Skip to main content

Geochemical and Geochronological Data from Charnockites and Anorthosites from India’s Kodaikanal–Palani Massif, Southern Granulite Terrain, India

  • Chapter
  • First Online:
Topics in Igneous Petrology

Abstract

The Kodaikanal–Palani Massif is an important component of India’s Southern Granulite Terrain; understanding the tectonic history of its rocks lends considerable insight into its role within South India. The massif is located south of the Palghat Cauvery Shear Zone (PCSZ). Compilations of available geochronologic and geochemical information from charnockites north and south of the PCSZ show these rocks largely differ in age, with northern samples recording Archaean crystallization events, whereas those to the south yielding Cambro-Ordovician and Neoproterozoic ages. The Kodaikanal–Palani charnockitic rocks contain monazite grains that fall within the Cambro-Ordovician timescale. The Oddanchatram anorthosite, located along the northern boundary of the Kodaikanal–Palani Massif, contains zircon grains that record mid-Neoproterozoic to Cambro-Ordovician crystallization ages. This anorthosite differs in texture and composition depending on location, that may be the result of its multi-stage metamorphic and/or intrusion history. Charnockitic rocks north and south of the PCSZ also differ geochemically. For example, north of the PCSZ, these rocks become more calcic with increasing SiO2 contents, whereas those to the south become alkali-calcic. Southern charnockitic rocks tend to have higher K2O/TiO2, Zr/SiO2, Rb/Sr, Ba and Rb contents, but lower Sr/Ba ratios. Using available geochemical data, we find more charnockitic rocks south of the PCSZ record zircon saturation temperatures between 800°C and 900°C than those to the north. Although samples of charnockitic rocks within the Kodaikanal–Palani Massif yield similar monazite ages, the rocks differ in their whole rock geochemistry and zircon and monazite saturation temperatures depending on location. The geochemical data from these rocks suggest that charnockitic rocks within the Kodaikanal–Palani Massif possibly experienced different mechanisms of generation and/or metamorphic histories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen P, Condie KC, Narayana BL (1985) The geochemistry of prograde and retrograde charnockite-gneiss reactions in southern India. Geochim Cosmochim Acta 49:323–336

    Article  Google Scholar 

  • Altenberger U, Wilhelm S (2000) Ductile deformation of K-feldspar in dry eclogite facies shear zones in the Bergen Arcs, Norway. Tectonophysics 320:107–121

    Article  Google Scholar 

  • Anto KF (1998) Fluid inclusion studies granulites from Kambam Valley, Tamil Nadu, South India, in relation to their metamorphic evolution. Indian Mineral 32:27–42

    Google Scholar 

  • Anto KF, Janardhan AS, Sivasubramanian P (1997) A new sapphirine occurrence from Kambam valley, Tamil Nadu and its possible relation to Pan-African tectonothermal event. Curr Sci 73:792–796

    Google Scholar 

  • Anto KF, Janardhan AS, Basavalingu B (1999) Metamorphic history of calc-silicate lithologies from the Kambam Valley, Tamil Nadu and its bearing on the evolution of the Southern Granulite Terrain. J Geol Soc India 53:27–37

    Google Scholar 

  • Balakrishnan P, Bhattacharya S, Anilkumar (1985) Carbonatite body near Kambammetu, Tamil Nadu. J Geol Soc India 26:418–421

    Google Scholar 

  • Bartlett JM, Harris NBW, Hawkesworth CJ, Santosh M (1995) New isotope constraints on the crustal evolution of South India and Pan-African granulite metamorphism. Mem Geol Soc India 34:391–397

    Google Scholar 

  • Bell K (2001) Carbonatites: relationships to mantle-plume activity. Geol Soc Am Spec Pap 352:267–290

    Google Scholar 

  • Bernard-Griffiths J, Jahn B-M, Sen SK (1987) Sm-Nd isotopes and REE geochemistry of Madras granulites, India: an introductory statement. Precambrian Res 37:343–355

    Article  Google Scholar 

  • Bhattacharya S, Sen SK (2000) New insights into the origin of Kabbaldurga charnockites, Karnataka, South India. Gondwana Res 3:489–506

    Article  Google Scholar 

  • Braun I, Cenki-Tok B, Paquette J-L, Tiepolo (2007) Petrology and U-Th-Pb geochronology of the sapphirine-quartz bearing metapelites from Rajapalayam, Madurai Block, Southern India: Evidence for polyphase Neoproterozoic high-grade metamorphism. Chem Geol 241:129–147

    Article  Google Scholar 

  • Brown M, Raith M (1996) First evidence of ultrahigh-temperature decompression from the granulite province of southern India. J Geol Soc London 153:819–822

    Article  Google Scholar 

  • Bucher K, Frost BR (2006) Fluid transfer in high-grade metamorphic terrains intruded by anorogenic granites: the Thor Range, Antartica. J Petrol 47:567–593

    Article  Google Scholar 

  • Catlos EJ, Gilley LD, Harrison TM (2002) Interpretation of monazite ages obtained via in situ analysis. Chem Geol 188:193–215

    Article  Google Scholar 

  • Catlos EJ, Dubey CS, Sivasubramanian P (2008) Monazite ages from carbonatites and high-grade assemblages along the Kambam Fault Southern Granulite Terrain, South India. Am Miner 93:1230–1244

    Article  Google Scholar 

  • Cenki B, Kriegsman LM (2005) Tectonics of the Neoproterozoic Southern Granulite Terrain, South India. Precambrian Res 138:37–56

    Article  Google Scholar 

  • Chacko T, Kumar GRR, Meen JK, Rogers JJW (1992) Geochemistry of high-grade suprarustal rocks from the Kerala Khondalite Belt and adjacent massif charnockites, South India. Precambrian Res 55:469–489

    Article  Google Scholar 

  • Chetty TRK, Bhaskar Rao YJ (2006) The Cauvery Shear Zone, Southern Granulite Terrain, India: a crustal-scale flower structure. Gondwana Res 10:77–85

    Article  Google Scholar 

  • Choudhuri A, Silva D (2000) A clinopyroxene-orthopyroxene-plagioclase symplectite formed by garnet breakdown in granulite facies, Guaxupe, Minas Gerais, Brazil. Gondwana Res 3:445–452

    Article  Google Scholar 

  • Deer WA, Howie RA, Zussman J (1993) An Introduction to the rock-forming minerals, 2nd edn. Longman Scientific and Technical Press, Harlow, Essex, 696 pp

    Google Scholar 

  • Drüppel K, Littmann S, Romer RL, Okrusch M (2007) Petrology and isotope geochemistry of the Mesoproterozoic anorthosite and related rocks of the Kunene Intrusive Complex, NW Namibia. Precambrian Res 156:1–31

    Article  Google Scholar 

  • Drury SA, Holt RW (1980) The tectonic framework of the South Indian Craton: a reconnaissance involving LANDSAT imagery. Tectonophysics 65:T1–T15

    Article  Google Scholar 

  • Drury SA, Harris NBW, Holt RW, Reeves-Smith GJ, Wrightman RT (1984) Precambrian tectonics and crustal evolution in South India. J Geol 92:3–20

    Article  Google Scholar 

  • Duchesne J-C, Wilmart E (1997) Igneous charnockites and related rocks from the Bjerkreim-Sokndal layered intrusion (Southwest Norway); a jotunite (hypersthene monzodiorite)-derived A-type granitoid suite. J Petrol 38:337–369

    Article  Google Scholar 

  • Fermor LL (1936) An attempt at the correlation of the ancient schistose formations of peninsular India (part 1). Indian Geological Survey, Memoir 70, Calcutta, India

    Google Scholar 

  • Friend CRL, Nutman AP (1991) SHRIMP U–Pb Geochronology of the Closepet granite and Peninsular gneiss, Karnataka, South India. J Geol Soc India 38:357–368

    Google Scholar 

  • Frost BR, Frost CD (1987) CO2 melts and granulite metamorphism. Nature 327:503–506

    Article  Google Scholar 

  • Frost BR, Frost CD (2008) On charnockites. Gondwana Res 13:30–44

    Article  Google Scholar 

  • Fujimaki H (1986) Partition coefficients of Hf, Zr and REE between zircon, apatite and liquid. Contrib Mineral Petrol 94:42–45

    Article  Google Scholar 

  • Ghosh JG, de Wit MJ, Zartman RE (2004) Age and tectonic evolution of Neoproterozoic ductile shear zones in the Southern Granulite Terrain of India, with implications for Gondwana studies. Tectonics. doi:10.1029/2002TC 001444

    Google Scholar 

  • Grady JC (1971) Deep main faults in South India. J Geol Soc India 12:56–62

    Google Scholar 

  • Grantham GH, Eglington BM, Thomas RJ, Mendonidis P (2001) The nature of the Grenville-age charnockitic A-type magmatism from the Natal, Namaqua and Maud Belts of southern Africa and western Dronning Maud Land, Antarctica. Mem Natl Polar Res Spec Issue 55:59–86

    Google Scholar 

  • Green TH, Pearson NJ (1986) Ti-rich accessory phase saturation in hydrous mafic-felsic compositions at high P, T. Chem Geol 54:185–201

    Article  Google Scholar 

  • Hansen EC, Newton RC, Janardhan AS, Lindenberg S (1995) Differentiation of late Archean crust in the eastern Dharwar Craton, Krishnagiri-Salem area, South India. J Geol 103:629–651

    Article  Google Scholar 

  • Harlov DE, Förster H-J (2002) High-Grade fluid metasomatism on both a local and a regional scale: the Seward Peninsula, Alaska, and the Val Strona di Omegna, Ivrea–Verbano Zone Northern Italy. Part II: Phosphate Mineral Chemistry. J Petrol 43:801–824

    Article  Google Scholar 

  • Harlov DE, Förster H-J (2003) Fluid-induced nucleation of (Y + REE)-phosphate minerals within apatite: nature and experiment Part II. Fluorapatite. Am Miner 88:1209–1299

    Google Scholar 

  • Harris NBW (1981) The application of spinel-bearing metapelites to P/T determinations: an example from South India. Contrib Mineral Petrol 76:229–233

    Article  Google Scholar 

  • Harris NBW, Santosh M, Taylor PN (1994) Crustal evolution in South India: constraints from Nd isotopes. J Geol 102:139–150

    Article  Google Scholar 

  • Harrison TM, Watson EB (1984) The behavior of apatite during crustal anatexis: equilibrium and kinetic considerations. Geochim Cosmochim Acta 48:1464–1477

    Article  Google Scholar 

  • Harrison TM, McKeegan KD, Le Fort P (1995) Detection of inherited monazite in the Manaslu leucogranite by 208Pb ⁄ 232Th ion microprobe dating: crystallization age and tectonic implications. Earth Planet Sci Lett 133:271–282

    Article  Google Scholar 

  • Holland TH (1900) The charnockite series, a group of Archaean hypersthenic rocks in peninsular India. Mem Geol Soc India 17:7–27

    Google Scholar 

  • Howie RA (1955) The geochemistry of the charnockite series of Madras, India. Trans R Soc Edin 82:725–769

    Google Scholar 

  • Howie RA, Subramanian AP (1957) The paragenesis of garnet in charnockite, enderbite, and related granulites. Min Mag 31:565–586

    Article  Google Scholar 

  • Jain AK, Singh S, Manickavasagam RM (2003) Intracontinental shear zones in the Southern Granulite Terrain; their kinematics and evolution. Mem Geol Soc India 50:225–253

    Google Scholar 

  • Janardhan AS (1999) Southern Granulite Terrain, South of the Palghat-Cauvery Shear Zone: implications for India-Madagascar Connection. Gondwana Res 2:463–469

    Article  Google Scholar 

  • Janardhan AS, Srikarni C (2001) Pan-African Granulite Facies Assemblages in Kodaikanal-Anaimalai Ranges, Tamil Nadu and Mt. Abu-Balaram Areas of Gujarat, India: Madagascar-India Connection in Eastern Gondwana Assembly. Gondwana Res 4:643–644

    Article  Google Scholar 

  • Janardhan AS, Wiebe RA (1985) Petrology and geochemistry of the Oddanchatram anorthosite and associated basic granulites, Tamil Nadu, South India. J Geol Soc India 26:163–176

    Google Scholar 

  • Janardhan AS, Newton RC, Hansen EC (1982) The transformation of amphibolite facies gneiss to charnockite in southern Karnataka and northern Tamil Nadu, India. Contrib Mineral Petrol 79:130–149

    Article  Google Scholar 

  • Janardhan AS, Jayananda M, Shankara MA (1994) Formation and tectonic evolution of granulites from the Biligriri Ranan and Niligiri Hills S. India: geochemical and isotopic constraints. J Geol Soc India 44:27–40

    Google Scholar 

  • Jayananda M, Janardhan AS, Sivasubramanian P, Peucat JJ (1995) Geochronology and isotopic constraints on granulite formation in the Kodaikanal area, Southern India. Mem Geol Soc India 34:373–390

    Google Scholar 

  • John MM, Balakrishnan JS, Bhadra BK (2005) Contrasting metamorphism across Cauvery Shear Zone, south India. J Earth SystSci 114:143–158

    Article  Google Scholar 

  • Johnson KTM (1998) Experimental determination of partition coefficients for rare earth and high-field-strength elements between clinopyroxene, garnet, and basaltic melt at high pressures. Contrib Mineral Petrol 133:60–68

    Article  Google Scholar 

  • Kilpatrick JA, Ellis DJ (1992) C-type magmas: igneous charnockites and their extrusive equivalents. Trans R Soc Edinb: Earth Sci 83:155–164

    Google Scholar 

  • Kretz R (1983) Symbols for rock-forming minerals. Am Miner 68:277–279

    Google Scholar 

  • Kumar GRR (2004) Mechanism of arrested charnockite formation at Nemmara, Palghat region, southern India. Lithos 75:331–358

    Article  Google Scholar 

  • Kumar GRR, Sukumaran S (2003) Petrology and geochemistry of gneiss, charnockite and charno-enderbite of Palghat Region, Southern India. Mem Geol Soc India 50:409–434

    Google Scholar 

  • Larin AM, Kotov AB, Sal’nikova EB, Glebovitskii VA, Sukhanov MK, Yakovleva SZ, Kovach VP, Berezhnaya NG, Velikoslavinskii SD, Tolkachev MD (2006) The Kalar Complex, Aldan-Stanovoi Shield, an ancient anorthosite-mangerite-charnockite-granite association: geochronologic, geochemical, and isotopic-geochemical characteristics. Petrology 14:2–20

    Article  Google Scholar 

  • LeMarchand F, Villemant B, Calas G (1987) Trace element distribution coefficients in alkaline series. Geochim Cosmchim Acta 51:1071–1081

    Article  Google Scholar 

  • Menegon L, Pennacchioni G, Stünitz H (2006) Nucleation and growth of myrmekite during ductile shear deformation in metagranites. J Metamorph Geol 24:553–568

    Article  Google Scholar 

  • Middlemost EAK (1994) Naming materials in the magma/igneous rock system. Earth Sci Rev 37:215–224

    Article  Google Scholar 

  • Mikhalsky EV, Sheraton JW, Hahne K (2006) Charnockite composition in relation to the tectonic evolution of East Antarctica. Gondwana Res 9:379–397

    Article  Google Scholar 

  • Miller JS, Santosh M, Pressley RA, Clemens AS, Rogers JJW (1996) A Pan-African thermal event in southern India. J Southeast Asian Earth Sci 14:127–136

    Article  Google Scholar 

  • Mishra DC, Kumar VV, Rajasekhar RP (2006) Analysis of airborne magnetic and gravity anomalies of peninsular shield, India integrated with seismic and magnetotelluric results and gravity anomalies of Madagascar, Sri Lanka, and Antarctica. Gondwana Res 10:6–17

    Article  Google Scholar 

  • Mohan A, Jayananda M (1999) Metamorphism and isotopic evolution of granulites of southern India; reference to Neoproterozoic crustal evolution. In: Roy AB (ed) Neoproterozoic crustal evolution and Indian-Gondwana linkage, Gondwana Res 2:251–262

    Google Scholar 

  • Mohan A, Prakash D, Motoyoshiti Y (1996a) Decompressional P-T history in sapphirine-bearing granulites from Kodaikanal, southern India. J Southeast Asian Earth Sci 14:231–243

    Article  Google Scholar 

  • Mohan A, Prakash D, Sachan KH (1996b) Fluid inclusions in charnockites from Kodaikanal massif (South India): P-T record and implications for crustal uplift history. Mineral Petrol 57:167–184

    Article  Google Scholar 

  • Montel J-M (1993) A model for monazite/melt equilibrium and application to the generation of granitic magmas. Chemical Geol 110:127–146

    Article  Google Scholar 

  • Nagasawa H (1970) Rare earth concentrations in zircons and apatites and their host dacites and granites. Earth Planet Sci Lett 9:359–364

    Article  Google Scholar 

  • Naidu PRJ (1963) Hypersthene-bearing rocks of the Madras State, India. Mem Geol Soc India 17:290–299

    Google Scholar 

  • Narayana BL, Nijagunappa R (1987) Rare-earth element geochemistry of charnockites from highland areas of South India. Geophys Res Bull 25:96–113

    Google Scholar 

  • Newton RC (1989) Charnockitic alteration: evidence for CO2 infiltration in granulite facies metamorphism. J Metamorphic Geol 10:383–400

    Article  Google Scholar 

  • Newton RC (1992) An overview of charnockite. Precambrian Res 55:399–405

    Article  Google Scholar 

  • Newton RC, Smith JV, Windley BF (1980) Carbonic metamorphism, granulites, and crustal growth. Nature 288:45–50

    Article  Google Scholar 

  • Passchier CW, Trouw RAJ (1998) Microtectonics. Spinger, New York

    Google Scholar 

  • Pearce KA, Harris NBW, Tindle AG (1984) Trace element discrimination diagrams for tectonic interpretation of granitic rocks. J Petrol 25:956–983

    Google Scholar 

  • Pichamuthu CS (1960) Charnockite in the making. Nature 188:135–136

    Article  Google Scholar 

  • Pichamuthu CS (1970) On the occurrence of garnet in charnockite. J Geol Soc India 11:273–275

    Google Scholar 

  • Pichamuthu CS (1990) The charnockites of South India. Mem Geol Soc India 17:133–135

    Google Scholar 

  • Prakash D (1999) Petrology of the basic granulites from Kodaikanal, South India. Gondwana Res 2:95–104

    Article  Google Scholar 

  • Prakash D, Mohan A (2007) Colour-coded compositional mapping of orthopyroxene-plagioclase symplectites in mafic granulites from Panrimalai, south India. J Geol Soc India 69:285–290

    Google Scholar 

  • Prakash D, Shastry A (1999) Geochemical studies on the sapphirine-granulites from Kodaikanal, South India. Gondwana Res 2:603–604

    Article  Google Scholar 

  • Prakash D, Arima M, Mohan A (2006) Ultrahigh-temperature metamorphism in the Palni Hills, South India: insights from feldspar thermometry and phase equilibria. Int Geol Rev 48:619–638

    Article  Google Scholar 

  • Prasad RB, Kesava RG, Mall DM, Koteswara RP, Raju S, Reddy MS, Rao GSP, Sridher V, Prasad ASSSRS (2007) Tectonic implications of seismic reflectivity pattern observed over the Precambrian Southern Granulite Terrain, India. Precambrian Res 153:1–10

    Article  Google Scholar 

  • Pryer LL, Robin P-YF (1995) Retrograde metamorphic reactions in deforming granites and the origin of flame perthite. J Metamorph Geol 14:645–658

    Article  Google Scholar 

  • Pryer LL, Robin P-YF (1996) Differential stress control on the growth and orientation of flame perthite: a palaeostress-direction indicator. J Struct Geol 18:1151–1166

    Article  Google Scholar 

  • Raith M, Karmakar S, Brown M (1997) Ultra-high temperature metamorphism and multistage decompressional evolution of sapphirine granulites from the Palni Hills, southern India. J Metamorph Geol 15:379–399

    Article  Google Scholar 

  • Raith M, Srikantappa C, Buhl D, Koehler H (1999) The Nilgiri enderbites, South India: nature and age constraints on protolith formation, high-grade metamorphism and cooling history. Precambrian Res 98:129–150

    Article  Google Scholar 

  • Rajesh HM (2007) The petrogenetic characterization of intermediate and silicic charnockites in high-grade terrains: a case study from southern India. Contrib Mineral Petrol 154:591–606

    Article  Google Scholar 

  • Rajesh HM (2008) Petrogenesis of two granites from the Nilgiri and Madurai blocks, southwestern India: implications for charnockite – calc-alkaline granite and charnockite – alkali (A-type) granite link in high-grade terrains. Precambrian Res 162:180–197

    Article  Google Scholar 

  • Rajesh HM, Santosh M (2004) Charnockitic magmatism in southern India. Proc Indian Acad Sci (Earth Planet Sci) 113:565–585

    Google Scholar 

  • Rajesh HM, Santosh M, Yoshida M (2000) Petrogenesis of a aluminous A-type granite from Munnar, southwestern India. J Geosci (Osaka City University) 43:203–225

    Google Scholar 

  • Rama Rao B (1945) The charnockitic rocks of Mysore. Bull Mysore Geolog Dept 18:159

    Google Scholar 

  • Rao VV, Prasad BR (2006) Structure and evolution of the Cauvery Shear Zone system, Sothern Granulite Terrain, India: evidence from deep seismic and other geophysical studies. Gondwana Res 10:29–40

    Article  Google Scholar 

  • Rao BYJ, Janardhan AS, Kumar TV, Narayana BL, Dayal AM, Taylor PN, Chetty TRK (2003) Sm-Nd model ages and Rb-Sr isotopic systematics of charnockites and gneisses across the Cauvery Shear Zone, Southern India: implications for the Archaean-Neoproterozoic terrane boundary in the Southern Granulite Terrain. Mem Geol Soc India 50:297–317

    Google Scholar 

  • Sajeev K, Santosh M, Kim HS (2006) Partial melting and P–T evolution of the Kodaikanal Metapelite Belt, southern India. Lithos 92:465–483

    Article  Google Scholar 

  • Santosh M, Omori S (2008) CO2 flushing; a plate tectonic perspective. Gondwana Res 13:86–102

    Article  Google Scholar 

  • Santosh M, Jayananda M, Mahabaleswar B (1991) Fluid evolution in the Closepet Granite: a magmatic source for CO2 in charnockite formation at Kabbaldurga? J Geol Soc India 38:55–65

    Google Scholar 

  • Santosh M, Tsunogae T, Koshimoto S (2004) First report of sapphirine-bearing rocks from the Palghat-Cauvery shear zone system, southern India. Gondwana Res 7:620–626

    Article  Google Scholar 

  • Satyanarayana KVV, Arora BR, Janardhan AS (2003) Rock magnetism and palaeomagnetism of the Oddanchatram anorthosite, Tamil Nadu, South India. Geophys J Int 155:1081–1092

    Article  Google Scholar 

  • Scherrer NC, Engi M, Gnos E, Jakob V, Liechti A (2000) Monazite analysis; from sample preparation to microprobe age dating and REE quantification. Schweiz Mineral Petrogr Mitt 80:93–105

    Google Scholar 

  • Schneider DA, Edwards MA, Kidd WSF, Zeitler PK, Coath CD (1999) Early Miocene anatexis identified in the western syntaxis, Pakistan Himalaya. Earth Planet Sci Lett 167:121–129

    Article  Google Scholar 

  • Sen SK, Ray S (1971) Hornblende-pyroxene granulites versus pyroxene granulites: a study from the type charnockite area. N Jb Miner Abh 115:291–314

    Google Scholar 

  • Shimpo M, Tsunogae T, Santosh M (2006) First report of garnet-corundum rocks from southern India: implications for prograde high-pressure (eclogite-facies?) metamorphism. Earth Planet Sci Lett 242:111–129

    Article  Google Scholar 

  • Simmat R, Raith MM (2008) U–Th–Pb monazite geochronometry of the Eastern Ghats Belt, India: timing and spatial disposition of poly-metamorphism. Precambrian Res 162:16–39

    Article  Google Scholar 

  • Singh AP, Kumar N, Singh B (2006) Nature of the crust along Kuppam–Palani geotransect (South India) from Gravity studies: implications for Precambrian continental collision and delamination. Gondwana Res 10:41–47

    Article  Google Scholar 

  • Sivasubramanian P (1993) Geology and metamorphic history of parts of Kodaikanal ranges, Ph.D. thesis, University of Mysore, India

    Google Scholar 

  • Spooner CM, Fairbairn HW (1970) Strontium 87/strontium 86 initial ratios in pyroxene granulite terranes. J Geophys Res 32:6706–6713

    Article  Google Scholar 

  • Srikantappa C (1988) High pressure charnockites of the Nilgiri Hills, southern India. Mem Geol Soc India 25:95–110

    Google Scholar 

  • Sriramguru K, Janardhan AS, Basava S, Basavalingu B (2002) Prismatine and sapphirine bearing assemblages from Rajapalaiyam area, Tamil Nadu: origin and metamorphic history. J Geol Soc India 59:103–110

    Google Scholar 

  • Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26:207–221

    Article  Google Scholar 

  • Staehle HJ, Raith M, Hoernes S, Delfs A (1987) Element mobility during incipient granulite formation at Kabbaldurga, Southern India. J Petrol 28:803–834

    Google Scholar 

  • Sun S-s, McDonough WF (1989) Chemical and isotopic systematic of ocean basalts: implications for mantle composition and processes. Geol Soc Lond Spec Publ 42:313–345

    Article  Google Scholar 

  • Suresha KJ, Srikantappa C (2005) Igneous charno-enderbites and charnockites (C-type magmas) around Dindigul, Tamil Nadu. Geol Soc India 44:27–40

    Google Scholar 

  • Tadokoro H, Tsunogae T, Santosh M, Yoshimura Y (2007) First report of the spinel + quartz assemblage from Kodaikanal in the Madurai Block, southern India; implications for ultrahigh-temperature metamorphism. Int Geol Rev 49:1050–1068

    Article  Google Scholar 

  • Tomson YJ, Bhaskar Rao T, Vijaya Kumar J, Mallikharjuna R (2006) Charnockite genesis across the Archaean–Proterozoic terrane boundary in the South Indian Granulite Terrain: constraints from major–trace element geochemistry and Sr–Nd isotopic systematics. Gondwana Res 10:115–127

    Article  Google Scholar 

  • Vernon RH (1999) Flame perthite in metapeltic gneisses at Cooma, SE Australia. Am Miner 84:1760–1765

    Google Scholar 

  • Watson EB, Harrison TM (1983) Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth Planet Sci Lett 64:295–304

    Article  Google Scholar 

  • Weaver BL (1980) Rare-earth geochemistry of Madras granulites. Contrib Mineral Petrol 71:271–279

    Article  Google Scholar 

  • Weaver BL, Tarney J, Windley BF, Sugavanam EB, Rao VV (1978) Madras granulites: geochemistry and P-T conditions of crystallisation. In: Archaean geochemistry; Proceedings of the first international symposium on Archaean geochemistry; The origin and evolution of Archaean continental crust, pp 177–204

    Google Scholar 

  • Wiebe RA, Janardhan AS (1988) Metamorphism of the Oddanchatram anorthosite, Tamil Nadu, South India. J Geol Soc India 31:163–165

    Google Scholar 

  • Woolley AR, Kempe DRC (1989) Carbonatites: Nomenclature, average chemical compositions, and element distribution. In: Bell K (ed) Carbonatites: genesis and evolution. Unwin Hyman, London, pp 1–14

    Google Scholar 

  • Yoshida M, Bindu RS, Santosh M, Shirahata H (1998) Electron microprobe monazite ages from the Trivandrum Granulite Belt of South India. J Afr Earth Sci 27:216–217

    Google Scholar 

  • Yuguchi T, Nishiyama T (2008) The mechanism of myrmekite formation deduced from steady-diffusion modeling based on petrography: case study of the Okueyama granitic body, Kyushu, Japan. Lithos 106:237–260

    Article  Google Scholar 

  • Zhao J-X, Ellis DJ, Kilpatrick JA, McCulloch MT (1997) Geochemical and Sr-Nd isotopic study of charnockites and related rocks in the northern Prince Charles Mountains, East Antarctica: implications for charnockite petrogenesis and proterozoic crustal evolution. Precambrian Res 81:37–66

    Article  Google Scholar 

Download references

Acknowledgments

This paper is dedicated to Dr. A. S. Janardhan, who passed away in November 2004. He was an essential member of the field expedition and provided important insights to the authors of this paper into the geology of the Southern Granulite Terrain. We thank the UCLA National Ion Microprobe facility. Rock samples were analyzed for their bulk and trace element chemistry by Activation Laboratories. We thank Ms. Kelli Wakefield (Tarelton State University) for generating the plagioclase compositions as part of a subcontract from NSF0138942, New Frontiers-Research Experience for Undergraduates in the Space and Planetary Sciences. We thank the Oklahoma State University Vice President for Research Office for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth J. Catlos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Catlos, E.J., Sayit, K., Sivasubramanian, P., Dubey, C.S. (2011). Geochemical and Geochronological Data from Charnockites and Anorthosites from India’s Kodaikanal–Palani Massif, Southern Granulite Terrain, India. In: Ray, J., Sen, G., Ghosh, B. (eds) Topics in Igneous Petrology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9600-5_15

Download citation

Publish with us

Policies and ethics