Skip to main content

Factors Affecting Metal Mobilisation During Oxidation of Sulphidic, Sandy Wetland Substrates

  • Chapter
  • First Online:
Water and Nutrient Management in Natural and Constructed Wetlands
  • 1705 Accesses

Abstract

Most metals accumulate as sulphides under anoxic conditions in wetland substrates, reducing their bioavailability due to the solubility of metal sulphides. However, upon oxidation of these sulphides when the substrate is occasionally oxidised, metals can be released from the solid phase to the pore water or overlaying surface water. This release can be affected by the presence of carbonates, organic matter and clay. We compared changes of Cd, Cu and Zn mobility (CaCl2 extraction) during oxidation of a carbonate-rich and a carbonate-poor sulphidic, sandy wetland substrate. In addition, we studied how clay with low and high cation sorption capacity (bentonite and kaolinite, respectively) and organic matter (peat) can counteract Cd, Cu and Zn release during oxidation of both carbonate-rich and carbonate-poor sulphidic sediments. CaCl2-extractability of Cu, a measure for its availability, is low in both carbonate-poor and carbonate-rich substrates, whereas its variability is high. The availability of Cd and Zn is much higher and increases when peat is supplied to carbonate-poor substrates. A strong reduction of Cd and Zn extractability is observed when clay is added to carbonate-poor substrates. This reduction depends on the clay type. Most observations could be explained taking into account pH differences between treatments, with kaolinite resulting in a lower pH in comparison to bentonite. These pH differences affect the presence and characteristics of dissolved organic carbon and the metal speciation, which in turns affects the interaction of metals with the solid soil phase. In carbonate-rich substrates, Cd and Zn availability is lower and the effects of peat and clay amendment are less clear. The latter can also be attributed to the high pH and lack of pH differences between treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen, H. E., Fu, G., & Deng, B. (1993). Analysis of acid-volatile sulphide and simultaneous extracted metals for the estimation of potential toxicity in aquatic sediments. Environmental Toxicology and Chemistry, 12, 1441–1453.

    Article  CAS  Google Scholar 

  • Ankley, G. T., Mattson, V. R., Leonard, E. N., West, C. W., & Bennett, J. L. (1993). Predicting the acute toxicity of copper in freshwater sediments: evaluation of the role of acid volatile sulfide. Environmental Toxicology and Chemistry, 12, 315–320.

    Article  CAS  Google Scholar 

  • Ankley, G. T., Phipps, G. L., Leonard, E. N., Kosian, P. A., Cotter, A. M., Dierkes, J. R., et al. (1991). Acid volatile sulfide as a factor mediating cadmium and nickel bioavailability in contaminated sediments. Environmental Toxicology and Chemistry, 10, 1299–1307.

    Article  CAS  Google Scholar 

  • Ashworth, D. J., & Alloway, B. J. (2008). Influence of dissolved organic matter on the solubility of heavy metals in sewage-sludge-amended soils. Communications in Soil Science and Plant Analysis, 39, 538–550.

    Article  CAS  Google Scholar 

  • Berry, W. J., Hansen, D. J., Mahony, J. D., Robson, D. L., Di Toro, D. M., Shipley, B. P., et al. (1996). Predicting the toxicity of metal-spiked laboratory sediments using acid-volatile sulphide and interstitial water normalizations. Environmental Toxicology and Chemistry, 15, 2067–2079.

    Article  CAS  Google Scholar 

  • Billon, G., Ouddane, B., Laureyns, J., & Boughriet, A. (2001). Chemistry of metal sulfides in anoxic sediments. Physical Chemistry Chemical Physics, 3, 3586–3592.

    Article  CAS  Google Scholar 

  • Calmano, W., Hong, J., & Förstner, U. (1993). Binding and mobilisation of heavy metals in contaminated sediments affected by pH and redox potential. Water Science and Technology, 28, 223–235.

    CAS  Google Scholar 

  • Carlson, A. R., Phipps, G. L., Mattson, V. R., Kosian, P. A., & Cotter, A. M. (1991). The role of acid volatile sulphide in determining cadmium bioavailability and toxicity in freshwater sediments. Environmental Toxicology and Chemistry, 10, 1309–1319.

    Article  CAS  Google Scholar 

  • Casas, A. M., & Crecelius, E. A. (1994). Relationship between acid volatile sulfide and the toxicity of zinc, lead and copper in marine sediments, Environmental Toxicology and Chemistry, 13, 529–536.

    Article  CAS  Google Scholar 

  • Charlatchka, R., & Cambier, P. (2000). Influence of reducing conditions on solubility of trace metals in contaminated soils. Water, Air, and Soil Pollution, 118, 143–167.

    Article  CAS  Google Scholar 

  • Di Toro, D. M., Mahony, J. D., Hansen, D. J., Scott, K. J., Carlson, A. R., & Ankley, G. T. (1992). Acid Volatile Sulfide predicts the acute toxicity of cadmium and nickel in sediments. Environmental Science and Technology, 26, 96–101.

    Article  Google Scholar 

  • Di Toro, D. M., Mahony, J. D., Hansen, D. J., Scott, K. J., Hicks, M. B., Mayr, S. M., et al. (1990). Toxicity of cadmium in sediments: the role of acid volatile sulphide. Environmental Toxicology and Chemistry, 9, 1487–l502.

    Article  Google Scholar 

  • Du Laing, G., De Meyer, B., Meers, E., Lesage, E., Van de Moortel, A., Tack, F. M.G., et al. (2008). Metal accumulation in intertidal marshes along the river Scheldt: role of sulphide precipitation. Wetlands, 28, 735–746.

    Article  Google Scholar 

  • Du Laing, G., Meers, E., Dewispelaere, M., Vandecasteele, B., Rinklebe, J., Tack, F. M. G., et al. (2009a). Heavy metal mobility in intertidal sediments of the Scheldt estuary: Field monitoring. Science of the Total Environment, 407, 2919–2930.

    Article  Google Scholar 

  • Du Laing, G., Rinklebe, J., Vandecasteele, B., Meers, E., & Tack, F. M. G. (2009b). Heavy metal mobility and availability in estuarine and riverine floodplain soils and sediments: a review. Science of the Total Environment, 407, 3972–3985.

    Article  Google Scholar 

  • Du Laing, G., Vanthuyne, D. R. J., Vandecasteele, B., Tack, F. M. G., & Verloo, M. G. (2007). Influence of hydrological regime on pore water metal concentrations in a contaminated sediment-derived soil. Environmental Pollution, 147, 615–625.

    Article  Google Scholar 

  • Gambrell, R. P., Wiesepape, J. B., Patrick, W. H.Jr., & Duff, M. C. (1991). The effects of pH, redox, and salinity on metal release from a contaminated sediment. Water, Air, and Soil Pollution, 57–58, 359–367.

    Article  Google Scholar 

  • Gambrell, R. P. (1994). Trace and toxic metals in wetlands – a review. Journal of Environmental Quality, 23, 883–891.

    Article  CAS  Google Scholar 

  • Guo, T., DeLaune, R. D., & Patrick, W. H. Jr. (1997). The influence of sediment redox chemistry on chemically active forms of arsenic, cadmium, chromium, and zinc in estuarine sediment. Environment International, 23, 305–316.

    Article  CAS  Google Scholar 

  • Huerta-Diaz, M. A., Tessier, A., & Carignan, R. (1998). Geochemistry of trace metals associated with reduced sulphur in freshwater sediments. Applied Geochemistry, 13, 213–233.

    Article  CAS  Google Scholar 

  • Kornicker, W. A., & Morse, J. W. (1991). Interactions of divalent cations with the surface of pyrite. Geochimica Cosmochimica Acta, 55, 2159–2171.

    Article  CAS  Google Scholar 

  • Morse, J. W., & Arakaki, T. (1993). Adsorption and coprecipitation of divalent metals with mackinawite (FeS). Geochimica Cosmochimica Acta, 57, 3635–3640.

    Article  CAS  Google Scholar 

  • Salomons, W., de Rooij, N. M., Kerdijk, H., & Bril, J. (1987). Sediments as a source for contaminants? Hydrobiologia, 149, 13–30.

    Article  CAS  Google Scholar 

  • Satawathananont, S., Patrick, W. H. J., & Moore, P. A. J. (1991). Effect of controlled redox conditions on metal solubility in acid sulfate soils. Plant and Soil, 133, 281–290.

    Article  CAS  Google Scholar 

  • Simpson, S. L., Rosner, J., & Ellis, J. (2000). Competitive displacement reactions of cadmium, copper, and zinc added to a polluted, sulfidic estuarine sediment. Environmental Toxicology and Chemistry, 19, 1992–1999.

    Article  CAS  Google Scholar 

  • Tack, F. M., Callewaert, O. W. J. J., & Verloo, M. G. (1996). Metal solubility as a function of pH in a contaminated, dredged sediment affected by oxidation. Environmental Pollution, 91, 199–208.

    Article  CAS  Google Scholar 

  • Tack, F. M., Lapauw, F., & Verloo, M. G. (1997). Determination and fractionation of sulphur in a contaminated dredged sediment. Talanta, 44, 2185–2192.

    Google Scholar 

  • van den Hoop, M. A. G. T., den Hollander, H. A., & Kerdijk, H. M. (1997). Spatial and seasonal variations of acid volatile sulphide (AVS) and simultaneously extracted metals (SEM) in Dutch marine and freshwater sediments. Chemosphere, 35, 2307–2316.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gijs Du Laing .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Du Laing, G., Hanssen, T., Bogaert, G., Tack, F.M. (2010). Factors Affecting Metal Mobilisation During Oxidation of Sulphidic, Sandy Wetland Substrates. In: Vymazal, J. (eds) Water and Nutrient Management in Natural and Constructed Wetlands. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9585-5_21

Download citation

Publish with us

Policies and ethics