Skip to main content

Nutrient Accumulation by Phragmites australis and Phalaris arundinacea Growing in Two Constructed Wetlands for Wastewater Treatment

  • Chapter
  • First Online:
Water and Nutrient Management in Natural and Constructed Wetlands

Abstract

Phragmites australis and Phalaris arundinacea are two most commonly used plants in constructed wetlands for wastewater treatment in the Czech Republic. This chapter deals with development of biomass, nitrogen and phosphorus concentration in that biomass and nutrient standing stocks in Phragmites and Phalaris growing in two constructed wetlands. Phragmites aboveground biomass varies between 781 and 2532 g m−2 in Břehov and between 1309 and 2177 g m−2 in Mořina. Phalaris aboveground biomass varies between 1262 and 2265 g m−2 in Břehov and between 1194 and 1780 g m−2 in Mořina. These values are within the common range found in both natural and constructed wetlands for wastewater treatment. For both Phragmites and Phalaris the aboveground biomass was higher than belowground. Nitrogen and phosphorus concentrations in Phragmites aboveground biomass were comparable with concentrations found in both natural stands and constructed wetlands. On the other hand, N and P concentrations in Phalaris were lower than those found in constructed wetlands. Nitrogen standing stocks in Phragmites and Phalaris were comparable with those found in natural stands and constructed wetlands and for both species substantially more nitrogen was sequestered aboveground. When comparing Phragmites and Phalaris N standing stocks, Phragmites stocks were higher but only belowground standing stock was significantly higher. The Phragmites phosphorus standing stocks in our study are also comparable with standing stocks found in natural stands but they are also at the lower end of the range.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adcock, P., & Ganf, G. G. (1994). Growth characteristics of three macrophyte species growing in natural and constructed wetland systems. Water Science & Technology, 29, 95–102.

    CAS  Google Scholar 

  • Allen, S. E., & Pearsall, W. H. (1963). Leaf analysis and shoot production in Phragmites. Oikos, 14, 176–189.

    Article  Google Scholar 

  • Auclair, A. N. D. (1979). Factors affecting tissue nutrient concentrations in a Scirpus-Equisetum wetland. Ecology, 60, 337–348.

    Article  CAS  Google Scholar 

  • Behrends, L. L., Bailey, E., Bulls, M. J., Coonrod, H. S., & Sikora, F. J. (1994). Seasonal trends in growth and biomass accumulation of selected nutrients and metals in six species of emergent aquatic macrophytes. In Proceedings Of 4th International Conference Wetland Systems for Water Pollution Control (pp. 274–289). Guangzhou: ICWS´94 Secretariat.

    Google Scholar 

  • Bernard, J. M., & Lauve, T. E. (1995). A comparison of growth and nutrient uptake in Phalaris arundinacea L. growing in a wetland and a constructed bed receiving landfill leachate. Wetlands, 15, 176–182.

    Article  Google Scholar 

  • Björk, S. (1967). Ecologic investigations of Phragmites communis. Studies in theoretic and applied limnology. Folia Limnologica Scandinavica, 14, 1–248.

    Google Scholar 

  • Boar, R. R., Crook, C. E., & Morris, B. (1989). Regression of Phragmites australis reedswamp and recent changes in water chemistry in the Norfolk Broadland, England. Aquatic Botany, 35, 41–55.

    Article  CAS  Google Scholar 

  • Čížková, H. (1999). Growth dynamics and ecophysiology of Phragmites in relation to the climatic conditions in boreal-Mediterranean and oceanic-continental gradients. In H. Brix (Ed.), Eureed II, Final Project for contracts ENV4-CT95-0147 and IC20-CT-960020 (pp. 45–52). Denmark: University of Aarhus.

    Google Scholar 

  • Coops, H., van der Brink, F. W. B., & van der Velde, G. (1996). Growth and morphological responses of four helophyte species in an experimental water-depth gradient, Aquatic Botany, 54, 11–24.

    Article  Google Scholar 

  • ČSN EN 1189. (2005). Total phosphorus. Czech Technical Norm.

    Google Scholar 

  • ČSN EN 12260. (2003). Total nitrogen. Czech Technical Norm.

    Google Scholar 

  • De Jong, J. (1976). The purification of wastewater with the aid of rush and reed ponds. In J. Tourbier & R. W. Pierson (Eds.), Biological Control of Water Pollution (pp. 133–139). Philadelphia, PA: Pennsylvania University Press.

    Google Scholar 

  • Dubois, P. (1994). Uptake of macroelements by the helophyte Phalaris arundinacea L. Aquatic Sciences, 56, 70–79.

    Article  Google Scholar 

  • Dykyjová, D. (1973a). Accumulation of mineral nutrients in the biomass of reedswamp species. In S. Hejný (Ed.), Ecosystem Study on Wetland Biome in Czechoslovakia (pp. 151–161). Třeboň, Czech Republic (IBP/PT-PP Report No. 3): Institute of Botany, Czech Academy of Sciences.

    Google Scholar 

  • Dykyjová, D. (1973b). Content of mineral macronutrients and emergent macrophytes during their seasonal growth and decomposition. In S. Hejný (Ed.), Ecosystem Study on Wetland Biome in Czechoslovakia (pp. 163–172). Třeboň, Czech Republic (IBP/PT-PP Report No. 3): Institute of Botany, Czech Academy of Sciences.

    Google Scholar 

  • Dykyjová, D. (1989). Methods for determination of mineral nutrients pool and their cycling in the ecosystem. In D. Dykyjová (Ed.), Methods for Ecosystem Studies (pp. 414–435). Praha, Czech Republic: Academia (in Czech).

    Google Scholar 

  • Dykyjová, D., & Hradecká, D. (1973). Productivity of reed-bed stands in relation to the ecotype, microclimate, and trophic conditions in the habitat. Polish Archives of Hydrobiology, 20, 111–119.

    Google Scholar 

  • Dykyjová, D., & Hradecká, D. (1976). Production ecology of Phragmites communis. 1. Relation of two ecotypes to the microclimate and nutrient conditions of habitat, Folia Geobotanica et Phytotaxonomica, 11, 23–61.

    Google Scholar 

  • Dykyjová. D., & Květ, J. (1982). Mineral nutrient economy in wetlands of the Třeboň Basin Biosphere Reserve, Czechoslovakia. In B. Gopal, R. E. Turner, R. G. Wetzel, & D. F. Whigham (Eds.), Wetlands: Ecology and Management (pp. 335–355). Jaipur, India: National Institute of Ecology and International Scientific Publications.

    Google Scholar 

  • Ennabili, A., Ater, M., & Radoux, M. (1998). Biomass production and NPK retention in macrophytes from wetlands of the Tingitan Peninsula. Aquatic Botany, 62, 45–56.

    Article  Google Scholar 

  • Green, E. K., & Galatowitsch, S. M. (2001). Differences in wetland plant community establishment with additions of nitrate-N and invasive species (Phalaris arundinacea and Typha x glauca), Canadian Journal of Botany, 79, 170–178.

    Google Scholar 

  • Greenway, M. (1996). Nutrient bioaccumulation in wetland plants receiving municipal effluent in constructed wetlands in tropical Australia. In Proceedings of 5th International Conference on Wetland Systems for Water Pollution Control (chapter II/I). Vienna, Austria: Universität für Bodenkultur.

    Google Scholar 

  • Gries, C., & Garbe, D. (1989). Biomass, nitrogen, phosphorus and heavy metal content of Phragmites australis during the third growing season in a root zone waste water treatment. Archiv für Hydrobiologie, 117, 97–105.

    Google Scholar 

  • Haberl, R., & Perfler, R. (1990). Seven years of research work and experience with wastewater treatment by a reed bed system. In P. F. Cooper & B. C. Findlater (Eds.), Constructed Wetlands in Water Pollution Control (pp. 205–214). Oxford: Pergamon Press.

    Google Scholar 

  • Haslam, S. M. (1971). Shoot height and density in Phragmites stands. Hydrobiologia (Bucharest) , 12, 113–119.

    Google Scholar 

  • Haslam, S. M. (1973). Some aspects of the life history and autecology of Phragmites communis Trin.: A review. Polish Archives of Hydrobiology, 20, 79–100.

    Google Scholar 

  • Hawke, C. J., & José, P. V. (1996). Reedbeds. Management for Commercial and Wildlife Interests. Bedfordshire: The Royal Society for the Protection of Birds, Sandy.

    Google Scholar 

  • Headley, T. R. (2004). Removal of nutrients and plant pathogens from nursery runoff using horizontal subsurface-flow constructed wetlands. Dissertation, Southern Cross University, Lismore, NSW, Australia.

    Google Scholar 

  • Hlávková-Kumnacká, H. (1980). Production of Some Herbaceous Plant Species from Wetlands. Dissertation, University of South Bohemia, České Budějovice, Czech republic (in Czech).

    Google Scholar 

  • Ho, Y. B. (1979a). Growth, chlorophyll and mineral nutrient studies on Phalaris arundinacea L. in three Scottish lochs. Hydrobiologia, 63, 33–43.

    Article  CAS  Google Scholar 

  • Ho, Y. B. (1979b). Shoot development and production studies of Phragmites australis (Cav.) Trin. Ex Stuedel in Scottish lochs. Hydrobiologia, 64, 215–222.

    Article  Google Scholar 

  • Ho, Y. B. (1981). Mineral composition of Phragmites australis in Scottish lochs as related to eutrophication. I. Seasonal change in organs. Hydrobiologia, 75, 227–238.

    Article  Google Scholar 

  • Hocking, P. J., Finlayson, C. M., & Chick, A. J. (1983). The biology of Australian weeds. 12. Phragmites australis (Cav.) Trin. ex Steudel. Journal of Australian Institute of Agricultural Science, 40, 123–132.

    Google Scholar 

  • Hocking, P. J. (1989). Seasonal dynamics of production, and nutrient accumulation and cycling by Phragmites australis (Cav.) Trin ex Stuedel in a nutrient-enriched swamp in inland Australia. I. Whole plants. Australian Journal of Marine and Freshwater Research, 40, 421–444.

    Article  CAS  Google Scholar 

  • Hurry, R. J., & Bellinger, E. G. (1990). Potential yield and nutrient removal by harvesting of Phalaris arundinacea in a wetland treatment system. In P. F. Cooper & B. C. Findlater (Eds.), Constructed Wetlands in Water Pollution Control (pp. 543–546). Oxford: Pergamon Press.

    Google Scholar 

  • Kätterer, T., & Andrén, O. (1999). Growth dynamics of reed canarygrass (Phalaris arundinacea L.) and its allocation of biomass and nitrogen belowground in a field receiving daily irrigation and fertilization. Nutrient Cycling in Agroecosystems, 54, 21–29.

    Article  Google Scholar 

  • Kaul, V., Trisal, C. L., & Kaul, S. (1980). Mineral removal potential of some macrophytes in two lakes of Kashmir. Journal of Indian Botanical Sciences, 59, 108–118.

    Google Scholar 

  • Kephart, K. D., & Buxton, D. R. (1993). Forage quality responses of C3 and C4 perennial grasses to shade. Crop Science, 33, 831–837.

    Article  CAS  Google Scholar 

  • Kerchler, S. M., & Zedler, J. B. (2004). Multiple disturbances accelarate invasion of reed canary grass (Phalaris arundinacea L.) in a mesocosm study. Oecologia, 138, 455–464.

    Article  Google Scholar 

  • Klopatek, J. (1978). Nutrient dynamics of freshwater riverine marshes and the role of emergent macrophytes. In R. E. Good, D. F. Whigham & R. L. Simpson (Eds.), Freshwater Wetlands: Ecological Processes and Management Potential (pp. 195–216). New York: Academic.

    Google Scholar 

  • Kline, P., & Boersma, K. (1983). The yield, nitrogen and nitrate content of reed canarygrass, meadow foxtail and timothy fertilized with nitrogen. Canadian Journal of Plant Sciences, 63, 943–950.

    Article  CAS  Google Scholar 

  • Květ, J. (1973). Mineral nutrients in shoots of reed (Phragmites communis Trin.). Polish Archives of Hydrobiology, 20, 137–147.

    Google Scholar 

  • Lavergne, S., & Molofsky, J. (2004). Reed canary grass (Phalaris arundinacea) as a biological model in the study of plant invasions. Critical Reviews in Plant Sciences, 23, 415–429.

    Article  Google Scholar 

  • Lewandowski, I., Scurlock, J. M. O., Lindvall, E., & Christou, M. (2003). The development and current status of perennial rhizomatous grases as energy crops in the US and Europe. Biomass and Bioenergy, 25, 335–361.

    Article  Google Scholar 

  • Lukavská, J. (1989). Influence of mowing on the wet grassland productivity. Dissertation, University of South Bohemia, České Budějovice, Czech Republic (in Czech).

    Google Scholar 

  • Marten, G. C. (1985). Reed canarygrass. In M. E. Heath et al. (Eds.), Forages: The science of Grassland agriculture (4th ed., pp. 207–216). Ames: Iowa State University Press.

    Google Scholar 

  • Mason, C. F., & Bryant, R. J. (1975). Production, nutrient content and decomposition of Phragmites australis Trin. and Typha latifolia L. Journal of Ecology, 63, 71–95.

    Article  CAS  Google Scholar 

  • Maurer, D., & Zedler, J. B. (2002). Differential invasion of a wetland grass explained by tests of nutrients and light availability on establishment and clonal growth. Oecologia, 131, 279–288.

    Article  Google Scholar 

  • Merigliano, M. F., & Lesica, P. (1998). The native status of reed canary grass (Phalaris arundinacea L.) in the inland Northwest, USA. Natural Areas Journal, 18, 223–230.

    Google Scholar 

  • Miller, R. C., & Zedler, J. B. (2003). Responses of native and invasive wetland plants to hydroperiod and water depth. Plant Ecology, 167, 57–69.

    Article  Google Scholar 

  • Obarska-Pempkowiak, H. (1999). Nutrient cycling and retention in constructed wetland systems in Darzlubie near Puck Bay, Southern Baltic Sea. In J. Vymazal (Ed.), Nutrient Cycling and Retention in Natural and Constructed Wetlands (pp. 41–48). Leiden: Backhuys Publishers.

    Google Scholar 

  • Obarska-Pempkowiak, H., & Gajewska, M. (2003). Comparison of usefulness of three emergent macrophytes for surface water protection against pollution and eutrophication: case study, Bielkowo, Poland. In J. Vymazal (Ed.), Wetlands – Nutrients, Metals and Mass Cycling (pp. 129–142). Leiden: Backhuys Publishers.

    Google Scholar 

  • Pénzes, A. (1960). Über die Morphologie, Dynamik und zönologische Rolle der sprosskolonien-bildenden Pflanzen. Fragm. Florist. Geobot. (Kraków), 6, 501–515.

    Google Scholar 

  • Peverly, J., Sanford, W. E., Steenhuis, T. S., & Surface, J. M. (1993). Constructed wetlands for municipal solid waste landfill leachate treatment. Cornell University and U.S. Geological Survey Report No. 1011-ERER-MW-88.

    Google Scholar 

  • Rodewald-Rudescu, L. (1974). Das Schilfrohr Phragmites communis Trinius, Die Binnengewässer 27. Stuttgart. Germany: E. Schweizerbart.

    Google Scholar 

  • Soetaert, K., Hoffmann, M., Meire, P., Starink, M., van Oevelen, D., Van Regenmortel, S., et al. (2004). Modelling growth and carbon allocation in two reed beds (Phragmites australis) in the Scheldt estuary. Aquatic Botany, 79, 211–234.

    Article  CAS  Google Scholar 

  • Sucharová, J., & Suchara, I. (2006). Determination of 36 elements in plant reference materials with different Si contents by inductively coupled plasma mass spectrometry: Comparison of microwave digestions assisted by three types of digestion mixtures. Analytica Chimica Acta, 25, 163–176.

    Article  Google Scholar 

  • Thesiger, W. (1964). The Marsh Arabs. London: Longmans.

    Google Scholar 

  • Úlehlová, B., Husák, Š., & Dvořák, J. (1973). Mineral cycles in reed stands of Nesyt fishpond in southern Moravia. Polish Archives of Hydrobiology, 20, 121–129.

    Google Scholar 

  • Viljoen, L. (1976). Gebruike van Phragmites australis (Uses of Phragmites australis). Hand. Wiedingsveren. South Africa, 11, 19–22.

    Google Scholar 

  • Vymazal, J. (1995). Constructed Wetlands for Wastewater Treatment. Czech Republic: ENVI Třeboň (in Czech).

    Google Scholar 

  • Vymazal, J. (2002). The use of sub-surface constructed wetlands for wastewater treatment in the Czech Republic: 10 years experience. Ecological Engineering, 18, 633–646.

    Article  Google Scholar 

  • Vymazal, J. (2005). Removal of nitrogen via harvesting of emergent vegetation in constructed wetlands for wastewater treatment. In J. Vymazal (Ed.), Natural and Constructed Wetlands: Nutrients, Metals and Management (pp.209–211). Leiden: Backhuys Publishers.

    Google Scholar 

  • Vymazal, J., & Kröpfelová, L. (2005). Growth of Phragmites australis and Phalaris arundinacea in constructed wetlands for wastewater treatment in the Czech Republic. Ecological Engineering, 25, 606–621.

    Article  Google Scholar 

  • Vymazal, J., & Kröpfelová, L. (2008). Wastewater Treatment in Constructed Wetlands with Horizontal Sub-Surface Flow. Dordrecht: Springer.

    Google Scholar 

  • Vymazal, J., Dušek, J., & Květ, J. (1999). Nutrient uptake and storage by plants in constructed wetlands with horizontal sub-surface flow: a comparative study. In J. Vymazal (Ed.), Nutrient Cycling and Retention in Natural and Constructed Wetlands (pp. 85–100). Leiden: Backhuys Publishers.

    Google Scholar 

  • Wiltshire, G. H. (1981). Productivity of reed beds round a silt-laden dam. Project NP14/106/3/1 Progress Report No. 3, CSIR, South Africa.

    Google Scholar 

Download references

Acknowledgements

The study was supported by grant No. 206/06/0058 “Monitoring of Heavy Metals and Selected Risk Elements during Wastewater Treatment in Constructed Wetlands” from the Czech Science Foundation and grant No. 2B06023 “Development of Mass and Energy Flows Evaluation in Selected Ecosystems” from the Ministry of Education, Youth and Sport of the Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Vymazal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Vymazal, J., Kröpfelová, L. (2010). Nutrient Accumulation by Phragmites australis and Phalaris arundinacea Growing in Two Constructed Wetlands for Wastewater Treatment. In: Vymazal, J. (eds) Water and Nutrient Management in Natural and Constructed Wetlands. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9585-5_11

Download citation

Publish with us

Policies and ethics