Skip to main content

Microbial Chemofossils in Specific Marine Hydrothermal and Methane Cold Seep Settings

  • Chapter
  • First Online:

Part of the book series: Topics in Geobiology ((TGBI,volume 33))

Abstract

Marine hydrothermal vent and cold seep settings fuel phylogenetically and ­metabolically diverse microbial communities. In contrast to most organisms on earth, which depend directly (photosynthesis) or indirectly (heterotroph) on sunlight, many prokaryotes (archaea and bacteria; Fig. 4.1) at hydrothermal vents and cold seeps use energy from the reduced chemicals that are emitted at these sites (Fisher et al. 2007 and references cited therein). Consequently, these environments are considered as oases of life in oceanic deep sea deserts. Since the first discovery of deep sea hydrothermal vent systems (Corliss et al. 1979) such settings have become fascinating study sites for multidisciplinary research. Geobiologists in particular are attracted by these settings, because diffusive vents and smokers were considered to have offered the most favorable conditions for the development of early life on Earth (Nisbet and Sleep 2001). In hydrothermal settings, the temperatures of the fluids may exceed 400°C (Haase et al. 2007), and mixing with cold sea water creates sharp physico-geochemical gradients with various microbiological niches. However, our knowledge of the functioning of microbial life in these environments is still very limited. Only recent technological developments and the routine operations of manned submersibles, autonomous underwater vehicles (AUVs), and remotely ope­rated vehicles (ROVs) allow for detailed sampling, in situ experiments and visual inspections in the deep sea (e.g., Kelley et al. 2001, 2005; Teske et al. 2002; Nercessian et al. 2005; Inagaki et al. 2008; Haase et al. 2007; Perner et al. 2007; Nakagawa et al. 2008).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Barnes RO, Goldberg ED (1976) Methane production and consumption in anaerobic marine sediments. Geology 4:297–300

    Google Scholar 

  • Birgel D, Peckmann J, Klautzsch S, Thiel V, Reitner J (2006a) Anaerobic and aerobic oxidation of methane at Late Cretaceous seeps in the Western Interior Seaway, USA. Geomircobiol J 23:565–577

    Google Scholar 

  • Birgel D, Thiel V, Hinrichs K-U, Elvert M, Campbell KA, Reitner J, Farmer JD, Peckmann J (2006b) Lipid biomarker patterns of methane-seep microbialites from the Mesozoic convergent margin of California. Org Geochem 37:1289–1302

    Google Scholar 

  • Birgel D, Himmler T, Freiwald A, Peckmann J (2008) A new constraint on the antiquity of anaerobic oxidation of methane: late Pennsylvanian seep limestones from southern Namibia. Geology 36:543–546

    Google Scholar 

  • Blumenberg M, Seifert R, Reitner J, Pape T, Michaelis W (2004) Membrane lipid patterns typify distinct anaerobic methanotrophic consortia. Proc Natl Acad Sci USA 101:11111–11116

    Google Scholar 

  • Blumenberg M, Seifert R, Nauhaus K, Pape T, Michaelis W (2005) In vitro study of lipid biosynthesis in an anaerobically methane oxidizing microbial mat. Appl Environ Microbiol 71:4345–4351

    Google Scholar 

  • Blumenberg M, Krüger M, Nauhaus K, Talbot HM, Oppermann B, Seifert R, Pape T, Michaelis W (2006) Biosynthesis of hopanoids by sulfate-reducing bacteria (genus Desulfovibrio). Environ Microbiol 8:1220–1227

    Google Scholar 

  • Blumenberg M, Seifert R, Petersen S, Michaelis W (2007) Biosignatures present in a hydrothermal massive sulphide from the Mid-Atlantic Ridge. Geobiology 5:435–450

    Google Scholar 

  • Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieseke A, Amann R, Jørgensen BB, Witte U, Pfannkuche O (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–626

    Google Scholar 

  • Boschker HTS, Nold SC, Wellsbury P, Bos D, de Graaf W, Pel R, Parkes RJ, Cappenberg TE (1998) Direct linking of microbial populations to specific biogeochemical processes by 13C-labelling of biomarkers. Nature 392:801–805

    Google Scholar 

  • Bradley AS, Hayes JM, Summons RE (2009) Extraordinary 13C enrichment of diether lipids at the Lost City Hydrothermal Field suggests a carbon-limited ecosystem. Geochim Cosmochim Acta 73:102–118

    Google Scholar 

  • Brazelton WJ, Schrenk MO, Kelley DS, Baross JA (2006) Methane- and sulfur-metabolizing microbial communities dominate the Lost City hydrothermal field ecosystem. Appl Environ Microbiol 72:6257–6270

    Google Scholar 

  • Brocks JJ, Pearson A (2005) Building the biomarker tree of life. Rev Miner Geochem 59:233–258

    Google Scholar 

  • Brocks JJ, Logan GA, Buick R, Summons RE (1999) Archean molecular fossils and the early rise of eukaryotes. Science 285:1033–1036

    Google Scholar 

  • Burhan RYP, Trendel J-M, Adam P, Wehrung P, Albrecht P, Nissenbaum A (2002) Fossil bacterial ecosystem at methane seeps: origin of organic matter from Be’eri sulfur deposit, Israel. Geochim Cosmochim Acta 66:4085–4101

    Google Scholar 

  • Cady SL, Farmer JD, Grotzinger JP, Schopf JW, Steele A (2003) Morphological biosignatures and the search for life on Mars. Astrobiology 3:351–368

    Google Scholar 

  • Campbell BJ, Summers Engel A, Porter ML, Takai K (2006) The versatile e-proteobacteria: key players in sulphidic habitats. Nat Rev Microbiol 4:458–468

    Google Scholar 

  • Chung A, Rainey F, Nobre M, Burghardt J, da Costa M (1997) Meiothermus cerbereus sp. nov., a new slightly thermophilic species with high levels of 3-hydroxy fatty acids. Int J Syst Bacteriol 47:1225–1230

    Google Scholar 

  • Comita PB, Gagosian RB (1983) Membrane lipid from deep-sea hydrothermal vent methanogen: a new macrocyclic glycerol diether. Science 222:1329–1331

    Google Scholar 

  • Coolen MJL, Overmann J (2007) 217000-year-old DNA sequences of green sulfur bacteria in Mediterranean sapropels and their implications for the reconstruction of the paleoenvironment. Environ Microbiol 9:238–249

    Google Scholar 

  • Coolen MJL, Talbot HM, Abbas BA, Ward C, Schouten S, Volkman JK, Damste JSS (2008) Sources for sedimentary bacteriohopanepolyols as revealed by 16S rDNA stratigraphy. Environ Microbiol 10:1783–1803

    Google Scholar 

  • Corliss JB, Dymond J, Gordon LI, Edmond JM, von Herzen RP, Ballard RD, Green K, Williams D, Bainbridge A, Crane K, van Andel TH (1979) Submarine thermal sprirngs on the Galapagos Rift. Science 203:1073–1083

    Google Scholar 

  • De Rosa M, Gambacorta A, Minale L, BùLock JD (1972) The formation of ω-cyclohexyl fatty acids from shikimate in an acidophilic thermophilic Bacillus. Biochem J 128:751–754

    Google Scholar 

  • DeNiro MJ, Epstein S (1976) You are what you eat (plus a few per mil): the carbon isotope cycle in food chains. Abstr Programs-Geol Soc Am Ann Meet 8:834–835

    Google Scholar 

  • Eglinton G, Scott PM, Belsky T, Burlingame AL, Calvin M (1964) Hydrocarbons of biological origin from a one-billion-year-old sediment. Science 145:263–264

    Google Scholar 

  • Eichorst SA, Breznak JA, Schmidt TM (2007) Isolation and characterization of soil bacteria that define Terriglobus gen. nov., in the Phylum Acidobacteria. Appl Environ Microbiol 73:2708–2717

    Google Scholar 

  • Elvert M (1999) Microbial biomarkers in anaerobic marine environments dominated by methane. Dissertation, University of Kiel, Kiel, Germany

    Google Scholar 

  • Elvert M, Suess E, Whiticar MJ (1999) Anaerobic methane oxidation associated with marine gas hydrates. Superlight C-isotopes from saturated and unsaturated C20 and C25 irregular ­isoprenoids. Naturwissenschaften 86:295–300

    Google Scholar 

  • Elvert M, Suess E, Greinert J, Whiticar MJ (2000) Archaea mediating anaerobic methane oxidation in deep-sea sediments at cold seeps of the eastern Aleutian subduction zone. Org Geochem 31:1175–1187

    Google Scholar 

  • Elvert M, Boetius A, Knittel K, Jørgensen BB (2003) Characterization of specific membrane fatty acids as chemotaxonomic markers for sulfate-reducing bacteria involved in anaerobic oxidation of methane. Geomircobiol J 20:403–419

    Google Scholar 

  • Elvert M, Hopmans EC, Treude T, Boetius A, Suess E (2005) Spatial variations of methanotrophic consortia at cold methane seeps: implications from a high-resolution molecular and isotopic approach. Geobiology 3:195–209

    Google Scholar 

  • Fautz E, Rosenfelder G, Grotjahn L (1979) Iso-branched 2- and 3-hydroxy fatty acids as characteristic lipid constituents of some gliding bacteria. J Bacteriol 140:852–858

    Google Scholar 

  • Fischer WW, Summons RE, Pearson A (2005) Targeted genomic detection of biosynthetic pathways: anaerobic production of hopanoid biomarkers by a common sedimentary microbe. Geobiology 3:33–40

    Google Scholar 

  • Fisher CR, Takai K, Le Bris N (2007) Hydrothermal vent ecosystems. Oceanography 20:14

    Google Scholar 

  • Friedrich M (2006) Stable-isotope probing of DNA: insights into the function of uncultivated microorganisms from isotopically labeled metagenomes. Curr Opin Biotechnol 17:59–66

    Google Scholar 

  • Furnes H, Banerjee NR, Muehlenbachs K, Staudigel H, de Wit M (2004) Early life recorded in Archean pillow lavas. Science 304:578–581

    Google Scholar 

  • Galliker PK (1990) Zur Biosynthese der Etherlipide aus Methanobacterium thermoautotrophicum. Dissertation, University of Zurich, Zurich, Switzerland

    Google Scholar 

  • Glamoclija M, Garrel L, Berthon J, Lopez-Garcia P (2004) Biosignatures and bacterial diversity in hydrothermal deposits of Solfatara Crater, Italy. Geomicrobiol J 21:529–541

    Google Scholar 

  • Glynn S, Mills RA, Palmer MR, Pancost RD, Severmann S, Boyce AJ (2006) The role of prokaryotes in supergene alteration of submarine hydrothermal sulfides. Earth Planet Sci Lett 244:170–185

    Google Scholar 

  • Goedert JL, Thiel V, Schmale O, Rau WW et al (2003) The late Eocene ‘Whiskey Creek’ methane-seep deposit (western Washington State) Part I: geology, palaeontology, and molecular geobiology. Facies 48:223–240

    Google Scholar 

  • Golyshina OV, Timmis KN (2005) Ferroplasma and relatives, recently discovered cell wall-lacking archaea making a living in extremely acid, heavy metal-rich environments. Environ Microbiol 7:1277–1288

    Google Scholar 

  • Haase KM, Petersen S, Koschinsky A, Seifert R, Devey CW, Dubilier N, Fretzdorff S, Garbe-Schönberg D, German CR, Giere O, Keir R, Kuever J, Lackschewitz KS, Mawick J, Marbler H, Melchert B, Mertens C, Ostertag-Henning C, Paulick H, Perner M, Peters M, Sander S, Schmale O, Shank TM, Stecher J, Stöber U, Strauss H, Süling J, Walter M, Warmuth M, Weber S, Westernströer U, Yoerger D, Zielinski F (2007) Young volcanism and related hydrothermal activity at 5°S on the slow-spreading southern Mid-Atlantic Ridge. Geochem Geophys Geosyst 8:Q11002

    Google Scholar 

  • Hallam SJ, Putnam N, Preston CM, Detter JC, Rokhsar D, Richardson PM, DeLong EF (2004) Reverse methanogenesis: testing the hypothesis with environmental genomics. Science 305:1457–1462

    Google Scholar 

  • Hayes JM (2001) Fractionation of the isotopes of carbon and hydrogen in biosynthetic processes. In: Valley JW, Cole DR (eds) Stable isotope geochemistry, reviews in mineralogy and ­geochemistry. Mineralogical Society of America, Washington, DC, pp 225–278

    Google Scholar 

  • Hinrichs K-U, Hayes JM, Sylva SP, Brewer PG, DeLong EF (1999) Methane-consuming archaebacteria in marine sediments. Nature 398:802–805

    Google Scholar 

  • Hinrichs K-U, Summons RE, Orphan VJ, Sylva SP, Hayes JM (2000) Molecular and isotopic analysis of anaerobic methane-oxidizing communities in marine sediments. Org Geochem 31:1685–1701

    Google Scholar 

  • Hoefs J (2004) Stable isotope geochemistry. Springer, Berlin/New York

    Google Scholar 

  • Holzer GU, Kelly PJ, Jones WJ (1988) Analysis of lipids from a hydrothermal vent methanogen and associated vent sediment by supercritical fluid chromatography. J Microbiol Meth 8:161–173

    Google Scholar 

  • House CH, Schopf JW, Stetter KO (2003) Carbon isotopic fractionation by Archaeans and other thermophilic prokaryotes. Org Geochem 34:345–356

    Google Scholar 

  • Huber R, Wilharm T, Huber D, Trincone A, Burggraf S, König H, Rachel R, Rockinger I, Fricke H, Stetter KO (1992) Aquifex pyrophilus gen. nov. sp. nov., represents a novel group of marine hyperthermophilic hydrogen-oxidizing bacteria. Syst Appl Microbiol 15:340–351

    Google Scholar 

  • Huber R, Rossnagel P, Woese CR, Rachel R, Langworthy DE, Stetter KO (1996) Formation of ammonium from nitrate during chemolithoautotrophic growth of the extremely thermophilic bacterium Ammonifex degensii gen. nov. sp. nov. Syst Appl Microbiol 19:40–49

    Google Scholar 

  • Inagaki F, Kuypers MMM, Tsunogai U, Ishibashi JI, Nakamura KI, Treude T, Ohkubo S, Nakaseama M, Gena K, Chiba H, Hirayama H, Nunoura T, Takai K, Jorgensen BB, Horikoshi K, Boetius A (2006) Microbial community in a sediment-hosted CO2 lake of the southern Okinawa Trough hydrothermal system. Proc Natl Acad Sci USA 103:14164–14169

    Google Scholar 

  • Ivanov MV, Polikarpov GG, Lein AY, Gal’chenko VF, Egorov VN, Gulin SB, Gulin MB, Rusanov II, Miller YM, Kuptsov VI (1991) Biogeochemistry of the carbon cycle in the region of methane seeps in the Black Sea. Dokl Akad Nauk SSSR 320:1235–1240 (in Russian)

    Google Scholar 

  • Jahnke LL, Eder W, Huber R, Hope JM, Hinrichs K-U, Hayes JM, Des Marais DJ, Cady SL, Summons RE (2001) Signature lipids and stable carbon isotope analyses of Octopus Spring hyperthermophilic communities compared with those of Aquificales representatives. Appl Environ Microbiol 67:5179–5189

    Google Scholar 

  • Jenkins RG, Hikida Y, Chikaraishi Y, Ohkouchi N, Tanabe K (2008) Microbially induced formation of ooid-like coated grains in the Late Cretaceous methane-seep deposits of the Nakagawa area, Hokkaido, northern Japan. Isl Arc 17:261–269

    Google Scholar 

  • Jones GA, Gagnon AR (1994) Radiocarbon chronology of Black Sea sediments. Deep Sea Res I 41:531–557

    Google Scholar 

  • Kashefi K, Lovley DR (2003) Extending the upper temperature limit of life. Science 301:934

    Google Scholar 

  • Kelley DS, Karson JA, Blackman DK, Fruh-Green GL, Butterfield DA, Lilley MD, Olson EJ, Schrenk MO, Roe KK, Lebon GT, Rivizzigno P, AT3-60 Shipboard Party (2001) An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30°N. Nature 412:145–149

    Google Scholar 

  • Kelley DS, Karson JA, Fruh-Green GL, Yoerger DR, Shank TM, Butterfield DA, Hayes JM, Schrenk MO, Olson EJ, Proskurowski G, Jakuba M, Bradley A, Larson B, Ludwig K, Glickson D, Buckman K, Bradley AS, Brazelton WJ, Roe K, Elend MJ, Delacour A, Bernasconi SM, Lilley MD, Baross JA, Summons RE, Sylva SP (2005) A serpentinite-hosted ecosystem: the Lost City Hydrothermal Field. Science 307:1428–1434

    Google Scholar 

  • Kerger BD, Nichols PD, Antworth CP, Sand W, Bock E, Cox JC, Langworthy TA, White DC (1986) Signature fatty-acids in the polar lipids of acid-producing Thiobacillus spp - methoxy, cyclopropyl, alpha-hydroxy-cyclopropyl and branched and normal monoenoic fatty-acids. FEMS Microbiol Ecol 38:67–77

    Google Scholar 

  • Killops S, Killops V (2005) Introduction to organic geochemistry. Blackwell, Oxford, UK

    Google Scholar 

  • Knittel K, Lösekann T, Boetius A, Kort R, Amann R (2005) Diversity and distribution of methanotrophic Archaea (ANME) at cold seeps. Appl Environ Microbiol 71:467–479

    Google Scholar 

  • Kohring LL, Ringelberg DB, Devereux R, Stahl DA, Mittelman MW, White DC (1994) Comparison of phylogenetic relationships based on phospholipid fatty acid profiles and ribosomal RNA sequence similarities among dissimilatory sulfate-reducing bacteria. FEMS Microbiol Lett 119:303–308

    Google Scholar 

  • Konhauser K (2006) Introduction to geomicrobiology. Blackwell, Malden, MA/Oxford, UK/Carlton, Australia

    Google Scholar 

  • Krüger M, Blumenberg M, Kasten S, Wieland A, Kanel L, Klock J-H, Michaelis W, Seifert R (2008) A novel, multi-layered methanotrophic microbial mat system growing on the sediment of the Black Sea. Environ Microbiol 10:1934–1947

    Google Scholar 

  • Langworthy TA, Holzer G, Zeikus JG, Tornabene TG (1983) Iso- and anteiso-branched glycerol diethers of the thermophilic anaerobe Thermodesulfotobacterium commune. Syst Appl Microbiol 4:1–17

    Google Scholar 

  • Lein AY, Galkin SV, Gebruk AV, Miller YM, Pimenov NV, Moskalev LI, Ivanov MV (1997) Contribution of the bacterial chemosynthesis to the feeding of animal community inhabiting vent Field Broken Spur (29°N, Mid-Atlantic Ridge). Dokl Akad Nauk 357:410–413

    Google Scholar 

  • Lein AY, Glushchenko NN, Osipov GA, Ul’yanova NV, Ivanov MV (1998) Sulfide ore biomarkers of modern and ancient “black smokers”. Dokl Akad Nauk 359:525–528 (in Russian)

    Google Scholar 

  • Lein AY, Peresypkin VI, Simoneit BRT (2003) Origin of hydrocarbons in hydrothermal sulfide ores in the Mid-Atlantic Ridge. Lithol Miner Res V38:383–393

    Google Scholar 

  • Little CTS, Vrijenhoek RC (2003) Are hydrothermal vent animals living fossils? Trends Ecol Evol 18:582–588

    Google Scholar 

  • Lopez-Garcia P, Duperron S, Philippot P, Foriel J, Susini J, Moreira D (2003) Bacterial diversity in hydrothermal sediment and epsilonproteobacterial dominance in experimental microcolonizers at the Mid-Atlantic Ridge. Environ Microbiol 5:961–976

    Google Scholar 

  • Lopez-Garcia P, Vereshchaka A, Moreira D (2007) Eukaryotic diversity associated with carbonates and fluid-seawater interface in Lost City hydrothermal field. Environ Microbiol 9:546–554

    Google Scholar 

  • Madigan MT, Martinko JM, Parker J (2002) Brock biology of microorganisms. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  • Michaelis W, Seifert R, Nauhaus K, Treude T, Thiel V, Blumenberg M, Knittel K, Gieseke A, Peterknecht K, Pape T, Boetius A, Amann R, Jørgensen BB, Widdel F, Peckmann J, Pimenov NV, Gulin MB (2002) Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane. Science 297:1013–1015

    Google Scholar 

  • Mycke B, Michaelis W, Degens ET (1988) Biomarkers in sedimentary sulfides of Precambrian age. Org Geochem 13:619–625

    Google Scholar 

  • Nakagawa S, Takai K (2008) Deep-sea vent chemoautotrophs: diversity, biochemistry and ecological significance. FEMS Microbiol Ecol 65:1–14

    Google Scholar 

  • Nakagawa T, Takai K, Suzuki Y, Hirayama H, Konno U, Tsunogai U, Horikoshi K (2006) Geomicrobiological exploration and characterization of a novel deep-sea hydrothermal system at the TOTO caldera in the Mariana Volcanic Arc. Environ Microbiol 8:37–49

    Google Scholar 

  • Nercessian O, Fouquet Y, Pierre C, Prieur D, Jeanthon C (2005) Diversity of Bacteria and Archaea associated with a carbonate-rich metalliferous sediment sample from the Rainbow vent field on the Mid-Atlantic Ridge. Environ Microbiol 7:698–714

    Google Scholar 

  • Niemann H, Elvert M (2008) Diagnostic lipid biomarker and stable carbon isotope signatures of microbial communities mediating the anaerobic oxidation of methane with sulphate. Org Geochem 39:1668–1677

    Google Scholar 

  • Niemann H, Losekann T, de Beer D, Elvert M, Nadalig T, Knittel K, Amann R, Sauter EJ, Schluter M, Klages M, Foucher JP, Boetius A (2006) Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink. Nature 443:854–858

    Google Scholar 

  • Nisbet EG, Sleep NH (2001) The habitat and nature of early life. Nature 409:1083–1091

    Google Scholar 

  • Ollivier B, Hatchikian CE, Prensier G, Guezennec J, Garcia JL (1991) Desulfohalobium retbaense gen. nov., sp. nov., a halophilic sulfate-reducing bacterium from sediments of a hypersaline lake in Senegal. Int J Syst Bacteriol 41:74–81

    Google Scholar 

  • Orphan VJ, House CH, Hinrichs K-U, McKeegan KD, DeLong EF (2001) Methane-consuming Archaea revealed by directly coupled isotopic and phylogenetic analysis. Science 293:484–487

    Google Scholar 

  • Orphan VJ, House CH, Hinrichs K-U, McKeegan KD, DeLong EF (2002) Multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments. Proc Natl Acad Sci USA 99:7663–7668

    Google Scholar 

  • Pancost RD, Bouloubassi I, Aloisi G, Sinninghe Damsté JS, Party tMS (2001a) Three series of non-isoprenoidal dialkyl glycerol diethers in cold-seep carbonate crusts. Org Geochem 32:695–707

    Google Scholar 

  • Pancost RD, Hopmans EC, Sinninghe Damsté JS, Party TMss (2001b) Archaeal lipids in Mediterranean cold seeps: molecular proxies for anaerobic methane oxidation. Geochim Cosmochim Acta 65:1611–1627

    Google Scholar 

  • Pancost RD, Pressley S, Coleman JM, Talbot HM, Kelly K, Farrimond P, Schouten S, Benning L, Mountain BW (2006) Composition and implications of diverse lipids in New Zealand Geothermal sinters. Geobiology 4:71–92

    Google Scholar 

  • Peckmann J, Thiel V (2004) Carbon cycling at ancient methane-seeps. Chem Geol 205:443–467

    Google Scholar 

  • Peckmann J, Thiel V, Michaelis W, Clari P, Gaillard C, Martire L, Reitner J (1999) Cold seep deposits of Beauvoisin (Oxfordian; southeastern France) and Marmorito (Miocene; northern Italy): microbially induced authigenic carbonates. Int J Earth Sci 88:60–75

    Google Scholar 

  • Peckmann J, Thiel V, Michaelis W, Reitner J (2002) A comprehensive approach to the study of methane seep deposits from the Lincoln Creek Formation, western Washington State, USA. Sedimentology 49:855–873

    Google Scholar 

  • Peckmann J, Thiel V, Reitner J, Taviani M, Aharon P, Michaelis W (2004) A microbial mat of a large sulfur bacterium preserved in a Miocene methane-seep limestone. Geomicrobiol J 21:247–255

    Google Scholar 

  • Peckmann J, Birgel D, Kiel S (2009) Molecular fossils reveal fluid composition and flow intensity at a Cretaceous seep. Geology 37:847–850

    Google Scholar 

  • Peresypkin VI, Lein AY, Bogdanov YA, Bortnikov NS (1999) Lipids in the hydrothermal formations in the regions at 14°45’N and 29° N, the Mid-Atlantic Ridge. Oceanology (transl from Okeanologiya) 39:234–244

    Google Scholar 

  • Perner M, Kuever J, Seifert R, Pape T, Koschinsky A, Schmidt K, Strauss H, Imhoff JF (2007) The influence of ultramafic rocks on microbial communities at the Logatchev Hydrothermal Field, located 15°N on the Mid-Atlantic Ridge. FEMS Microbiol Ecol 61:97–109

    Google Scholar 

  • Pimenov NV, Rusanov II, Poglazova MN, Mityushina LL, Sorokin DY, Khmelenina VN, Trotsenko YA (1997) Bacterial mats on coral-like structures at methane seeps in the Black Sea. Mikrobiologiya 66:354–360

    Google Scholar 

  • Proskurowski G, Lilley MD, Seewald JS, Fruh-Green GL, Olson EJ, Lupton JE, Sylva SP, Kelley DS (2008) Abiogenic hydrocarbon production at Lost City Hydrothermal Field. Science 319:604–607

    Google Scholar 

  • Rasmussen B, Fletcher IR, Brocks JJ, Kilburn MR (2008) Reassessing the first appearance of eukaryotes and cyanobacteria. Nature 455:1101–1104

    Google Scholar 

  • Reeburgh WS (1976) Methane consumption in Cariaco Trench waters and sediments. Earth Planet Sci Lett 28:337–344

    Google Scholar 

  • Reeburgh WS (2007) Oceanic methane biogeochemistry. Chem Rev 107:486–513

    Google Scholar 

  • Reitner J, Peckmann J, Reimer A, Schumann G, Thiel V (2005) Methane-derived carbonate build-ups and associated microbial communities at cold seeps on the lower Crimean shelf (Black Sea). Facies 51:66–79

    Google Scholar 

  • Reysenbach A-L, Cady SL (2001) Microbiology of ancient and modern hydrothermal systems. Trends Microbiol 9:79–86

    Google Scholar 

  • Ring MW, Schwar G, Thiel V, Dickschat JS, Kroppenstedt RM, Schulz S, Bode HB (2006) Novel Iso-branched ether lipids as specific markers of developmental sporulation in the myxobacterium Myxococcus xanthus. J Biol Chem 281:36691–36700

    Google Scholar 

  • Ritger S, Carson B, Suess E (1987) Methane-derived authigenic carbonates formed by subduction-induced pore-water expulsion along the Oregon/Washington margin. Geol Soc Am Bull 98:147–156

    Google Scholar 

  • Rossel PE, Lipp JS, Fredricks HF, Arnds J, Boetius A, Elvert M, Hinrichs K-U (2008) Intact polar lipids of anaerobic methanotrophic archaea and associated bacteria. Org Geochem 39:992–999

    Google Scholar 

  • Russell NJ (1990) Cold adaptation of microorganisms. Philos Trans R Soc Lond B 326:595–611

    Google Scholar 

  • Rütters H, Sass H, Cypionka H, Rullkötter J (2001) Monoalkylether phospholipids in the sulfate-reducing bacteria Desulfosarcina variabilis and Desulforhabdus amnigenus. Arch Microbiol 176:435–442

    Google Scholar 

  • Schidlowski M (2001) Carbon isotopes as biogeochemical recorders of life over 3.8 Ga of Earth history: evolution of a concept. Precambrian Res 106:117–134

    Google Scholar 

  • Schoell M (1988) Multiple origins of methane in the earth. Chem Geol 71:1–10

    Google Scholar 

  • Schouten S, Wakeham SG, Hopmans EC, Sinninghe Damsté JS (2003) Biogeochemical evidence that thermophilic Archaea mediate the anaerobic oxidation of methane. Appl Environ Microbiol 69:1680–1686

    Google Scholar 

  • Schouten S, Baas M, Hopmans E, Reysenbach A-L, Damsté J (2008) Tetraether membrane lipids of Candidatus “Aciduliprofundum boonei”, a cultivated obligate thermoacidophilic euryarchaeote from deep-sea hydrothermal vents. Extremophiles 12:119–124

    Google Scholar 

  • Schrenk MO, Kelley DS, Delaney JR, Baross JA (2003) Incidence and diversity of microorganisms within the walls of and active deep-sea sulfide chimney. Appl Environ Microbiol 69:3580–3592

    Google Scholar 

  • Schroeder T, John B, Frost BR (2002) Geologic implicationsvof seawater circulation through peridotite exposed at slowspreading mid-ocean ridges. Geology 30:367–370

    Google Scholar 

  • Simoneit BRT, Lein AY, Peresypkin VI, Osipov GA (2004) Composition and origin of hydrothermal petroleum and associated lipids in the sulfide deposits of the Rainbow field (Mid-Atlantic Ridge at 36°N). Geochim Cosmochim Acta 68:2275–2294

    Google Scholar 

  • Sinninghe Damsté JS, Rijpstra IC, Schouten S, Fuerst JA, Jetten MSM, Strous M (2004) The occurrence of hopanoids in planctomycetes: implications for the sedimentary biomarker record. Org Geochem 35:561–566

    Google Scholar 

  • Stadnitskaia A, Bouloubassi I, Elvert M, Hinrichs KU, Sinninghe Damsté JS (2008) Extended hydroxyarchaeol, a novel lipid biomarker for anaerobic methanotrophy in cold seepage habitats. Org Geochem 39:1007–1014

    Google Scholar 

  • Stetter KO (1996) Hyperthermophilic procaryotes. FEMS Microbiol Rev 18:149–158

    Google Scholar 

  • Stetter KO (2006) Hyperthermophiles in the history of life. Philos Trans R Soc Lond B 361:1837–1843

    Google Scholar 

  • Strous M, Jetten MSM (2004) Anaerobic oxidation of methane and ammonium. Annu Rev Microbiol 58:99–117

    Google Scholar 

  • Summons RE, Brassell SC, Eglinton G, Evans E, Horodyski RJ, Robinson N, Ward DM (1988) Distinctive hydrocarbon biomarkers from fossiliferous sediment of the Late Proterozoic Walcott Member, Chuar Group, Grand Canyon, Arizona. Geochim Cosmochim Acta 52:2625–2637

    Google Scholar 

  • Summons R, Albrecht P, McDonald G, Moldowan J (2008) Molecular biosignatures. Space Sci Rev 135:133–159

    Google Scholar 

  • Takai K, Nakagawa S, Reysenbach A-L, Hoek J (2006) Microbial ecology of mid-ocean ridges and back-arc basins. In: Christie D, Fisher CR, Lee S-M, Givens S (eds) Interpretations among physical, chemical, biological, and geological processes in Back-arc spreading systems. American Geophysical Union, Washington, DC, pp 185–214

    Google Scholar 

  • Takai K, Nakamura K, Toki T, Tsunogai U, Miyazaki M, Miyazaki J, Hirayama H, Nakagawa S, Nunoura T, Horikoshi K (2008) Cell proliferation at 122°C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proc Natl Acad Sci USA 105:10949–10954

    Google Scholar 

  • Teixidor P, Grimalt JO, Pueyo JJ, Rodriguez-Valera F (1993) Isopranylglycerol diethers in non-alkaline evaporitic environments. Geochim Cosmochim Acta 57:4479–4489

    Google Scholar 

  • Teske A, Hinrichs K-U, Edgcomb V, de Vera GA, Kysela D, Sylva SP, Sogin ML, Jannasch HW (2002) Microbial diversity of hydrothermal sediments in the Guaymas Basin: evidence for anaerobic methanotrophic communities. Appl Environ Microbiol 68:1994–2007

    Google Scholar 

  • Thiel V, Peckmann J, Seifert R, Wehrung P, Reitner J, Michaelis W (1999) Highly isotopically depleted isoprenoids: molecular markers for ancient methane venting. Geochim Cosmochim Acta 63:3959–3966

    Google Scholar 

  • Thiel V, Peckmann J, Richnow HH, Luth U, Reitner J, Michaelis W (2001a) Molecular signals for anaerobic methane oxidation in Black Sea seep carbonates and a microbial mat. Mar Chem 73:97–112

    Google Scholar 

  • Thiel V, Peckmann J, Schmale O, Reitner J, Michaelis W (2001b) A new straight-chain hydrocarbon biomarker associated with anaerobic methane cycling. Org Geochem 32:1019–1023

    Google Scholar 

  • Thiel V, Blumenberg M, Pape T, Seifert R, Michaelis W (2003) Unexpected occurrence of hopanoids at gas seeps in the Black Sea. Org Geochem 34:81–87

    Google Scholar 

  • Thiel V, Heim C, Arp G, Hahmann U, Sjövall P, Lausmaa J (2007) Biomarkers at the microscopic range: ToF-SIMS molecular imaging of Archaea-derived lipids in a microbial mat. Geobiology 5:413–421

    Google Scholar 

  • Tornabene TG, Langworthy TA, Holzer G, Oró J (1979) Squalenes, phytanes and other isoprenoids as major neutral lipids of methanogenic and thermoacidophilic “archaebacteria”. J Mol Evol 13:73–83

    Google Scholar 

  • Treude T, Boetius A, Knittel K, Wallmann K, Joergensen BB (2003) Anaerobic oxidation of methane above gas hydrates at Hydrate Ridge, NE Pacific Ocean. Mar Ecol Prog Ser 264:1–14

    Google Scholar 

  • Valentine DL (2002) Biogeochemistry and microbial ecology of methane oxidation in anoxic environments: a review. Antonie Leeuwenhoek 81:271–282

    Google Scholar 

  • Van Hoek AHAM, Van Alen TA, Sprakel VSI, Leunissen JAM, Brigge T, Vogels GD, Hackstein JHP (2000) Multiple acquisition of methanogenic archaeal symbionts by anaerobic ciliates. Mol Biol Evol 17:251–258

    Google Scholar 

  • Vereshchaka AL, Vinogradov GM, Lein AY, Dalton S, Dehairs F (2000) Carbon and nitrogen isotopic composition of the fauna from the Broken Spur hydrothermal vent field. Mar Biol 136:11–17

    Google Scholar 

  • Wegener G, Niemann H, Elvert M, Hinrichs K-U, Boetius A (2008) Assimilation of methane and inorganic carbon by microbial communities mediating the anaerobic oxidation of methane. Environ Microbiol 10:2287–2298

    Google Scholar 

  • Werne JP, Baas M, Sinninghe Damsté JS (2002) Molecular isotopic tracing of carbon flow and trophic relationships in a methane-supported benthic microbial community. Limnol Oceanogr 47:1694–1701

    Google Scholar 

  • Whiticar MJ (1999) Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem Geol 161:291–314

    Google Scholar 

  • Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 87:4576–4579

    Google Scholar 

Download references

Acknowledgements

I am very thankful to Walter Michaelis, Richard Seifert, Dietmar Keyser (all University of Hamburg), Karen Hissmann (IfM-GEOMAR Kiel), and MARUM (University of Bremen) for the permission to show photos. I thank Helge Niemann and Steffen Kiel for their careful reviews, considereably improving the manuscript. I thank the Deutsche Forschungsgemeinschaft for financial support (DFG BL 971/1–1). Richard Seifert, Walter Michaelis and Volker Thiel (University of Göttingen) are also acknowledged for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Blumenberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Blumenberg, M. (2010). Microbial Chemofossils in Specific Marine Hydrothermal and Methane Cold Seep Settings. In: Kiel, S. (eds) The Vent and Seep Biota. Topics in Geobiology, vol 33. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9572-5_4

Download citation

Publish with us

Policies and ethics