The Fossil Record of Vent and Seep Mollusks

  • Steffen Kiel
Part of the Topics in Geobiology book series (TGBI, volume 33)


Mollusks have by far the most extensive and best-investigated fossil record of all organism groups inhabiting hydrothermal vents and hydrocarbon seeps. More than 250 bivalve, gastropod, and polyplacophoran species have been reported from ancient vents and seeps, nearly 200 of them from the Cenozoic alone. Members of at least five bivalve families live in symbiosis with sulfur- or methane-oxidizing bacteria, and among the gastropods at least three groups took this path of adaptation. Mollusks are common at vent communities of Mesozoic and Paleozoic age, but appear to be less common in seep communities of this age. It is generally believed that brachiopods were the dominant taxon at Mesozoic and Paleozoic seeps; however, an increasing number of Paleozoic and Mesozoic seep sites with mollusks have been discovered in recent years.


Late Cretaceous Fossil Record Late Jurassic Late Eocene Seep Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



I appreciate the constructive criticism of Kazutaka Amano and Sven N. Nielsen on earlier drafts of this chapter.


  1. Aitken SA, Collom CJ, Henderson CM, Johnston PA (2002) Stratigraphy, paleoecology, and ­origin of Lower Devonian (Emsian) carbonate mud buildups, Hamar Laghdad, eastern Anti-Atlas, Morocco, Africa. Bull Can Petrol Geol 50:217–243CrossRefGoogle Scholar
  2. Allen JA (1993) A new deep-water hydrothermal species of Nuculana (Bivalvia: Protobranchia) from the Guaymas Basin. Malacologia 35:141–151Google Scholar
  3. Amano K (2001) Pliocene molluscan fauna of Japan Sea borderland and the paleoceanographic conditions. Biol Sci (Tokyo) 53:178–184 (in Japanese)Google Scholar
  4. Amano K, Kanno S (2005) Calyptogena (Bivalvia: Vesicomyidae) from Neogene strata in the Joetsu district, Niigata Prefecture, central Japan. Venus 47:202–212Google Scholar
  5. Amano K, Kiel S (2007) Fossil vesicomyid bivalves from the North Pacific region. Veliger 49:270–293Google Scholar
  6. Amano K, Little CTS (2005) Miocene whale-fall community from Hokkaido, northern Japan. Palaeogeogr Palaeocl 215:345–356CrossRefGoogle Scholar
  7. Amano K, Hamuro T, Hamuro M, Fujii S (2001) The oldest vesicomyid bivalves from the Japan Sea borderland. Venus 60:189–198Google Scholar
  8. Amano K, Jenkins RG, Hikida Y (2007a) A new gigantic Nucinella (Bivalvia: Solemyoida) from the Cretaceous cold-seep deposit in Hokkaido, northern Japan. Veliger 49:84–90Google Scholar
  9. Amano K, Little CTS, Inoue K (2007b) A new Miocene whale-fall community from Japan. Palaeogeogr Palaeocl 247:236–242CrossRefGoogle Scholar
  10. Amano K, Jenkins RG, Kurihara Y, Kiel S (2008) A new genus for Vesicomya inflata Kanie and Nishida, a lucinid shell convergent with that of vesicomyids, from Cretaceous strata of Hokkaido, Japan. Veliger 50:255–262Google Scholar
  11. Bachraty C, Legendre P, Desbruyères D (2009) Biogeographic relationships among deep-sea hydrothermal vent faunas at global scale. Deep Sea Res I 56:1371–1378CrossRefGoogle Scholar
  12. Baco AR, Smith CR, Peek AS, Roderick GK et al (1999) The phylogenetic relationships of whale-fall vesicomyid clams based on mitochondrial COI DNA sequences. Mar Ecol Prog Ser 182:137–147CrossRefGoogle Scholar
  13. Bandel K, Frýda J (1998) The systematic position of the Euomphalidae (Gastropoda). Senckenb Lethaea 78:103–131CrossRefGoogle Scholar
  14. Barry JP, Greene G, Orange DL, Baxter CH et al (1996) Biologic and geologic characteristics of cold seeps in Monterey Bay, California. Deep Sea Res I 43:1739–1762CrossRefGoogle Scholar
  15. Beets C (1942) Beiträge zur Kenntnis der angeblich oberoligocänen Mollusken-Fauna der Insel Buton, Niederländisch-Ostindien. Leidse Geol Meded 13:255–328Google Scholar
  16. Beets C (1953) Reconsideration of the so-called Oligocene fauna in the asphaltic deposits of Buton (Malay Archipelago). Leidse Geol Meded 17:237–258Google Scholar
  17. Birgel D, Thiel V, Hinrichs K-U, Elvert M et al (2006) Lipid biomarker patterns of methane-seep microbialites from the Mesozoic convergent margin of California. Org Geochem 37:1289–1302CrossRefGoogle Scholar
  18. Campbell KA (1992) Recognition of a Mio-Pliocene cold seep setting from the Northeast Pacific Convergent Margin, Washington, U.S.A. Palaios 7:422–433CrossRefGoogle Scholar
  19. Campbell KA (2006) Hydrocarbon seep and hydrothermal vent paleoenvironments and ­paleontology: past developments and future research directions. Palaeogeogr Palaeocl 232:362–407CrossRefGoogle Scholar
  20. Campbell KA, Bottjer DJ (1993) Fossil cold seeps. Natl Geogr Res Explor 9:326–343Google Scholar
  21. Campbell KA, Bottjer DJ (1995) Peregrinella: an Early Cretaceous cold-seep-restricted ­brachiopod. Paleobiology 24:461–478Google Scholar
  22. Campbell KA, Francis DA, Collins M, Gregory MR et al (2008a) Hydrocarbon seep-carbonates of a Miocene forearc (East Coast Basin), North Island, New Zealand. Sediment Geol 204:83–105CrossRefGoogle Scholar
  23. Campbell KA, Peterson D, Alfaro AC (2008b) Two new species of Retiskenea? (Gastropoda: Neomphalidae) from Lower Cretaceous hydrocarbon seep-carbonates of northern California. J Paleontol 82:140–153CrossRefGoogle Scholar
  24. Cooke CW (1919) Contributions to the geology and paleontology of the West Indies IV. Tertiary mollusks from the leeward islands and Cuba. Carnegie Inst Wash Publ 291:103–156Google Scholar
  25. Cosel Rv, Janssen R (2008) Bathymodioline mussels of the Bathymodiolus (s. l.) childressi clade from methane seeps near Edison Seamount, New Ireland, Papua New Guinea (Bivalvia: Mytilidae). Archiv Mollus 137:195–224Google Scholar
  26. Cosel Rv, Salas C (2001) Vesicomyidae (Mollusca: Bivalvia) of the genera Vesicomya, Waisiuconcha, Isorropodon and Callogonia in the eastern Atlantic and the Mediterranean. Sarsia 86:333–366Google Scholar
  27. Dell RK (1987) Mollusca of the family Mytilidae (Bivalvia) associated with organic remains from deep water off New Zealand, with revisions of the genera Adipicola Dautzenberg, 1927 and Idasola Iredale, 1915. Natl Mus N Z Rec 3:17–36Google Scholar
  28. Dijkstra HH, Gofas S (2004) Pectinoidea (Bivalvia: Propeamussiidae and Pectinidae) from some northeastern Atlantic seamounts. Sarsia 89:33–78CrossRefGoogle Scholar
  29. Distel DL, Baco AR, Chuang E, Morrill W et al (2000) Do mussels take wooden steps to deep-sea vents? Nature 403:725–726CrossRefGoogle Scholar
  30. Dufour SC (2005) Gill anatomy and the evolution of symbiosis in the bivalve family Thyasiridae. Biol Bull 208:200–212CrossRefGoogle Scholar
  31. Gaillard C, Bourseau J-P, Boudeulle M, Pailleret P et al (1985) Les pleudo-biohermes de Beauvoisin (Drôme): un site hydrothermal sur lar marge téthysienne a l’Oxfordien? Bull Soc Géol Fr 8:69–78Google Scholar
  32. Gaillard C, Rio M, Rolin Y (1992) Fossil chemosynthetic communities related to vents or seeps in sedimentary basins: the pseudobioherms of southeastern France compared to other world examples. Palaios 7:451–465CrossRefGoogle Scholar
  33. Geiger DL, Thacker CE (2005) Molecular phylogeny of Vetigastropoda reveals non-monophyletic Scissurellidae, Trochoidea, and Fissurelloidea. Mollus Res 25:47–55Google Scholar
  34. Génio L, Johnson SB, Vrijenhoek RC, Cunha MR et al (2008) New record of Bathymodiolus mauritanicus Cosel from the Gulf of Cadiz (NE Atlantic) mud volcanoes. J Shell Res 27:53–61CrossRefGoogle Scholar
  35. Gill FL, Harding IC, Little CTS, Todd JA (2005) Palaeogene and Neogene cold seep communities in Barbados, Trinidad and Venezuela: an overview. Palaeogeogr Palaeocl 227:191–209CrossRefGoogle Scholar
  36. Glover EA, Taylor JD, Rowden AA (2004) Bathyaustriella thionipta, a new lucinid bivalve from a hydrothermal vent on the Kermadec Ridge, New Zealand and its relationship to shallow-water taxa (Bivalvia: Lucinidae). J Mollus Stud 70:283–295CrossRefGoogle Scholar
  37. Goedert JL, Campbell KA (1995) An Early Oligocene chemosynthetic community from the Makah Formation, northwestern Olympic Peninsula, Washington. Veliger 38:22–29Google Scholar
  38. Goedert JL, Squires RL (1990) Eocene deep-sea communities in localized limestones formed by subduction-related methane seeps, southwestern Washington. Geology 18:1182–1185CrossRefGoogle Scholar
  39. Goedert JL, Squires RL (1993) First Oligocene record of Calyptogena (Bivalvia: Vesicomyidae). Veliger 36:72–77Google Scholar
  40. Goedert JL, Thiel V, Schmale O, Rau WW et al (2003) The late Eocene ‘Whiskey Creek’ methane-seep deposit (western Washington State) Part I: geology, palaeontology, and molecular geobiology. Facies 48:223–240CrossRefGoogle Scholar
  41. Grossman EL (1993) Evidence that inoceramid bivalves were benthic and harbored chemosynthetic symbionts: comment and reply. Geology 21:94–96CrossRefGoogle Scholar
  42. Hashimoto J, Fujikura K, Fujiwara Y, Tanishima M et al (1995) Observations of a deep-sea biological community co-dominated by lucinid bivalve, Lucinoma spectabilis (Yokoyama, 1920) and vestimentiferans at the Kanesu-no-Se Bank, Enshu-Nada Central Japan. JAMSTEC J Deep Sea Res 11:211–217Google Scholar
  43. Heß M, Beck F, Gensler H, Kano Y et al (2008) Microanatomy, shell structure, and molecular phylogeny of Leptogyra, Xyleptogyra and Leptogyropsis (Gastropoda, Neomphalida, Melanodrymiidae) from sunken wood. J Mollus Stud 74:383–401CrossRefGoogle Scholar
  44. Hikida Y, Suzuki S, Togo Y, Ijiri A (2003) An exceptionally well-preserved seep community from the Cretaceous Yezo forearc basin in Hokkaido, northern Japan. Paleontol Res 7:329–342CrossRefGoogle Scholar
  45. Jenkins RG, Kaim A, Hikida Y (2007a) Antiquity of the substrate choice among acmaeid limpets from the Late Cretaceous chemosynthesis-based communities. Acta Palaeontol Pol 52:369–373Google Scholar
  46. Jenkins RG, Kaim A, Hikida Y, Tanabe K (2007b) Methane-flux-dependent lateral faunal changes in a Late Cretaceous chemosymbiotic assemblage from the Nakagawa area of Hokkaido, Japan. Geobiology 5:127–139CrossRefGoogle Scholar
  47. Jenkins RG, Kaim A, Iba Y, Tanabe K (2009) On Caspiconcha bivalves from the early Cretaceous methane-seep deposits in Hatonosu District, Hokkaido and California, U.S.A. 158th Regular meeting, Palaentological Society of Japan (in Japanese, title translated)Google Scholar
  48. Jones WJ, Won Y-J, Maas PAY, Smith PJ et al (2006) Evolution of habitat use by deep-sea mussels. Mar Biol 148:841–851CrossRefGoogle Scholar
  49. Kaim A, Kelly SRA (2009) Mass occurrence of hokkaidoconchid gastropods in the Upper Jurassic methane seep carbonate from Alexander Island, Antarctica. Antarct Sci 21:279–284CrossRefGoogle Scholar
  50. Kaim A, Jenkins RG, Warén A (2008a) Provannid and provannid-like gastropods from Late Cretaceous cold seeps of Hokkaido (Japan) and the fossil record of the Provannidae (Gastropoda: Abyssochrysoidea). Zool J Linn Soc 154:421–436CrossRefGoogle Scholar
  51. Kaim A, Kobayashi Y, Echizenya H, Jenkins RG et al (2008b) Chemosynthesis-based associations on Cretaceous plesiosaurid carcasses. Acta Palaeontol Pol 53:97–104CrossRefGoogle Scholar
  52. Kamenev GM, Nadtochy VA, Kuznetsov AP (2001) Conchocele bisecta (Conrad, 1849) (Bivalvia: Thyasiridae) from cold-water methane-rich areas of the Sea of Okhotsk. Veliger 44:84–94Google Scholar
  53. Kanno S, Amano K, Ban H (1989) Calyptogena (Calyptogena) pacifica Dall (Bivalvia) from the Neogene system in the Joetsu district, Niigata prefecture. Trans Proc Palaeontol Soc Jpn 153:25–35Google Scholar
  54. Kano Y, Chiba S, Kase T (2002) Major adaptive radiation in neritopsine gastropods estimated from 28S rRNA sequences and fossil records. Proc R Soc B 269:2457–2465CrossRefGoogle Scholar
  55. Kase T, Kurihara Y, Hagino K (2007) Middle Miocene chemosynthetic thraciid Nipponothracia gigantea (Shikama, 1968) from central Japan is a large lucinid bivalve (Lucinoidea; Mollusca). Veliger 49:294–302Google Scholar
  56. Kauffman EG (1988) The case of the missing community: low-oxygen adapted Paleozoic and Mesozoic bivalves (“flat-clams”) and bacterial symbioses in typical Phanerozoic oceans. Geol Soc Am Abstr Prog 20:A48Google Scholar
  57. Kauffman EG, Arthur MA, Howe B, Scholle PA (1996) Widespread venting of methane-rich fluids in Late Cretaceous (Campanian) submarine springs (Tepee Buttes), Western Interior seaway, U.S.A. Geology 24:799–802CrossRefGoogle Scholar
  58. Kelly SRA, Blanc E, Price SP, Withham AG (2000) Early Cretaceous giant bivalves from seep-related limestone mounds, Wollaston Forland, Northeast Greenland. In: Harper EM, Taylor JD, Crame JA (eds) The evolutionary biology of the Bivalvia. Geological Society of London (Special Publication), London, pp 227–246Google Scholar
  59. Kiel S (2006) New records and species of mollusks from Tertiary cold-seep carbonates in Washington State, USA. J Paleontol 80:121–137CrossRefGoogle Scholar
  60. Kiel S (2007) Status of the enigmatic fossil vesicomyid bivalve Pleurophopsis. Acta Palaeontol Pol 52:639–642Google Scholar
  61. Kiel S (2008a) Fossil evidence for micro- and macrofaunal utilization of large nekton-falls: examples from early Cenozoic deep-water sediments in Washington State, USA. Palaeogeogr Palaeocl 267:161–174CrossRefGoogle Scholar
  62. Kiel S (2008b) An unusual new gastropod genus from an Eocene hydrocarbon seep in Washington State, USA. J Paleontol 82:188–191CrossRefGoogle Scholar
  63. Kiel S (2010) On the potential generality of depth-related ecologic structure in cold-seep communities: Evidence from Cenozoic and Mesozoic examples. Palaeogeogr Palaeoclima Palaeoeco 295:245–257Google Scholar
  64. Kiel S, Amano K (2010) Oligocene and Miocene vesicomyid bivalves from the Katalla district in southern Alaska, USA. Veliger 51:76–84Google Scholar
  65. Kiel S, Campbell KA (2005) Lithomphalus enderlini gen. et sp. nov. from cold-seep carbonates in California – a Cretaceous neomphalid gastropod? Palaeogeogr Palaeocl 227:232–241CrossRefGoogle Scholar
  66. Kiel S, Goedert JL (2006a) Deep-sea food bonanzas: early Cenozoic whale-fall communities resemble wood-fall rather than seep communities. Proc R Soc B 273:2625–2631CrossRefGoogle Scholar
  67. Kiel S, Goedert JL (2006b) A wood-fall association from Late Eocene deep-water sediments of Washington State, USA. Palaios 21:548–556CrossRefGoogle Scholar
  68. Kiel S, Goedert JL (2007) Six new mollusk species associated with biogenic substrates in Cenozoic deep-water sediments in Washington State, USA. Acta Palaeontol Pol 52:41–52Google Scholar
  69. Kiel S, Little CTS (2006) Cold seep mollusks are older than the general marine mollusk fauna. Science 313:1429–1431CrossRefGoogle Scholar
  70. Kiel S, Peckmann J (2007) Chemosymbiotic bivalves and stable carbon isotopes indicate hydrocarbon seepage at four unusual Cenozoic fossil localities. Lethaia 40:345–357CrossRefGoogle Scholar
  71. Kiel S, Peckmann J (2008) Paleoecology and evolutionary significance of an Early Cretaceous Peregrinella-dominated hydrocarbon-seep deposit on the Crimean Peninsula. Palaios 23:751–759CrossRefGoogle Scholar
  72. Kiel S, Amano K, Jenkins RG (2008a) Bivalves from Cretaceous cold-seep deposits on Hokkaido, Japan. Acta Palaeontol Pol 53:525–537CrossRefGoogle Scholar
  73. Kiel S, Campbell KA, Elder WP, Little CTS (2008b) Jurassic and Cretaceous gastropods from hydrocarbon-seeps in forearc basin and accretionary prism settings, California. Acta Palaeontol Pol 53:679–703CrossRefGoogle Scholar
  74. Kiel S, Amano K, Hikida Y, Jenkins RG (2009) Wood-fall associations from Late Cretaceous deep-water sediments of Hokkaido, Japan. Lethaia 42:74–82CrossRefGoogle Scholar
  75. Kiel S, Campbell KA, Gaillard C (2010) New and little known mollusks from ancient chemosynthetic environments. Zootaxa 2390:26–48Google Scholar
  76. Kojima S, Fujikura K, Okutani T (2004) Multiple trans-Pacific migrations of deep-sea vent/seep-endemic bivalves in the family Vesicomyidae. Mol Phylogenet Evol 32:396–406CrossRefGoogle Scholar
  77. Krylova EM, Janssen R (2006) Vesicomyidae from Edison Seamount (South West Pacific: Papua New Guinea: New Ireland fore-arc basin). Archiv Mollus 135:231–261Google Scholar
  78. Krylova EM, Sahling H (2006) Recent bivalve molluscs of the genus Calyptogena (Vesicomyidae). J Mollus Stud 72:359–395CrossRefGoogle Scholar
  79. Kuznetsov AP, Maslennikov VV, Zaikov VV (1993) The near-hydrothermal fauna of the Silurian paleoocean in the south Ural. Izv Akad Nauk Ser Biol 4:525–534 (in Russian)Google Scholar
  80. Lemoine M, Arnaud-Vanneau A, Arnaud H, Létolle R et al (1982) Indices possibles de paléo-hydrothermalisme marin dans le Jurassique et le Crétacé des Alpes occidentales (océan téthysien et sa marge continentale européenne): essai d’inventaire. Bull Soc Géol Fr 24:641–647Google Scholar
  81. Little CTS (2002) The fossil record of hydrothermal vent communities. Cah Biol Mar 43:313–316Google Scholar
  82. Little CTS, Vrijenhoek RC (2003) Are hydrothermal vent animals living fossils? Trends Ecol Evol 18:582–588CrossRefGoogle Scholar
  83. Little CTS, Cann JR, Herrington RJ, Morisseau M (1999a) Late Cretaceous hydrothermal vent communities from the Troodos ophiolite, Cyprus. Geology 27:1027–1030CrossRefGoogle Scholar
  84. Little CTS, Maslennikov VV, Morris NJ, Gubanov AP (1999b) Two Palaeozoic hydrothermal vent communities from the southern Ural Mountains, Russia. Palaeontology 42:1043–1078CrossRefGoogle Scholar
  85. MacLeod KG, Hoppe KA (1992) Evidence that inoceramid bivalves were benthic and harbored chemosynthetic symbionts. Geology 20:117–120CrossRefGoogle Scholar
  86. Majima R, Nobuhara T, Kitazaki T (2005) Review of fossil chemosynthetic assemblages in Japan. Palaeogeogr Palaeocl 227:86–123CrossRefGoogle Scholar
  87. Majima R, Kase T, Kawagata S, Aguilar YM et al (2007) Fossil cold-seep assemblages from Leyte Island, Philippines. J Geogr 116:643–652CrossRefGoogle Scholar
  88. McLean JH (1981) The Galapagos Rift limpet Neomphalus: relevance to understanding the evolution of a major Paleozoic-Mesozoic radiation. Malacologia 21:291–336Google Scholar
  89. McLean JH (1988) New archaeogastropod limpets from hydrothermal vents; superfamily Lepetodrilacea. I. Systematic descriptions. Philos Trans R Soc Lond B 319:1–32CrossRefGoogle Scholar
  90. McLean JH (1989) New slit-limpets (Scissurellacea and Fissurellacea) from hydrothermal vents. Part 1. Systematic descriptions and comparisons based on shell and radular characters. Contrib Sci 407:1–29Google Scholar
  91. McLean JH (1992) A new species of Pseudorimula (Fissurellacea: Clypeosectidae) from hydrothermal vents of the Mid-Atlantic Ridge. Nautilus 106:115–118Google Scholar
  92. McLean JH, Haszprunar G (1987) Pyropeltidae, a new family of cocculiniform limpets from hydrothermal vents. Veliger 30:196–205Google Scholar
  93. Miyazaki J-I, Matsumoto H, Fujita Y (2008) Evolution and phylogeny of bathymodiolins. In: Fujikura K, Okutani T, Maruyama T (eds) Deep-sea life - Biological observations using research submersibles. Tokai University Press, Hatano, Japan, pp 126–128 (in Japanese, title translated)Google Scholar
  94. Moroni MA (1966) Malacofauna del “Calcare a Lucine” di S. Sofia – Forlì. Palaeontogr Italica 60:69–87Google Scholar
  95. Okutani T (1989) A new neritacean limpet from a hydrothermal vent site, near Ogasawara Islands, Japan. Venus 48:223–230Google Scholar
  96. Okutani T, Tsuchida S, Fujikura K (1992) Five bathyal gastropods living within or near the Calyptogena-community of the Hatsushima Islet, Sagami Bay. Venus 51:137–148Google Scholar
  97. Olsson AA (1931) Contributions to the Tertiary paleontology of northern Peru: Part 4, The Peruvian Oligocene. Bull Am Paleontol 17:97–264Google Scholar
  98. Olu K, Sibuet M, Harmegnies F, Foucher J-P et al (1996) Spatial distribution of diverse cold seep communities living on various diapiric structures of the southern Barbados prism. Prog Oceanogr 38:347–376CrossRefGoogle Scholar
  99. Olu K, Sibuet M, Fiala-Médoni A, Gofas S et al (2004) Cold seep communities in the deep eastern Mediterranean Sea: composition, symbiosis and spatial distribution on mud volcanoes. Deep Sea Res I 51:1915–1936CrossRefGoogle Scholar
  100. Olu K, Rv C, Hourdez S, Carney SL et al (2007) Amphi-Atlantic cold-seep Bathymodiolus species complexes across the equatorial belt. Deep Sea Res I 54:1890–1911CrossRefGoogle Scholar
  101. Olu-Le Roy K, Caprais J-C, Fifis A, Fabri M-C et al (2007) Cold-seep assemblages on a giant pockmark off West Africa: spatial patterns and environmental control. Mar Ecol 28:115–130CrossRefGoogle Scholar
  102. Peckmann J, Walliser OH, Riegel W, Reitner J (1999) Signatures of hydrocarbon venting in a middle Devonian carbonate mound (Hollard Mound) at the Hamar Laghdad (Antiatlas, Morocco). Facies 40:291–296CrossRefGoogle Scholar
  103. Peckmann J, Gischler E, Oschmann W, Reitner J (2001) An Early Carboniferous seep community and hydrocarbon-derived carbonates from the Harz Mountains, Germany. Geology 29:271–274CrossRefGoogle Scholar
  104. Peckmann J, Goedert JL, Thiel V, Michaelis W et al (2002) A comprehensive approach to the study of methane-seep deposits from the Lincoln Creek Formation, western Washington State, USA. Sedimentology 49:855–873CrossRefGoogle Scholar
  105. Peckmann J, Birgel D, Kiel S (2009) Molecular fossils reveal fluid composition and flow intensity at a Cretaceous seep. Geology 37:847–850CrossRefGoogle Scholar
  106. Pojeta J (1988) The origin and Paleozoic diversification of solemyoid pelecypods. New Mex Bur Mines Miner Resour Mem 44:201–271Google Scholar
  107. Pyenson ND, Haasl DM (2007) Miocene whale-fall from California demonstrates that cetacean size did not determine the evolution of modern whale-fall communities. Biol Lett 3:709–711CrossRefGoogle Scholar
  108. Sahling H, Rickert D, Lee RW, Linke P et al (2002) Macrofaunal community structure and sulfide flux at gas hydrate deposits from the Cascadia convergent margin, NE Pacific. Mar Ecol Prog Ser 231:121–138CrossRefGoogle Scholar
  109. Saito H, Okutani T (1990) Two new chitons (Mollusca: Polyplacophora) from a hydrothermal vent site of the Iheya Small Ridge, Okinawa Trough, east China Sea. Venus 49:165–179Google Scholar
  110. Salas C, Woodside J (2002) Lucinoma kazani n. sp (Mollusca: Bivalvia): evidence of a living benthic community associated with a cold seep in the Eastern Mediterranean Sea. Deep Sea Res I 49:991–1005CrossRefGoogle Scholar
  111. Samadi S, Quéméré E, Lorion J, Tillier A et al (2007) Molecular phylogeny in mytilids supports the wooden steps to deep-sea vents hypothesis. CR Biol 330:446–456CrossRefGoogle Scholar
  112. Sasaki T, Okutani T, Fujikura K (2003) New taxa and new records of patelliform gastropods associated with chemoautosynthesis-based communities in Japanese waters. Veliger 46:189–210Google Scholar
  113. Saul LR, Squires RL, Goedert JL (1996) A new genus of cryptic lucinid? bivalve from Eocene cold seeps and turbidite-influenced mudstone, western Washington. J Paleontol 70:788–794Google Scholar
  114. Schein E (2006) A new deep-sea pectinid bivalve from thermal vents of Manus back-arc Basin (south-western Pacific), Sinepecten segonzaci n. gen., n. sp. (Pectinoidea: Pectinidae), and its relationships with the genera Bathypecten and Catillopecten. Zootaxa 1135:1–27Google Scholar
  115. Schein-Fatton E (1985) Découverte sur la ride du Pacifique oriental à 13° N d’un Pectinidae (Bivalvia, Pteriomorpha) d’affinités paléozoiques. CR Acad Sci Paris 301:491–496Google Scholar
  116. Shank TM, Black MB, Halanych KM, Lutz RA et al (1999) Miocene radiation of deep-sea hydrothermal vent shrimp (Caridea: Bresiliidae): evidence from mitochondrial cytochrome oxidase subunit I. Mol Phylogenet Evol 13:244–254CrossRefGoogle Scholar
  117. Smith CR (2007) Bigger is better: the role of whales as detritus in marine ecosystems. In: Estes JA, DeMaster DP, Doak DF, Williams TM, Brownel RL (eds) Whales, whaling and marine ecosystems. University of California Press, Berkeley, CA, pp 286–300CrossRefGoogle Scholar
  118. Smith CR, Baco AR (2003) Ecology of whale falls at the deep-sea floor. Oceanogr Mar Biol 41:311–354Google Scholar
  119. Smith CR, Kukert H, Wheatcroft RA, Jumars PA et al (1989) Vent fauna on whale remains. Nature 341:27–28CrossRefGoogle Scholar
  120. Speden IG (1970) The type Fox Hills Formation, Cretaceous (Maestrichtian), South Dakota. Part 2. Systematics of the Bivalvia. Peabody Mus Nat Hist Bull 33:1–222Google Scholar
  121. Squires RL (1995) First fossil species of the chemosynthetic-community gastropod Provanna: localized cold-seep limestones in Upper Eocene and Oligocene rocks, Washington. Veliger 38:30–36Google Scholar
  122. Squires RL, Goedert JL (1991) New Late Eocene Mollusks from localized limestone deposits formed by subduction-related methane seeps, southwestern Washington. J Paleontol 65:412–416Google Scholar
  123. Squires RL, Goedert JL (1996) A new species of Thalassonerita? (Gastropoda: Neritidae?) from a Middle Eocene cold-seep carbonate in the Humptulips Formation, Western Washington. Veliger 39:270–272Google Scholar
  124. Squires RL, Gring MP (1996) Late Eocene chemosynthetic? bivalves from suspect cold seeps, Wagonwheel Mountain, central California. J Paleontol 70:63–73Google Scholar
  125. Stanton TW (1895) Contributions to the Cretaceous paleontology of the Pacific coast: the fauna of the Knoxville beds. US Geol Surv Bull 133:1–132Google Scholar
  126. Stewart RB (1930) Gabb’s California Cretaceous and tertiary type lamellibranchs. Acad Nat Sci Phila (Special Publication) 3:1–314Google Scholar
  127. Tada R (1994) Paleoceanographic evolution of the Japan Sea. Palaeogeogr Palaeocl 108:487–508CrossRefGoogle Scholar
  128. Taviani M (1994) The “calcari a Lucina” macrofauna reconsidered: deep-sea faunal oases from Miocene-age cold vents in the Romagna Apennine, Italy. Geo Mar Lett 14:185–191CrossRefGoogle Scholar
  129. Taylor JD, Glover EA (2006) Lucinidae (Bivalvia) – the most diverse group of chemosymbiotic molluscs. Zool J Linn Soc 148:421–438CrossRefGoogle Scholar
  130. Taylor JD, Williams ST, Glover EA (2007) Evolutionary relationships of the bivalve family Thyasiridae (Mollusca: Bivalvia), monophyly and superfamily status. J Mar Biol Assoc UK 87:565–574CrossRefGoogle Scholar
  131. Tunnicliffe V, Fowler MR (1996) Influence of sea-floor spreading on the global hydrothermal vent fauna. Nature 379:531–533CrossRefGoogle Scholar
  132. Warén A, Bouchet P (2001) Gastropoda and Monoplacophora from hydrothermal vents and seeps; new taxa and records. Veliger 44:116–231Google Scholar
  133. Warén A, Bouchet P (2009) New gastropods from deep-sea hydrocarbon seeps off West Africa. Deep Sea Res I 56:2326–2349Google Scholar
  134. Warén A, Carrozza F (1990) Idas ghisottii sp.n., a new mytilid bivalve associated with sunken wood in the Mediterranean. B Malacol 26:19–24Google Scholar
  135. Zaikov VV, Shadlun TN, Maslennikov VV, Bortnikov NC (1995) Yaman-Kasy sulfide deposit – ancient black smoker in the floor of the Uralian Paleoocean. Geol Rudnih Mestorogdeniy 37:511–529 (in Russian)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Institut für GeowissenschaftenChristian-Albrechts-UniversitätKielGermany

Personalised recommendations