Properties of Biosolids from Sludge Treatment Wetlands for Land Application

  • Enrica Uggetti
  • Ivet Ferrer
  • Esther Llorens
  • David Güell
  • Joan García


Sludge treatment wetlands consist of constructed wetlands which have been upgraded for sludge treatment over the last decades. Sludge dewatering and stabilisation are the main features of this technology, leading to a final product which may be recycled as an organic fertiliser or soil conditioner. In this study, biosolids from full-scale treatment wetlands were characterised in order to evaluate the quality of the final product for land application, even without further post-treatment such as composting. Samples of influent and treated sludge were analysed for pH, Electrical Conductivity, Total Solids (TS), Volatile Solids (VS), Chemical Oxygen Demand (COD), Dynamic Respiration Index (DRI), nutrients (Total Kjeldahl Nitrogen (TKN), Total Phosphorus (TP) and Potasium (K)), heavy metals and faecal bacteria indicators (E. coli and Salmonella spp.). According to the results, sludge water content and therefore sludge volume are reduced by 25%. Organic matter biodegradation leads to VS around 43–44%TS and COD around 500 g kgTS−1. The values of DRI24 h (1000–1500 mgO2 kgTS−1 h−1) indicate that treated sludge is almost stabilised final product. Besides, the concentration of nutrients is quite low (TKN~4%TS, TP~0.3%TS and K~0.2–0.6%TS). Both heavy metals and faecal bacteria indicators meet current legal limits for land application of the sludge. Our results suggest that biosolids from the studied treatment wetlands could be valorised in agriculture, especially as soil conditioners.


Compost Reed beds Organic waste Wastewater 


  1. Adani, F., Confalonieri, R., & Tambone, F. (2004). Dynamic Respiration Index as descriptor of the biological stability of organic wastes. Journal of Environmental Quality, 33, 1866–1876.CrossRefGoogle Scholar
  2. Adani, F., Lozzi, P., & Genevini, P. L. (2000). Determination of biological stability by oxygen uptake on municipal solid waste and derived products. Compost Science and Utilization 9, 163–178.Google Scholar
  3. Agència Catalana de l’Aigua (2007). La gestió de fangs de depuració d’aigües residuals municipals a Catalunya. Evolució històrica i estratègia de futur (nou programa de fangs). III Jornades Tècniques de Gestió de Sistemes de Sanejament d’Aigües Residuals, Barcelona, Spain. URL:
  4. American Society for Testing and Materials. (1996). Standard test method for determining the stability of compost by measuring oxygen consumption. D 5975–96. ASTM Int, West Conshohocken, PA.Google Scholar
  5. Andreoli, C. V, Pegorini, E. S., Fernandes, F., & Santos H. F. (2007). Land application of sewage sludge. In M. Von Sperling, C. V. Andreoli & F. Fernandes (Eds)., Sludge treatment and disposal (pp. 162–206). London: IWA Publishing.Google Scholar
  6. APHA-AWWA-WPCF (2001). Standard methods for the examination of water and wastewater (20th ed.). Washington, DC: American Public Health Association.Google Scholar
  7. Barrena, R., D’Imporzano, G., Ponsá, S., Gea, T., Artola, A., Vázquez, F., et al. (2009). In search of a reliable technique for the determination of the biological stability of the organic matter in the mechanical-biological treated waste. Journal of Hazardous Materials, 162(2–3), 1065–1072.CrossRefGoogle Scholar
  8. Bertrán, E., Sort, X., Soliva, M., & Trillas, I. (2004). Composting winery waste: sludges and grape stalks. Bioresource Technology, 95, 203–208.CrossRefGoogle Scholar
  9. Burgoon, P.S., Kirkbride, K.F., Henderson, M., & Landon, E. (1997). Reed beds for biosolids drying in the arid Northwestern Unitated States. Water Science and Technology, 35(5), 287–292.CrossRefGoogle Scholar
  10. Caselles-Osorio, A., Puigagut, J., Segú, E., Vaello, N., Granés, F., García, D., et al. (2007). Solids accumulation in five full-scale subsurface flow constructed wetlands. Water Research, 41, 1388–1398.CrossRefGoogle Scholar
  11. Cole, S. (1998). The emergence of treatment wetlands. Environmental Science and Technology A-Pages, 32, 218A–223A.CrossRefGoogle Scholar
  12. Consejo de Ministros (2001). Resolución de 14 de junio de 2001, de la Secretaría General de Medio Ambiente, por la que se Dispone la Publicación del Acuerdo de Consejo de Ministros, de 1 de junio de 2001, por el que se Aprueba el Plan Nacional de Lodos de Depuradoras de Aguas Residuales 2001–2006. Boletín Oficial del Estado 166, de 12 de julio de 2001.Google Scholar
  13. Council of the European Union (1986). Council Directive 86/278/EEC of 12 June 1986 on the Protection of the Environment, and in Particular of the Soil, when Sewage Sludge is Used in Agriculture. Official Journal of the European Union L 181, 04/07/1986, 6–12.Google Scholar
  14. Council of the European Union (1991). Council Directive 91/271/EEC of 21 May 1991 Concerning Urban Wastewater Treatment. Official Journal of the European Union L 135, 30/05/1991, 40–52.Google Scholar
  15. Council of the European Union (1991). Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for the Community action in the Field of Water Policy. Official Journal of the European Union L 327, 30/05/1991, 1–73.Google Scholar
  16. Council of the European Union (2000). Council Directive 2000/60/EC of 23 October 2000 establishing a framework for Community action in the field of water policy. Official Journal of the European Union, L 327, 1–72, 22/12/2000.Google Scholar
  17. Draeger, K., Pundsack, J., Jorgenson, M., & Mulloy, W.E. (1999). Watershed Effects and biosolids land application: Literature review. Water Environmental Research Foundation. Project 96-REM-2.Google Scholar
  18. Edwards, J. K., Gray, K. R., Cooper, D. J., Biddlestone, A. J., & Willoughby, N. (2001). Reed bed dewatering of agricultural sludges and slurries. Water Science and Technology, 44, (11–12), 551–558.Google Scholar
  19. Environment DG, EU. (2000). Working Document on Sludge 3rd Draft. URL: Accessed December 2009.
  20. Environment DG, EU. (2001). Working Document on Biological Treatment of Biowaste 2nd Draft. URL:
  21. Ferrer, I. (2008) Study of the effect of process parameters on the thermophilic anaerobic digestion of sewage sludge, evaluation of a thermal Sludge pretreatment and overall energetic assessment. Dissertation, Universitat Autònoma de Barcelona, Spain.Google Scholar
  22. Ferrer I., Ponsá S., Vázquez F., & Font, X. (2008). Increasing biogas production by thermal (70°C) sludge pre-treatment prior to thermophilic anaerobic digestion. Biochemical Engineering Journal, 42, 186–192.CrossRefGoogle Scholar
  23. Fytili, D., & Zabaniotou A. (2008). Utilization of sludge in EU application of old and new methods – A review. Renewable & Sustainable Energy Reviews, 12, 116–140.CrossRefGoogle Scholar
  24. Gascó, G., & Lobo, M.C. (2007). Composition of a Spanish sewage sludge and effects on treated soil and olive trees. Waste Management, 27, 1494–1500.CrossRefGoogle Scholar
  25. Hernández, T., Moreno, J. I., & Costa, F. (1999). Influence of sewage sludge application on croop yields and heavy metals avaylability. Soil Science & Plant Nutrition, 37, 201–210.CrossRefGoogle Scholar
  26. Komilis, D. P., & Tziouvaras I. S. (2209). A statistical analysis to assess the madurity and stability of six composts. Waste Management, 29, 1504–1513.Google Scholar
  27. Lasaridi, K. E., & Stentiford, E. I. (1998). A simple respirometric technique for assessing compost stability. Water Research, 32, 3717–3723.CrossRefGoogle Scholar
  28. Moss, L. H., Epstein, E., & Logan, T. (2002). Evaluating risks and benefits of soil amendments used in agriculture. Alexandria, VA: International Water Association and Water Environmental Research Foundation.Google Scholar
  29. Mujeriego, R., & Carbó, M. (1994). Sludge reuse in agriculture (In Catalan). Technical Report. Consorci de la Costa Brava. Girona (Spain).Google Scholar
  30. Muller, W., Fricke, K., & Vogtmann, H. (1998). Biodegradation of organic matter during mechanical biological treatment of MSW. Compost Science and Utilization, 6, 42–52.Google Scholar
  31. Nielsen, S. (2003a). Sludge drying reed beds. Water Science and Technology, 48(5), 101–109.Google Scholar
  32. Nielsen, S. (2003b). Sludge treatment in wetland systems. In V. Dias & J. Vymazal (Eds.), The use of aquatic macrophytes for wastewater treatment in constructed wetlands. (pp. 151–183). Lisbon, Portugal: ICN and INAG.Google Scholar
  33. Nielsen, S., & Willoughby, N. (2005). Sludge treatment and treatment wetlands systems in Denmark. Water and Environmental Journal, 19, 296–305.CrossRefGoogle Scholar
  34. Obarska-Pempkowiak, H., Tuszynska, A., & Sobocinski, Z. (2003). Polish experience with sewage sludge dewatering in reed systems. Water Science & Technology, 48(5), 111–117.Google Scholar
  35. Oleszkiewicz, J. A., & Mavinic, D. S. (2002). Wastewater biosolids: An overview of processing, treatment and management. Journal of Environmental Engineering Science, 1, 75–88.CrossRefGoogle Scholar
  36. Pagans, E., Barrena, R., Font, X., & Sánchez, A. (2006). Ammonia emissions from the composting of different organic wastes. Dependency on process temperature. Chemosphere, 62, 1534–1542.CrossRefGoogle Scholar
  37. Pomares, F., & Canet, R. (2001). Organic waste utilization in agriculture: Origin, composition and characterization. In J. Boixadera & M.R. Teira (Ed.), Agricultural utilization of organic waste (pp. 1–15). Lleida (Spain). (In Spanish).Google Scholar
  38. Ponsá, S., Gea, T, Alerm, L., Cerezo, J., & Sánchez, A. (2008). Comparision of aerobic and anaerobic stability indices throught a MSW biological treatment process. Waste Management, 28, 2735–2742.CrossRefGoogle Scholar
  39. Reed, S. C., Crites, R. W., & Middlebrooks, E. J. (1988). Natural systems for waste management and treatment. New York: McGraw Hill.Google Scholar
  40. Scaglia, B., & Adani, F. (2008). An index for quantifying the aerobic reactivity of municipal solid wastes and derived waste products. Science of the Total Environment, 394, 183–191.CrossRefGoogle Scholar
  41. Scaglia B., Tambone, F., Genevini, P. L., & Adani F. (2000). Respiration index determination: A dynamic and static approach. Compost Science and Utilization, 8, 90–98.Google Scholar
  42. Singh, R. P., & Agrawal, M. (2008). Potencial enefits and risks of land application of sewage sludge. Waste Management, 28, 347–358.CrossRefGoogle Scholar
  43. Soliva, M. (2001). Composting and management of organic residues. Estudis i Monografies 21. Diputació de Barcelona. Barcelona (Spain), (in Catalan).Google Scholar
  44. Uggetti, E., Ferrer, I., Llorens, E., & García, J. (2010). Sludge treatment wetlands: a review on the state of the art. Bioresource Technology, 101, 2905–2912.Google Scholar
  45. Uggetti, E., Llorens, E., Pedescoll, A., Ferrer, I., Castellnou, R., & García, J. (2009). Sludge dewatering and stabilization in drying reed beds: characterization of three full-scale systems in Catalonia, Spain. Bioresource Technology, 100, 3882–3890.CrossRefGoogle Scholar
  46. Walter, I., Cuevas, G., García, S., & Martínez, F. (2000). Biosolid effects on soil and native plant production in a degraded semiarid ecosystem in central Spain. Waste Management & Research, 18, 259–263.Google Scholar
  47. Warmar, P. R., & Termeer, W. C. (2005). Evaluation of sewage sludge, septic waste and sludge compost applications to corn and forage: Ca, Mg, S, Fe, Mn, Cu, Zn and B content of crops and soils. Bioresouce Technology, 96, 1029–1038.CrossRefGoogle Scholar
  48. Yubo, C., Tieheng, S., Lihui, Z., Tingliang, J., & Liping, Z. (2008). Performance of wastewater sludge ecological stabilization. Journal of Environmental Sciences, 20, 385–389.CrossRefGoogle Scholar
  49. Zwara, W., & Obarska-Pempkowiak, H. (2000). Polish experience with sewage sludge utilization in reed beds. Water Science and Technology, 41(1), 65–68.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Enrica Uggetti
    • 1
  • Ivet Ferrer
    • 1
  • Esther Llorens
    • 1
  • David Güell
    • 2
  • Joan García
    • 3
    • 1
  1. 1.Environmental Engineering Division, Department of Hydraulic, Maritime and Environmental EngineeringTechnical University of Catalonia (UPC)BarcelonaSpain
  2. 2.Depuradores d’OsonaVicSpain
  3. 3.Environmental Engineering Division, Department of Hydraulic, Maritime and Environmental EngineeringTechnical University of Catalonia (UPC)BarcelonaSpain

Personalised recommendations