Advertisement

Atmosphere Aerosol Properties Measured with AERONET/PHOTONS Sun-Photometer over Kyiv During 2008–2009

  • Vassyl DanylevskyEmail author
  • Vassyl Ivchenko
  • Gennadi Milinevsky
  • Michail Sosonkin
  • Philippe Goloub
  • Zhengqiang Li
  • Oleg Dubovik
Conference paper
Part of the NATO Science for Peace and Security Series C: Environmental Security book series (NAPSC)

Abstract

The PHOTONS network, as a part of the AERONET ground network for aerosol remote sensing of Earth’s atmosphere, covers more than 40 sites in Europe, Africa and Asia, providing sun-photometer measurements, calibration and data processing. Within the framework of scientific cooperation between the Lille 1 and the National Taras Shevchenko Kyiv Universities, the CIMEL CE 318-2 sun-photometer has been operated at Kyiv from the end of March, 2008. This article describes the AERONET/PHOTONS measuring equipment, procedure, data processing and the preliminary analysis of columnar aerosol properties retrieved during April 2008–March 2009. Spectral aerosol optical thickness (AOT), Angström parameter and precipitable water vapor thickness were measured and analysed.

Keywords

Aerosol remote sensing AERONET/PHOTONS network Aerosol optical thickness Angström parameter Precipitable water vapor 

References

  1. Dubovik O, King M (2000) A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements. J Geophys Res 105:20,673–20,696CrossRefGoogle Scholar
  2. Dubovik O, Holben B, Eck T et al (2002) Variability of Absorption and Optical Properties of Key Aerosol Types Observed in Worldwide Locations. J Atmos Sci 59:590–608CrossRefGoogle Scholar
  3. Forster P, Ramasvamy V, Artaxo P et al (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon S, Qin D, Manning M (eds) Climate Change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK, New York, USAGoogle Scholar
  4. Holben B, Eck T, Slutsker I et al (1998) AERONET – a federated instrument network and data archive for aerosol characterization. Remote Sens Environ 66:1–16CrossRefGoogle Scholar
  5. Holben B, Tanré D, Smirnov A et al (2001) An emerging ground-based aerosol climatology: Aerosol Optical Depth from AERONET. J Geophys Res 106:12067–12097CrossRefGoogle Scholar
  6. King M, Kaufman Y, Tanre D et al (1999) Remote sensing of tropospheric aerosols from space: past, present, and future. Bull Am Meteorol Soc 80:2229–2259CrossRefGoogle Scholar
  7. Kokhanovsky A (2008) Aerosol optics. Light absorption and scattering by particles in the atmosphere. Springer and Praxis Publishing, New York, LondonGoogle Scholar
  8. Li Z, Blarel L, Podvin T et al (2008) Transferring the calibration of direct solar irradiance to diffuse-sky radiance measurements for CIMEL Sun-sky radiometers. Appl Opt 47:1368–1377CrossRefGoogle Scholar
  9. Penner J, Andreae M, Annegarn H et al (2001) Aerosols, their direct and indirect effects. In: Houghton J, Ding Y, Griggs D et al (eds) Climate Change 2001: the scientific basis. Contribution of working groupe I third assessment report of the intergovernmental panel on climate change. Cambridge Univers Press, Cambridge, UK, New York, USAGoogle Scholar
  10. Schuster G, Dubovik O, Holben B (2006) Angstrom exponent and bimodal aerosol size distributions. J Geophys Res 111:D07207,1 – D07207,14Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Vassyl Danylevsky
    • 1
    Email author
  • Vassyl Ivchenko
    • 1
  • Gennadi Milinevsky
    • 1
  • Michail Sosonkin
    • 2
  • Philippe Goloub
    • 3
  • Zhengqiang Li
    • 3
  • Oleg Dubovik
    • 3
  1. 1.National Taras Shevchenko University of KyivKyivUkraine
  2. 2.Main Astronomical Observatory of National Academy of Science of UkraineKyivUkraine
  3. 3.Université de LilleLilleFrance

Personalised recommendations