granulosis virus of Pieris brassicae applied to cabbage leaves. J. Invertebr. Pathol., 11: 496–501.CrossRefGoogle Scholar
  22. 22.
    David, W.A.L., Ellaby, S., and Taylor, G., 1971a. The stabilizing effect of insect hemolymph on a granulosis virus held in darkness as dry films of the intact capsules. J. Invertebr. Pathol., 17: 404–409.CrossRefGoogle Scholar
  23. 23.
    David, W.A.L., Ellaby, S., and Taylor, G., 1971b. The stability of a purified granulosis virus of the European cabbageworm, Pieris brassicae, in dry deposits of intact capsules. J. Invertebr. Pathol., 17: 228–233.PubMedCrossRefGoogle Scholar
  24. 24.
    Dawson, D.J., Paish, A., Staffell, L.M., Seymour, I.J., and Appleton, H., 2005. Survival of viruses on fresh produce, using MS2 as a surrogate for norovirus. J. Appl. Microbiol. 98: 203–209.PubMedCrossRefGoogle Scholar
  25. 25.
    Dinakaran, M., Selvam, P., DeDlerco, E., and Sridhar, S.K., 2003. Synthesis, antiviral and cytotoxic activity of 6-bromo-2,3-disubstituted-4(3H)-quinazoliones. Biol. Pharm. Bull., 26: 1278–1282.PubMedCrossRefGoogle Scholar
  26. 26.
    Edward, D., Elford, W., and Laidlaw, P., 1943. Studies of air-borne virus infections. J. Hyg., 43: 1–15.CrossRefGoogle Scholar
  27. 27.
    Falcon, L.A., 1969. Microbial control as a tool in integrated control programs. In: Biological control, E.C.B. Huffaker Ed., Plenum, New York, NY, pp. 346–364.Google Scholar
  28. 28.
    Fenner, F., Henderson, I.A., Jezek, Z., and Ladnyi, I.D., 1988. Smallpox and its Eradication. World Health Organization, Geneva, Switzerland.Google Scholar
  29. 29.
    Ferrier, A., Garin, D., and Crance, J.M., 2004. Rapid inactivation of vaccinia virus in suspension and dried on surfaces. J. Hosp. Infect., 57: 73–79.PubMedCrossRefGoogle Scholar
  30. 30.
    Garnier, L., Gaudin, J.-C., Bensadoun, P., Rebillat, I., and Morel, Y. 2009. Real-time PCR assay for detection of a new simulant for poxvirus biothreat agents. Appl. Environ. Microbiol. 75: 1614–1620.PubMedCrossRefGoogle Scholar
  31. 31.
    Gaustad, J.W., McDuff, C.R., and Hatcher, H.J., 1974. Test method for the evaluation of virucidal efficacy of three common liquid surface disinfectants on a simulated environmental surface. Appl. Microbiol., 28: 748–752.PubMedGoogle Scholar
  32. 32.
    Glen, D.M., and Payne, C.C., 1984. Production and field evaluation of codling moth granulosis virus for control of Cydia pomonella in the United Kingdom. Ann. Appl. Biol., 104: 87–98.CrossRefGoogle Scholar
  33. 33.
    Gordon, C., and Toze, S. 2003. Influence of groundwater characteristics on the survival of enteric viruses. J. Appl. Microbiol. 95: 536–544.PubMedCrossRefGoogle Scholar
  34. 34.
    Griego, V.M., Martingoni, M.E., and Claycomb, A.E., 1985. Inactivation of nuclear polyhedrosis virus (Baculovirus Subgroup A) by monocrhomatic UV radiation. App. Environ. Micro., 49: 709–710.Google Scholar
  35. 35.
    Grossgebauer, K., Spicher, G., Peters, J., Kuwert, E., Pohle, H.D., and Kerner, H., 1975. Experiments on terminal disinfection by formaldehyde vapor in the case of smallpox. J. Clin. Microbiol., 2: 516–519.PubMedGoogle Scholar
  36. 36.
    Gudauskas, R.T., and Cannerday, D., 1968. The effect of heat, buffer salt and H-ion concentration, and ultraviolet light on the infectivity of Heliothis and Trichoplusia nuclear-polyhedrosis viruses. J. Invertebr. Pathol. 12: 405–411.PubMedCrossRefGoogle Scholar
  37. 37.
    Harper, G.J., 1961. Airborne micro-organisms: survival tests with four viruses. J. Hyg., 59: 479–486.CrossRefGoogle Scholar
  38. 38.
    Harper, J.M.M., Parsonage, M.T., Pelham, H.R.B., and Darby, G., 1978. Heat inactivation of vaccinia virus particle-associated functions: properties of heated particles in vivo and in vitro. J. Virol., 26: 646–659.PubMedGoogle Scholar
  39. 39.
    Henderson, D.A., Inglesby, T.V., Bartlett, J.G., Ascher, M.S., Eitzen, E., Jahrling, P.B., Hauer, J., Layton, M., McDade, J., Osterholm, M.T., O’Toole, T., Parker, G., Perl, T., Russell, and Tonat, P.K., 1999. Management of smallpox used as a biological weapon. J. Amer. Med. Assc., 281: 2127–2135.CrossRefGoogle Scholar
  40. 40.
    Hoff-Jørgensen, R. and Lund, E., 1972. Studies on the inactivation of viruses by ethylene oxide. Acta Vet. Scand., 13: 520–527.PubMedGoogle Scholar
  41. 41.
    Hulskotte, E.G.J., Dings, M.E.M., Norley, S.G., and Osterhaus, A.D.M.E., 1997. Chemical inactivation of recombinant vaccinia viruses and the effects on antigenicity and immunogenicity of recombinant simian immunodeficiency virus envelope glycoproteins. Vaccine, 15: 1839–1845.PubMedCrossRefGoogle Scholar
  42. 42.
    Hunter-Fujita, F.R., Entwistle, P.F., Evans, H.F., and Crook, N.E., 1998. Insect viruses and pest management. New York: Wiley, pp. 632.Google Scholar
  43. 43.
    Huq, F., 1976. Effect of temperature and relative humidity on variola virus in crusts. Bull. World Health Organ., 54: 710–712.PubMedGoogle Scholar
  44. 44.
    Ignoffo, C.M., 1963. A successful method for mass rearing cabbage loopers on a semisynthetic diet. Ann. Entomol. Soc. Am., 56: 178–182.Google Scholar
  45. 45.
    Ignoffo, C.M., 1992. Environmental factors affecting persistence of entomopathogens. Flor. Entomol., 75: 516–525.CrossRefGoogle Scholar
  46. 46.
    Ignoffo, C.M., Chapman, A.J., and Martin, D.F., 1965. The nuclear-polyhedrosis virus of Heliothis zea (Boddie) and Heliothis virescens (Fabricius). J. Invertebr. Pathol., 7: 227–235.CrossRefGoogle Scholar
  47. 47.
    Ignoffo, C.M., and Dutky, S.R., 1963. The effect of sodium hypochlorite on the viability and infectivity of bacillus and beauveria spores and cabbage looper nuclear-polyhedrosis virus. J. Invertebr. Pathol., 5: 422–426.Google Scholar
  48. 48.
    Ignoffo, C.M., and Garcia, C., 1966. The relation of pH to the activity of inclusion bodies of a Heliothis nuclear polyhedrosis. J. Invertebr. Pathol. 8: 426–427.CrossRefGoogle Scholar
  49. 49.
    Ignoffo, C.M., and Garcia, C., 1968. Formalin inactivation of nuclear polyhedrosis virus. J. Invertebr. Pathol. 10: 430–432.CrossRefGoogle Scholar
  50. 50.
    Ignoffo, C.M., Bradley, J.R., Gilliland, F.R., Harris, F.A., Falcon, L.A., Larson, L.V., McGarr, R.L., Skiorowski, P.P., Watson, T.F., and Yearian, W.C., 1972. Field studies on stability of the Heliothis nucleopolyhedrosis virus at various sites throughout the cotton belt. Environ. Entomol., 1: 388–390.Google Scholar
  51. 51.
    Ignoffo, C.M., Hostetter, D.L., Sikorowski, P.P., Sutter, G., and Brooks, W.M., 1977. Inactivation of representative species of entomopathogenic viruses, a bacterium, fungus, and protozoan by an ultraviolet light source. Eviron. Entomol., 6: 411–415.Google Scholar
  52. 52.
    Ignoffo, C.M., Hostetter, D.L., and Pinnell, R.E., 1974. Stability of Baciluus thuringiensis and Baculovirus heliothis on soybean foliage. Eviron. Entomol., 3: 117–119.Google Scholar
  53. 53.
    Ignoffo, C.M., Parker, F.D., Boening, O.P., Pinnell, R.E., and Hostetter, D.L., 1973. Field stability of the Heliothis nucleopolyhedrosis virus on corn silks. Environ. Entomol., 2: 302–303.Google Scholar
  54. 54.
    Ignoffo, C.M., Rice, W.C., and McIntosh, A.H., 1989. Inactivation of nonoccluded and occluded baculoviruses and baculovirus-DNA exposed to simulated sunlight. Environ. Entomol., 18: 177–183.Google Scholar
  55. 55.
    Ignoffo, C.M., and Garcia, C., 1992. Combinations of environmental factors and simulated sunlight affecting activity of inclusion bodies of the Heliothis (Lepidoptera: Noctuidae) nucleopolyhedrosis virus. Environ. Entomol., 21: 210–213.Google Scholar
  56. 56.
    Ignoffo, C.M., Garcia, C., McIntosh, A.H., Grasela, J.J., and Saathoff, S.G., 2001. Effects of viral rate and feeding time on mortality of early-, mid-, and late-stadium larvae of Helicoverpa zea (Lepidoptera: Noctuidae) fed Baculovirus heliothis. Appl. Entomol. Zool., 36: 121–125.CrossRefGoogle Scholar
  57. 57.
    Jacques, R.P., 1964. The persistence of a nuclear-polyhedrosis virus in soil. J. Insect Pathol., 6: 251–254.Google Scholar
  58. 58.
    Jacques, R.P., 1967. The persistence of a nuclear polyhedrosis virus in the habitat of the host insect, Trichoplusia ni. I. Polyhedra deposited on foliage. Can. Entomol., 99: 785–794.Google Scholar
  59. 59.
    Jacques, R.P., 1977. Stability of entomopathogenic viruses. Misc. Publ. Entomol. Soc. Amer., 10: 99–117.Google Scholar
  60. 60.
    Jacques, R.P., 1985. Stability of insect viruses in the environment. In: Viral insecticides for biological control. K. Moramorasch, and K. E. Sherman Eds., Academic, New York, pp. 285–369.Google Scholar
  61. 61.
    Jaques, R.P., Laing, J.E., Laing, D.R., and Yu, D.S.K., 1987. Effectiveness and persistence of the granulosis virus of the codling moth Cydia pomonella (L.) (Lepidoptera: Olethreutidae) on apple. Can. Entomol., 119: 1063–1067.CrossRefGoogle Scholar
  62. 62.
    Jensen, M., 1964. Inactivation of airborne viruses by ultraviolet irradiation. Appl. Microbiol., 12: 418–420.PubMedGoogle Scholar
  63. 63.
    Johnson, D.W., Boucias, D.B., Barfield, C.S., and Allen, G.E., 1982. A temperature-dependent development model for a nucleopolyhedrosis virus of the velvetbean caterpillar, Anticarsia gemmatalis (Lepidoptera: Noctuidae). J. Invertebr. Pathol. 35: 34–42.Google Scholar
  64. 64.
    Jordan, G.W., and Seet, E.C., 1978. Antiviral effects of amphotericin B methyl ester. Antimicrob. Agents Chemother., 13: 199–204.PubMedGoogle Scholar
  65. 65.
    Kampf, G., Steinmann, J., and Rabenau, H., 2007. Suitability of vaccinia virus and bovine viral diarrhea virus (BVDV) for determining activities of three commonly-used alcohol-based hand rubs against enveloped viruses. BMC Infect. Dis., 7: 5.PubMedCrossRefGoogle Scholar
  66. 66.
    Kaplan, C., 1958. The heat inactivation of vaccinia virus. J. Gen. Microbiol., 18: 58–63.PubMedGoogle Scholar
  67. 67.
    Kaplan, C., 1963. The influence of some metal ions and pH on the inactivation of vaccinia virus by heat. J. Gen. Microbiol., 31: 311–314.Google Scholar
  68. 68.
    Kawarakata, T., Funakoshi, M., and Aratake, Y., 1980. Purification and properties of the Bombyx mori nuclear polyhedrosis virus liberated from polyhedra by dissolution with silkworm gut juice. J. Invertebr. Pathol. 35: 34–42.CrossRefGoogle Scholar
  69. 69.
    Kaupp, W.J., 1983. Persistence of Neodiprion sertifer (Hymenoptera: Diprionidae) nuclear polyhdedrosis virus on Pinus contorta foliage. Can. Ent., 115: 869–873.CrossRefGoogle Scholar
  70. 70.
    Kienzle, J., Schulz, C., Zebitz, C.P.W., and Huber, J. 2003. Persistence of the biological effect of the Codling Moth Granulovirus in the orchard: a preliminary field trial. In: Entomopathogens and insect parasitic nematodes: current research and perspectives in pest biocontrol. Papierok, B. and Huber, J. Eds., Proceedings of the 8th European meeting IOBC-WPRS Working group ‘Insect pathogens and insect parasitic nematodes’, Athens, Greece, 29 May–2 June, 2001. Bulletin OILB srop 26, pp. 245–248.Google Scholar
  71. 71.
    Killick, H.J., and Warden, S.J., 1991. Ultraviolet penetration of pine trees and insect virus survival. Entomophaga, 36: 87–94.CrossRefGoogle Scholar
  72. 72.
    Klarnebeck, A., and Van Tongeren, H.A.E., 1954. Viricidal action of ethylene oxide gas. J. Hyg. 52: 525–528.CrossRefGoogle Scholar
  73. 73.
    Kligler, I.J., and Bernkopf, H., 1937. Inactivation of vaccinia virus by ascorbic acid and glutathione. Nature, Lond., 139: 965.CrossRefGoogle Scholar
  74. 74.
    Knell, J.D., and Summers, M.D., 1984. A physical map for the Heliothis zea SNPV genome. J. Gen. Virol., 65: 445–450.CrossRefGoogle Scholar
  75. 75.
    Kramer, A., Galabov, A.S., Sattar, S.A., Döhner, L., Pivert, A., Payan, C., Wolff, M.H., Yilmaz, A., and Steinmann, J., 2006. Virucidal activity of a new hand disinfectant with reduced ethanol content: comparison with other alcohol-based formulations. J. Hosp. Infect., 62: 98–106.PubMedCrossRefGoogle Scholar
  76. 76.
    Lacey, L.A., Thomson, D.R., 2004. Codling moth granulovirus: its history and mode of action. Western Orchard Pest and Disease Management Conference. p. 18.Google Scholar
  77. 77.
    Luque, T., Finch, R., Crook, N., O’Reilly, D.R., and Winstanley, D., 2001. The complete sequence of the Cydia pomonella granulovirus genome. J. Gen. Virol., 82: 2531–2547.PubMedGoogle Scholar
  78. 78.
    MacCallum, F.O., and McDonald, J.R., 1957. Survival of variola virus in raw cotton. Bull. Wld. Hlth. Org., 16: 247–254.Google Scholar
  79. 79.
    Martignoni, M.E., and Iwai, P.J., 1981. A catalogue of viral diseases of insects, mites and ticks. In: Microbial control of pests and plant diseases 1970–1980. H.D. Burges Ed. Academic, New York, pp. 895–911.Google Scholar
  80. 80.
    McClain, D.J., 1997. Smallpox. In: Medical aspects of chemical and biological warfare, textbook of military medicine. Office of The Surgeon General Department of the Army, United States of America, Chapter 27, 17 pp.Google Scholar
  81. 81.
    McCrea, J.F., Preiss, J.W., and O’Loughlin, J., 1960. Physical studies on pox viruses. I. Inactivation of vaccinia virus infectivity with low-energy electrons. Biophy. J., 1: 43–53.Google Scholar
  82. 82.
    McDevitt, J.J., Lai, K.M., Rudnick, S.N., Houseman, E.A., First, M.W., and Milton, D.K., 2007. Characterization of UVC light sensitivity of vaccinia virus. Appl. Environ. Microbiol., 73: 5760–5766.PubMedCrossRefGoogle Scholar
  83. 83.
    McLeod, P.J., Yearian, W.C., and Young III, S.Y., 1977. Inactivation of Baculovirus Heliothis by ultraviolet irradiation, dew, and temperature. J. Invertebr. Pathol., 30: 237–241.CrossRefGoogle Scholar
  84. 84.
    Morris, O.N., 1971. The effect of sunlight, ultraviolet and gamma radiations, and temperature on the infectivity of a nuclear polyhedrosis virus. J. Invertebr. Pathol., 18: 292–294.PubMedCrossRefGoogle Scholar
  85. 85.
    Moscardi, F., 1999. Assessment of the application of baculoviruses for control of Lepidoptera. Ann. Rev. Entomol., 44: 257–289.CrossRefGoogle Scholar
  86. 86.
    Oxford, J.S., Potter, C.W., McLaren, C., and Hardy, W., 1971. Inactivation of influenza and other viruses by a mixture of virucidal compounds. Appl. Microbiol., 21: 606–610.PubMedGoogle Scholar
  87. 87.
    Paschke, J.D., 1964. Disposable containers for rearing loopers. J. Insect Pathol., 6: 249–251.Google Scholar
  88. 88.
    Rashidan, K.K., Nassoury, N., Giannopoulos, P.N., Mauffette, Y., and Guertin, C., 2004. Identification, characterization and phylogenic analysis of conserved genes within the odvp-6e/odv-e56 gene region of Choristoneura fumiferana Granulovirus. J. Biochem. Mol. Biol., 37: 206–212.PubMedGoogle Scholar
  89. 89.
    Rauth, A.M., 1965. The physical state of viral nucleic acid and the sensitivity of viruses to ultraviolet light. J. Biophys. 5: 257–273.CrossRefGoogle Scholar
  90. 90.
    Remington, K.M., Trejo, S.R., Buczynski, G., Li, H., Osheroff, W.P., Brown, J.P., Renfrow, H., Reynolds, R., and Pifat, D.Y., 2004. Inactivation of west Nile virus, vaccinia virus and viral surrogates for relevant and emergent viral pathogens in plasma-derived products. Vox Sang., B7: 10–18.Google Scholar
  91. 91.
    Rheinbaben, F.V., Gebel, J., Exner, M., and Schmidt, A., 2006. Environmental resistance, disinfection, and sterilization of poxviruses. In: Poxviruses. Birkhäuser, Basal.Google Scholar
  92. 92.
    Roberts, P., 2000. Resistance of vaccinia virus to inactivation by solvent/detergent treatment of blood products. Biologicals, 28: 29–32.PubMedCrossRefGoogle Scholar
  93. 93.
    Roberts, P., and Hope, A., 2003. Virus inactivation by high intensity broad spectrum pulsed light. J. Virol. Meth., 110: 61–65.CrossRefGoogle Scholar
  94. 94.
    Sattar, S.A., Tetro, J., Springthorpe, V.S., Giulivi, A., 2000. Preventing the spread of hepatitis B and C viruses: Where are germicides relevant? Am. J. Infect. Control, 29: 187–197.CrossRefGoogle Scholar
  95. 95.
    Schümann, K.-O., und Grossgebauer, K., 1977. Versuche zur Desinfecktion von Vakziniaviren in Kaninchenborken bzw. an der Hand. Zbl. Bakt. Hyg. I. Abt. Orig. B, 164: 45–63.Google Scholar
  96. 96.
    Shapiro, M., 2001. The effects of cations on the activity of the gypsy moth (Lepidoptera: Lymantriidae) nuclear polyhedrosis virus. J. Econ. Entomol., 94: 1–6.PubMedCrossRefGoogle Scholar
  97. 97.
    Shapiro, M., and Ignoffo, C.M., 1969. Nuclear polyhedrosis of Heliothis: stability and relative infectivity of virions. J. Invertebr. Pathol., 14: 130–134.PubMedCrossRefGoogle Scholar
  98. 98.
    Shchelkunov, S.N., Marennikova, S.S., and Moyer, R.W., 2005. Orthopoxviruses pathogenic for humans. Springer, New York, LLC, pp. 425.Google Scholar
  99. 99.
    Sidwell, R.W., and Dixon, G.J., 1969. Role of virucides in controlling virus dissemination by fabrics. J. Amer. Oil Chem. Soc., 46: 532–536.CrossRefGoogle Scholar
  100. 100.
    Sidwell, R.W., Dixon, G.J., McNeil, E., 1966. Quantitative studies on fabrics as disseminators of viruses. App. Microbiol., 14: 55–59.Google Scholar
  101. 101.
    Sidwell, R.W., Dixon, G.J., Westbrook, L., and Dulmadge, E.A., 1969. Procedure for the evaluation of the virucidal effectiveness of an ethylene oxide gas sterilizer. Appl. Microbiol., 17: 790–796.PubMedGoogle Scholar
  102. 102.
    Sidwell, R.W., Westbrook, L., Dixon, G.J., and Happich, W.F., 1970. Potentially infectious agents associated with shearling bedpads. I. Effect of laundering with detergent-disinfectant combinations on polio and vaccinia viruses. Appl. Microbiol., 19: 53–59.PubMedGoogle Scholar
  103. 103.
    Sime, E.H., and Bedson, H.S., 1973. A comparison of ultraviolet action spectra for vaccinia virus and T2 bacteriophage. J. Gen. Virol., 18: 55–60.PubMedCrossRefGoogle Scholar
  104. 104.
    Sobsey, M.D., and Meschke, J.S., 2003. Virus survival in the environment with special attention to survival in sewage droplets and other environmental media of fecal or respiratory origin. http://www.iapmo.org/common/pdf/ISS-Rome/Sobsey_Environ_Report.pdf.
  105. 105.
    Stará, J., and Kocourek, F., 2003. Evaluation of efficacy of Cydia pomonella granulovirus (CpGV) to control the codling moth (Cydia pomonella L., Lep.: Tortricidae) in field trials. Plant Protect. Sci., 39: 117–125.Google Scholar
  106. 106.
    Stuermer, C.W., and Bullock, H.R., 1968. Thermal inactivation of Heliothis nuclear polyhedrosis virus. J. Invertebr. Pathol., 12: 473–475.CrossRefGoogle Scholar
  107. 107.
    Sugimoto, Y., and Toyoshima, S., 1997. Ná-cocoyl-L-arginine ethyl ester, DL-pyroglutamic acid salt, as an inactivator of hepatitis B surface antigen. Antimicrob. Agents Chemother., 16: 329–332.Google Scholar
  108. 108.
    Summers, M.D., and Paschke, J.D., 1970. Alkali-liberated granulosis virus of Trichoplusia ni I. Density gradient purification of virus components and some of their in vitro chemical and physical properties. J. Invertebr. Pathol., 16: 227–240.CrossRefGoogle Scholar
  109. 109.
    Summers, M.D., and Egawa, K., 1973. Physical and chemical properties of Trichoplusia ni granulosis virus granulin. J. Virol., 12: 1092–1103.PubMedGoogle Scholar
  110. 110.
    Tanada, Y., 1964. A granulosis virus of codling moth, Carpocapsa pomonella (Linnaeus) (Olethreutidae, Lepidoptera). J. Invert. Pathol., 6: 378–380.Google Scholar
  111. 111.
    Tanada, Y., and Omi, E.M., 1974. Persistence of insect viruses in field populations of alfalfa insects. J. Invertebr. Pathol., 23: 360–365.PubMedCrossRefGoogle Scholar
  112. 112.
    Tanada, Y., and Kaya, H.K., 1993. DNA-viral infections: Baculoviridae. In: Insect pathology. San Diego: Academic Press, Inc.Google Scholar
  113. 113.
    Thomas, E.D., Reichelderfer, C.F., and Heimpel, A.M., 1973. The effect of soil pH on the persistence of cabbage looper nuclear polyhedrosis virus in soil. J. Invertebr. Pathol., 21: 21–25.CrossRefGoogle Scholar
  114. 114.
    Turner, G.S., 1964. Inactivation of vaccinia virus by ascorbic acid. J. Gen. Microbiol., 35: 75–80.PubMedGoogle Scholar
  115. 115.
    Vail, P.V., Henneberry, T.J., Kishaba, A.N., and Arakawa, K.J., 1968. Sodium hypochlorite and formalin as antiviral agents against nuclear polyhedrosis virus in larvae of the cabbage looper. J. Invertebr. Pathol. 10: 84–95.PubMedCrossRefGoogle Scholar
  116. 116.
    Wallis, C., Yang, C.-S., and Melnick, J.L., 1962. Effect of cations on thermal inactivation of vaccinia, herpes simplex and adenoviruses. J. Immunol., 89: 41.PubMedGoogle Scholar
  117. 117.
    Wolff, H.L., and Croon, J.J.A.B., 1968. The survival of smallpox virus (variola minor) in natural circumstances. Bull World Health Organ., 38: 492–493.PubMedGoogle Scholar
  118. 118.
    Woodroofe, G.M., 1960. The heat inactivation of vaccinia virus. Virology, 10: 379–382.PubMedCrossRefGoogle Scholar
  119. 119.
    Wutzler, P., and Sauerbrei, A., 2000. Virucidal efficacy of a combination of 0.2% peracetic acid and 80% (v/v) ethanol (PAA-ethanol) as a potential hand disinfectant. J. Hosp. Infect., 46: 304–308.PubMedCrossRefGoogle Scholar
  120. 120.
    Wutzler, P., and Sauerbrei, A., 2004. Virucidal activity of the new disinfectant monopercitric acid. Letters Appl. Microbiol., 39: 194–198.Google Scholar
  121. 121.
    Yang, G., Pevear, D.C., Davies, M.H., Collett, M.S., Bailey, T., Rippen, S., Barone, L., Burns, C., Rhodes, G., Tohan, S., Huggins, J.W., Baker, R.O., Buller, R.L.M., Touchette, E., Waller, K., Schriewer, J., Neyts, J., DeClercq, E., Jones, K., Hruby, D., and Jordan, R., 2005. An orally bioavailable antipoxvirus compound (ST-246) inhibits extracellular virus formation and protects mice from lethal orthopoxvirus challenge. J. Virol., 79: 13139–13149.PubMedCrossRefGoogle Scholar
  122. 122.
    Yearian, W.C., and Young, S.Y., 1974. Persistence of Heliothis nuclear-polyhedrosis virus on cotton plant parts. Environ. Entomol. 3: 1035–1036.Google Scholar
  123. 123.
    Young, S.Y., 1990. Influence of sprinkler irrigation on dispersal of nuclear-polyhedrosis virus from host cadavers on soybean. Environ. Entomol., 19: 717–720.Google Scholar
  124. 124.
    Young, S.Y., and Yearian, W.C., 1974. Persistence of Heliothis NPV on foliage of cotton, soybean, and tomato. Environ. Entomol., 3: 253–255.Google Scholar
  125. 125.
    Young, S.Y., and Yearian, W.C., 1976. Influence of buffers on pH of cotton leaf surface and activity of a Heliothis nuclear polyhedrosis virus. J. Georgia Entomol. Soc., 11: 277–282.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Gary D. Ouellette
    • 1
  • Patricia E. Buckley
    • 2
  • Kevin P. O’Connell
    • 2
  1. 1.SAICc/o U.S. Army ECBC, APGBethesdaUSA
  2. 2.U.S. Army ECBC, AMSRD-ECB-RT-BM, APGBethesdaUSA

Personalised recommendations