Bifurcation Analysis of Shallow Spherical Shells with Meridionally Nonuniform Loading

  • Charles G. Lange
  • Frederic Y. M. Wan
Part of the Advances in Mechanics and Mathematics book series (AMMA, volume 6)


Numerical solutions of the relevant boundary value problem suggest that the first bifurcation from the basic solution for a spherical cap under a class of meridionally nonuniform loading is to a dimple state. Delicate asymptotic analysis of the linearized buckling problem confirm this observation.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    K.O. Friedrich, On the minimum buckling load for spherical shells, Th. von Karman Anniversary Volume, Caltech (Pasadena), 1941, 258–272.Google Scholar
  2. [2]
    D.G. Ashwell, On the large deflexion of a spherical shell with an inward point load, Proc. IUTAM Symp. on Thin Shells (Delft), Ed. W.T. Koiter, North-Holand, Amsterdam, 1960, 43–63.Google Scholar
  3. [3]
    C.V. Ranjan and C.R. Steele, Large deflection of deep spherical shells under concentrated load, Proc. AIAA/ASME 18th Structures, Struc. Dynamics and Materials Conf. (San Diego), 1977, 269278.Google Scholar
  4. [4]
    F.Y.M. Wan, The dimpling of spherical caps, Mechanics Today 5 (The Eric Reissner Anniversary Volume), 1980, 495–508.Google Scholar
  5. [5]
    F.Y.M. Wan, Polar dimpling of complete spherical shells, Proc. (3rd) IUTAM Sym. on Thin Shells (Tibilisi): Theory of Shells,Ed. W.T. Koiter and G.K. Mikhailov, North-Holland, 1980, 589–605.Google Scholar
  6. [6]
    F.Y.M. Wan and U. Ascher, Horizontal and flatpoints in shallow shell dimpling, Proc. BAIL I Conf. Ed. J. Miller, Boole Press, Dublin, 1980, 659–679.Google Scholar
  7. [7]
    L.A. Taber, Large deflection of a fluid-filled spherical shell under a point load, J. Appl. Mech., 49, 1982, 121–128.ADSMATHCrossRefGoogle Scholar
  8. [8]
    F.Y.M. Wan, Shallow caps with a localized pressure distribution centered at the apex, Proc. EUROMECH Colloq. (No. 165) on Flexible Shells (Munich), Ed. E. Axelrad and F. Emmerling, Springer-Verlag, Berlin-New York-Heidelberg, 1984, 124–145.Google Scholar
  9. [9]
    D.F. Parker and F.Y.M. Wan, Finite polar dimpling of shallow caps under sub-buckling pressure loading, SIAM J. of Appl. Math., 44 1984, 301–326.MathSciNetMATHCrossRefGoogle Scholar
  10. [10]
    E. Reissner, On axisymmetric deformations of thin shells of revolution, Proc. Symp. in Appl. Math., Vol.III, Amer. Math. Soc., Providence, 1950, 27–52.Google Scholar
  11. [11]
    E. Ressner, Symmetric bending of shallow shells of revolution, J. Math Mech., 1, 1958, 121–140.Google Scholar
  12. [12]
    U. Ascher, J. Christiansen and R.D. Russell, A collocation solver for mixed order systems of boundary value problems, Math. Comp., 33, 1979, 659–679.MathSciNetMATHCrossRefGoogle Scholar
  13. [13]
    U. Ascher, R.M.M. Mattheij and R.D. Russell, Numerical Solutions of Boundary Value Problems for Ordinary Differential Equations, (Classics in Applied Mathematics, vol. 13 ) SIAM Publications, Philadelphia, 1995.Google Scholar
  14. [14]
    M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions, AMS No. 55 of National Bureau of Standards, 1964, U.S. Government Printing Office, Washington D.C.Google Scholar
  15. [15]
    C.G. Lange and G.A. Kriegsmann, The axisymmetric branching behavior of complete spherical shells, Quart. Appl. Math., 39, 1981, 145–178.MathSciNetMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Charles G. Lange
    • 1
  • Frederic Y. M. Wan
    • 1
  1. 1.Department of MathematicsUniversity of CaliforniaIrvineUSA

Personalised recommendations