Direct Numerical Simulation and PIV Measurement of Turbulent Boundary Layer over a Rod-Roughened Wall

Conference paper
Part of the IUTAM Bookseries book series (IUTAMBOOK, volume 22)

Abstract

The effects of surface roughness on a spatially-developing turbulent boundary layer were investigated by performing direct numerical simulation and particle image velocimetry measurements of TBLs over rough and smooth walls. Introduction of the roughness elements augmented turbulent stresses in the region of y< 4 ∼ 5ks, where ks is an effective sand roughness height. However, the roughness has little effect on the vorticity fluctuations, turbulent kinetic energy budget and quadratic components of Reynolds shear stress in the outer layer. We also demonstrate the modification of coherent vortical structures over the rod-roughened wall by using linear stochastic estimation.

References

  1. 1.
    A.A. Townsend, The structure of turbulent shear flow (Cambridge University Press, Cambridge, 1976).MATHGoogle Scholar
  2. 2.
    J. Jimenez, Turbulent flows over rough walls. Annu. Rev. Fluid Mech. 36, 173–196 (2004).MathSciNetCrossRefGoogle Scholar
  3. 3.
    M.A. Shockling, J.J. Allen, A.J. Smits, Roughness effects in turbulent pipe flow. J. Fluid Mech. 564, 267–285 (2006).MATHCrossRefGoogle Scholar
  4. 4.
    K.A. Flack, M.P. Schultz, T.A. Shapiro, Experimental support for Townsend’s Reynolds number similarity hypothesis on rough walls. Phys. Fluids 17, Article #035102 (2005).Google Scholar
  5. 5.
    P.-Å. Krogstad, R.A. Antonia, Comparison between rough- and smooth-wall turbulent boundary layers. J. Fluid Mech. 245, 599–617 (1992).CrossRefGoogle Scholar
  6. 6.
    P.-Å. Krogstad, R.A. Antonia, Structure of turbulent boundary layers on smooth and rough walls. J. Fluid Mech. 277, 1–21 (1994).CrossRefGoogle Scholar
  7. 7.
    T. Ikeda, P.A. Durbin, Direct simulations of a rough-wall channel flow. J. Fluid Mech. 571, 235–263 (2007).MATHCrossRefGoogle Scholar
  8. 8.
    O. Coceal, A. Dobre, T.G. Thomas, Structure of turbulent flow over regular arrays of cubical roughness. J. Fluid Mech. 589, 375–409 (2007).MATHCrossRefGoogle Scholar
  9. 9.
    P.-Å. Krogstad, H.I, Andersson, O.M. Bakken, A. Ashrafian, An experimental and numerical study of channel flow with rough walls. J. Fluid Mech. 530, 327–352 (2005).MATHCrossRefGoogle Scholar
  10. 10.
    S.-H. Lee, H.J. Sung, Direct numerical simulation of turbulent boundary layer over a rod-roughened wall. J. Fluid Mech. 584, 125–146 (2007).MATHCrossRefGoogle Scholar
  11. 11.
    S.-H. Lee, J.H. Kim, H.J. Sung, PIV measurements of turbulent boundary layer over a rod-roughened wall. Int. J. Heat Fluid Flow. 29, 1679–1689 (2008).CrossRefGoogle Scholar
  12. 12.
    S. Leonardi, P. Orlandi, R.J. Smalley, L. Djenidi, R.A. Antonia, Direct numerical simulations of turbulent channel flow with transverse square bars on one wall. J. Fluid Mech. 491, 229–238 (2003).MATHCrossRefGoogle Scholar
  13. 13.
    M.P. Schultz, K.A. Flack, The rough-wall turbulent boundary layer from the hydraulically smooth to the fully rough regime. J. Fluid Mech. 580, 381–405 (2007).MATHCrossRefGoogle Scholar
  14. 14.
    R.J. Adrian, C.D. Meinhart, C.D. Tomkins, Vortex organization in the outer region of the turbulent boundary layer. J. Fluid Mech. 422, 1–54 (2000).MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    J. Zhou, R.J. Adrian, S. Balachandar, T.M. Kendall, Mechanisms for generating coherent packets of hairpin vortices. J. Fluid Mech. 387, 353–396 (1999).MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    S.J. Kline, S.K. Robinson, Quasi-coherent structures in the turbulent boundary layer, Part 1: status report on a community-wide summary of the data. In Near Wall Turbulence. Proc. Zaric Meml. Conf. (ed. by S.J. Kline & N.H. Afghan), New York Hemisphere, 200–217 (1989).Google Scholar
  17. 17.
    R.J. Volino, M.P. Schultz, K.A. Flack, Turbulence structure in rough- and smooth-wall boundary layers. J. Fluid Mech. 592, 263–293 (2007).MATHCrossRefGoogle Scholar
  18. 18.
    A. Ashrafian, H.I. Andersson, M. Manhart, DNS of turbulent flow in a rod-roughened channel. Int. J. Heat Fluid Flow. 25, 373–383 (2004).CrossRefGoogle Scholar
  19. 19.
    R.J. Adrian, Stochastic estimation of the structure of turbulent fields. In Eddy Structure Identification (ed. by J.P. Bonnet, Springer), 145–196 (1996).Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringKorea Advanced Institute of Science and Technology (KAIST)DaejeonKorea

Personalised recommendations