On the Relationship Between Vortex Tubes and Sheets in Wall-Bounded Flows

  • Sergio Pirozzoli
Part of the ERCOFTAC Series book series (ERCO, volume 14)

Abstract

The statistical relationship between vortex tubes and vortex sheets in turbulent wall-bounded flow is analyzed by means of conditional averaging of DNS fields. The results support strong association between the two types of coherent structures, and indicate that vortex tubes are produced upon roll-up of vortex sheets (as in the hairpin vortex paradigm), or interact causing the ejection of near-wall vorticity, or generate sheets of streamwise vorticity through a rubbing effect caused by the no-slip condition.

Keywords

Shear Layer Direct Numerical Simulation Vortex Core Vortex Tube Streamwise Vortex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The support of the CASPUR computing consortium through a 2009 Standard HPC Grant is gratefully acknowledged.

References

  1. 1.
    Adrian, R.J., Meinhart, C.D., Tomkins, C.D.: Vortex organization in the outer region of the turbulent boundary layer. J. Fluid Mech. 422, 1–54 (2000) MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Baker, G.R., Shelley, M.J.: On the connection between thin vortex layers and vortex sheets. J. Fluid Mech. 215, 161–194 (1990) MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Hambleton, W.T., Hutchins, N., Marusic, I.: Simultaneous orthogonal-plane particle image velocimetry measurements in a turbulent boundary layer. J. Fluid Mech. 560, 53–64 (2006) MATHCrossRefGoogle Scholar
  4. 4.
    Head, M., Bandyopadhyay, P.: New aspects of turbulent boundary-layer structure. J. Fluid Mech. 107, 297–338 (1981) CrossRefGoogle Scholar
  5. 5.
    Horiuti, K., Takagi, Y.: Identification method for vortex sheet structures in turbulent flows. Phys. Fluids 17, 121703 (2005) CrossRefGoogle Scholar
  6. 6.
    Hutchins, N., Hambleton, W.T., Marusic, I.: Inclined cross-stream stereo particle image velocimetry measurements in turbulent boundary layers. J. Fluid Mech. 541, 21–54 (2005) MATHCrossRefGoogle Scholar
  7. 7.
    Jiménez, J., Moin, P., Moser, R., Keefe, L.: Ejection mechanisms in the sublayer of a turbulent channel. Phys. Fluids 31, 1311–1313 (1988) CrossRefGoogle Scholar
  8. 8.
    Johannson, A.V., Alfredsson, P.H., Kim, J.: Evolution and dynamics of shear-layer structures in near-wall turbulence. J. Fluid Mech. 224, 579–599 (1991) CrossRefGoogle Scholar
  9. 9.
    Klewicki, J.C., Hirschi, C.R.: Flow field properties local to near-wall shear layers in a low Reynolds number turbulent boundary layer. Phys. Fluids 16, 4163–4176 (2004) CrossRefGoogle Scholar
  10. 10.
    Kline, S.J., Reynolds, W.C., Schraub, W.C., Runstadler, F.A.: The structure of turbulent boundary layers. J. Fluid Mech. 30, 741–773 (1967) CrossRefGoogle Scholar
  11. 11.
    Liu, Z.C., Landreth, C.C., Adrian, R.J., Hanratty, T.J.: High resolution measurement of turbulent structure in a channel with particle image velocimetry. Exp. Fluids 10, 301–312 (1991) CrossRefGoogle Scholar
  12. 12.
    Natrajan, V.K., Wu, Y., Christensen, K.T.: Spatial signatures of retrograde spanwise vortices in wall turbulence. J. Fluid Mech. 574, 155–167 (2007) MATHCrossRefGoogle Scholar
  13. 13.
    Orlandi, P.: Vortex dipole rebound from a wall. Phys. Fluids A 2, 1429–1436 (1990) CrossRefGoogle Scholar
  14. 14.
    Orlandi, P., Jiménez, J.: On the generation of turbulent wall friction. Phys. Fluids 6, 634–641 (1994) CrossRefGoogle Scholar
  15. 15.
    Passot, T., Politano, H., Sulem, P.L., Angilella, J.R., Meneguzzi, M.: Instability of strained vortex layers and vortex tube formation in homogeneous turbulence. J. Fluid Mech. 282, 313–338 (1995) MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Pirozzoli, S., Bernardini, M., Grasso, F.: Characterization of coherent vortical structures in a supersonic turbulent boundary layer. J. Fluid Mech. 613, 205–231 (2008) MATHCrossRefGoogle Scholar
  17. 17.
    Robinson, S.K.: Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech. 23, 601–639 (1991) CrossRefGoogle Scholar
  18. 18.
    Ruetsch, G.R., Maxey, M.R.: The evolution of small-scale structures in homogeneous isotropic turbulence. Phys. Fluids A 4, 2747–2760 (1992) CrossRefGoogle Scholar
  19. 19.
    She, Z.S., Jackson, E., Orszag, S.A.: Intermittent vortex structures in homogeneous isotropic turbulence. Nature 344, 226 (1990) CrossRefGoogle Scholar
  20. 20.
    Wark, C.E., Nagib, H.M.: Experimental investigation of coherent structures in turbulent boundary layers. J. Fluid Mech. 230, 183–208 (1991) CrossRefGoogle Scholar
  21. 21.
    Zhou, J., Adrian, R.J., Balachandar, S., Kendall, T.M.: Mechanisms for generating coherent packets of hairpin vortices in channel flow. J. Fluid Mech. 387, 353–396 (1999) MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Sergio Pirozzoli
    • 1
  1. 1.Dipartimento di Meccanica e AeronauticaUniversità La SapienzaRomaItaly

Personalised recommendations