Study of Vortical Structures in Turbulent Near-Wall Flows

  • Sophie Herpin
  • Sebastien Coudert
  • Jean-Marc Foucaut
  • Julio Soria
  • Michel Stanislas
Part of the ERCOFTAC Series book series (ERCO, volume 14)


Streamwise and spanwise vortices are investigated in a database of near-wall turbulence constituted of SPIV data of boundary layer covering a large range of Reynolds numbers (Re θ ∈[1300;18950]).The detection algorithm is based on a fit of the velocity field surrounding extrema of swirling strength to an Oseen vortex. Some statistical results on the characteristics of the vortices (radius, vorticity, convection velocity, density) are investigated, giving some new insight into the organization of near-wall turbulence.


Particle Image Velocimetry Turbulent Boundary Layer Interrogation Window Streamwise Vortex Wall Unit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Carlier, J., Stanislas, M.: Experimental study of eddy structures in a turbulent boundary layer using particle image velocimetry. J. Fluid Mech. 535, 143–188 (2005) MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Chong, M.S., Perry, A.E.: A general classification of three-dimensional flow fields. Phys. Fluids 5, 765–777 (1990) MathSciNetCrossRefGoogle Scholar
  3. 3.
    DelAlamo, J.C., Jiménez, J., Zandonade, P., Moser, R.D.: Self-similar vortex clusters in the turbulent logarithmic region. J. Fluid Mech. 561, 329–358 (2006) CrossRefGoogle Scholar
  4. 4.
    Foucaut, J.M., Stanislas, M.: Some considerations on the accuracy and frequency response of some derivative filters applied to particle image velocimetry vector fields. Meas. Sci. Technol. 13, 1058–1071 (2002) CrossRefGoogle Scholar
  5. 5.
    Foucaut, J.M., Carlier, J., Stanislas, M.: PIV optimization for the study of turbulent flow using spectral analysis. Meas. Sci. Technol. 15, 1046–1058 (2004) CrossRefGoogle Scholar
  6. 6.
    Herpin, S.: Study of the influence of the Reynolds number on the organization of wall-bounded turbulence. Ph.D. thesis, Ecole Centrale de Lille and Monash University (2009) Google Scholar
  7. 7.
    Herpin, S., Wong, C.Y., Stanislas, M., Soria, J.: Stereoscopic PIV measurements of a turbulent boundary layer with a large spatial dynamic range. Exp. Fluids 45, 745–763 (2008) CrossRefGoogle Scholar
  8. 8.
    Jeong, J., Hussain, F., Schoppa, W., Kim, J.: Coherent structures near the wall in a turbulent channel flow. J. Fluid Mech. 332, 185–214 (1997) MATHGoogle Scholar
  9. 9.
    Perry, A.E., Henbest, S., Chong, M.S.: A theoretical and experimental study of wall turbulence. J. Fluid Mech. 165, 163–199 (1986) MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Sheng, J., Malkiel, E., Katz, J.: Using digital holographic microscopy for simultaneous measurements of 3d near wall velocity and wall shear stress in a turbulent boundary layer. Exp. Fluids 45, 1023–1035 (2008) CrossRefGoogle Scholar
  11. 11.
    Stanislas, M., Perret, L., Foucaut, J.M.: Vortical structures in the turbulent boundary layer: a possible route to a universal representation. J. Fluid Mech. 602, 327–342 (2008) MATHCrossRefGoogle Scholar
  12. 12.
    Wu, Y., Christensen, K.T.: Population trends of spanwise vortices in wall turbulence. J. Fluid Mech. 568, 55–76 (2006) MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Sophie Herpin
    • 1
    • 2
  • Sebastien Coudert
    • 1
  • Jean-Marc Foucaut
    • 1
  • Julio Soria
    • 2
  • Michel Stanislas
    • 1
  1. 1.Laboratoire de Mecanique LilleEcole Centrale de LilleVilleneuve d’Ascq cedexFrance
  2. 2.Laboratory for Turbulence Research in Aerospace and Combustion (LTRAC)Monash UniversityMelbourneAustralia

Personalised recommendations