Shaping Vent and Seep Communities: Habitat Provision and Modification by Foundation Species

  • Breea Govenar
Part of the Topics in Geobiology book series (TGBI, volume 33)


Ecologists strive to identify mechanisms that determine the structure or composition of biological communities. Until the past decade, the role of positive species interactions in regulating community structure had been relatively overlooked, compared to negative species interactions, such as competition and predation. While mutualism and commensalism have long been recognized as critically important in pairwise species interactions, the impact of facilitation and habitat provision or modification on community dynamics and species diversity has received increased attention only more recently (Bertness and Callaway 1994; Hacker and Gaines 1997). Part of the reason for the oversight is that positive species interactions are more prevalent in habitats with harsh environmental ­conditions (Bertness et al. 1999; Crain and Bertness 2006) and are more often detectable at regional scales (Bertness and Leonard 1997; van de Koppel et al. 2006). Communities may be structured by facilitation cascades, where foundation species create the habitat or modify the environment that facilitates the settlement of other species, which subsequently interact with one another (Bruno 2000; Altieri et al 2007). Foundation species are large or spatially dominant organisms that create or provide habitats, colonized by other species (Bruno and Bertness 2001; for review).


Hydrothermal Vent East Pacific Rise Foundation Species Anaerobic Methane Oxidation Fuca Ridge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aitken CM, Jones DM, Larter SR (2004) Anaerobic hydrocarbon biodegradation in deep subsurface oil reservoirs. Nature 431:291–294Google Scholar
  2. Altieri AH, Silliman BR, Bertness MD (2007) Hierarchical organization via facilitation cascade in intertidal cordgrass bed communities. Am Nat 160(2):195–206Google Scholar
  3. Andersen AC, Flores JF, Hourdez S (2006) Comparative branchial plume biometry between two extreme ecotypes of the hydrothermal vent tubeworm Ridgeia piscesae. Can J Zool 84(12):1810–1822Google Scholar
  4. Arp AJ, Childress JJ, Fisher CR (1984) Metabolic and blood-gas transport characteristics of the hydrothermal vent bivalve Calyptogena magnifica. Physiol Zool 57(6):648–662Google Scholar
  5. Bachraty C, Legendre P, Desbruyères D (2009) Biogeographic relationships among deep-sea hydrothermal vent faunas at global scale. Deep Sea Res I 56(8):1371–1378Google Scholar
  6. Barry JP, Kochevar RE, Baxter CH (1997) The influence of pore-water chemistry and physiology on the distribution of vesicomyid clams at cold seeps in Monterey Bay: Implications for patterns of chemosynthetic community organization. Limnol Oceanogr 42(2):318–328Google Scholar
  7. Bates AE, Tunnicliffe V, Lee RW (2005) Role of thermal conditions in habitat selection by hydrothermal vent gastropods. Mar Ecol Prog Ser 305:1–15Google Scholar
  8. Becker EL, Cordes EE, Macko SA, Fisher CR (2009) Importance of seep primary production to Lophelia pertusa and associated fauna in the Gulf of Mexico. Deep Sea Res I 56(5):786–800Google Scholar
  9. Bergquist DC, Williams FM, Fisher CR (2000) Longevity record for deep-sea invertebrate – the growth rate of a marine tubeworm is tailored to different environments. Nature 403:4999–5000Google Scholar
  10. Bergquist DC, Urcuyo IA, Fisher CR (2002) Establishment and persistence of seep vestimentiferan aggregations on the upper Louisiana slope of the Gulf of Mexico. Mar Ecol Prog Ser 241:89–98Google Scholar
  11. Bergquist DC, Andras JP, McNelis T, Howlett S, van Horn MJ, Fisher CR (2003a) Succession in Gulf of Mexico cold seep vestimentiferan aggregations: The importance of spatial variability. Mar Ecol 24(1):31–44Google Scholar
  12. Bergquist DC, Ward T, Cordes EE, NcNelis T, Howlett S, Kosoff R, Hourdez S, Carney R, Fisher CR (2003b) Community structure of vestimentiferan-generated habitat islands from Gulf of Mexico cold seeps. J Exp Mar Biol Ecol 289(2):197–222Google Scholar
  13. Bergquist DC, Fleckenstein C, Knisel J, Begley B, MacDonald IR, Fisher CR (2005) Variations in seep mussel bed communities along physical and chemical environmental gradients. Mar Ecol Prog Ser 293:99–108Google Scholar
  14. Bergquist DC, Eckner JT, Urcuyo IA, Cordes EE, Hourdez S, Macko SA, Fisher CR (2007) Using stable isotopes and quantitative community characteristics to determine a local hydrothermal vent food web. Mar Ecol Prog Ser 330:49–65Google Scholar
  15. Berkenbusch K, Rowden AA (2007) An examination of the spatial and temporal generality of the influence of ecosystem engineers on the composition of associated assemblages. Aquat Ecol 41:129–147Google Scholar
  16. Bertness MD, Callaway R (1994) Positive interactions in communities. Trends Ecol Evol 9(5):191–193Google Scholar
  17. Bertness MD, Leonard GH (1997) The role of positive interactions in communities: lessons from intertidal habitats. Ecology 78:1976–1989Google Scholar
  18. Bertness MD, Leonard GH, Levine JM, Schmidt PR, Ingraham AO (1999) Testing the relative contribution of positive and negative interactions in rocky intertidal communities. Ecology 80(8):2711–2726Google Scholar
  19. Boetius A, Kavenschlag K, Schubert CJ, Rickert D, Widdel F, Gleseke A, Amann R, Jorgensen BB, Witte U, Pfannkuche O (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–626Google Scholar
  20. Boutet I, Jollivet D, Shillito B, Moraga D, Tanguy A (2009) Molecular identification of differentially regulated genes in the hydrothermal-vent species Bathymodiolus thermophilus and Paralvinella pandorae in response to temperature. BMC Genomics 10:222–239Google Scholar
  21. Bruno JF (2000) Facilitation of cobble beach plant communities through habitat modification by Spartina alterniflora. Ecology 81(5):1179–1192Google Scholar
  22. Bruno JF, Bertness MD (2001) Habitat modification and facilitation in benthic marine communities. In: Bertness MD, Gaines SD, Hay ME (eds) Marine community ecology. Sinauer, Sunderland, MAGoogle Scholar
  23. Bustamante RH, Branch GM, Eekhout S, Robertson B, Zoutendyk P, Schleyer M, Dye A, Hanekom N, Keats D, Jurd M, McQuaid C (1995) Gradients of intertidal primary productivity around the coast of South Africa and their relationships with consumer biomass. Oecologia 102:189–201Google Scholar
  24. Carney RS (1994) Consideration of the oasis analogy for chemosynthetic communities at Gulf of Mexico hydrocarbon vents. Geo Mar Lett 14:149–159Google Scholar
  25. Carney SL, Peoples JR, Fisher CR, Schaeffer SW (2002) AFLP analyses of genomic DNA reveal no differentiation between two phenotypes of the vestimentiferan tubeworm Ridgeia piscesae. Cah Biol Mar 43(3–4):363–366Google Scholar
  26. Carney SL, Flores JF, Orobona KM, Butterfield DA, Fisher CR, Schaeffer SW (2007) Environmental differences in hemoglobin gene expression in the hydrothermal vent tubeworm, Ridgeia piscesae. Comp Biochem Phys B 146(3):326–337Google Scholar
  27. Chevaldonné P, Jollivet D, Feldman RA, Desbruyères D, Lutz RA, Vrijenhoek RC (1998) Commensal scale-worms of the genus Branchipolynoe (Polychaeta: Polynoidae) at deep-sea hydrothermal vents and cold seeps. Cah Biol Mar 39(3–4):347–350Google Scholar
  28. Childress JJ, Fisher CR (1992) The biology of hydrothermal vent animals: physiology, biochemistry and autotrophic symbioses. Oceanogr Mar Biol Annu Rev 30:337–441Google Scholar
  29. Colaço A, Deshairs F, Desbruyères D (2002) Nutritional relations of deep-sea hydrothermal fields at the Mid-Atlantic Ridge: a stable isotope approach. Deep Sea Res I 49(2):395–412Google Scholar
  30. Colaço A, Bustamente P, Fouquet Y, Sarradin PM, Serrao-Santos R (2006) Bioaccumulation of Hg, Cu, Zn, in the Azores triple junction hydrothermal vent fields food web. Chemosphere 65:2260–2267Google Scholar
  31. Company R, Serafim A, Cosson R, Camus L, Shillito B, Fiala-Médioni A, Bebianno MJ (2006) The effect of cadmium on antioxidant responses and the susceptibility to oxidative stress in the hydrothermal vent mussel Bathymodiolus azoricus. Mar Biol 148(4):817–825Google Scholar
  32. Company R, Serafim A, Cosson RP, Fiala-Médioni A, Camus L, Colaço A, Serrao-Santos R, Benianno MJ (2008) Antioxidant biochemical responses to long-term copper exposure in Bathymodiolus azoricus from Menez-Gwen hydrothermal vent. Sci Tot Environ 289:407–417Google Scholar
  33. Cordes EE, Bergquist DC, Shea K, Fisher CR (2003) Hydrogen sulphide demand of long-lived vestimentiferan tube worm aggregations modifies the chemical environment at deep-sea hydrocarbon seeps. Ecol Lett 6(3):212–219Google Scholar
  34. Cordes EE, Hourdez S, Predmore BL, Redding ML, Fisher CR (2005) Succession of hydrocarbon seep communities associated with the long-lived foundation species Lamellibrachia luymesi. Mar Ecol Prog Ser 305:17–29Google Scholar
  35. Cordes EE, Carney SL, Hourdez S, Carney RS, Brooks JM, Fisher CR (2007) Cold seeps of the deep Gulf of Mexico: community structure and biogeographic comparisons to Atlantic equatorial belt seep communities. Deep Sea Res I 54:637–653Google Scholar
  36. Cordes EE, McGinley MP, Podowski EL, Becker EL, Lessard-Pilon S, Viada ST, Fisher CR (2008) Coral communities of the deep Gulf of Mexico. Deep Sea Res I 55:777–787Google Scholar
  37. Cordes EE, Bergquist DC, Fisher CR (2009) Macro-ecology of Gulf of Mexico cold seeps. Annu Rev Mar Sci 1:143–168Google Scholar
  38. Cosson RP, Thiébaut E, Company R, Castrec-Rouelle M, Colaço A, Martins I, Sarradin P-M, Bebianno MJ (2008) Spatial variation of metal bioaccumulation in the hydrothermal vent mussel Bathymodiolus azoricus. Mar Environ Res 65:405–415Google Scholar
  39. Cottin D, Ravaux J, Léger N, Halary S, Toullec J-Y, Sarradin P-M, Gaill F, Shillito B (2008) Thermal biology of the deep-sea vent annelid Paralvinella grasslei: in vivo studies. J Exp Biol 211:2196–2204Google Scholar
  40. Crain CM, Bertness MD (2006) Ecosystem engineering across environmental gradients: implications for conservation and management. Bioscience 56(3):211–218Google Scholar
  41. Cravo A, Foster P, Almeida C, Company R, Cosson RP, Bebianno MJ (2007) Metals in the shell of Bathymodiolus azoricus from a hydrothermal vent site on the Mid-Atlantic Ridge. Environ Intl 33:609–615Google Scholar
  42. Crooks JA (1998) Habitat alteration and community-level effects of an exotic mussel, Musculista senhousia. Mar Ecol Prog Ser 162:137–152Google Scholar
  43. Cuvelier D, Sarrazin J, Colaço A, Copley J, Desbruyères D, Glover AG, Tyler P, Santos RS (2009) Distribution and spatial variation of hydrothermal faunal assemblages at Lucky Strike (Mid-Atlantic Ridge) revealed by high-resolution video image analysis. Deep Sea Res I 56:2026–2040Google Scholar
  44. Dando PR, Southward AJ, Southward EC, Lamont P, Harvey R (2008) Interactions between sediment chemistry and frenulate pogonophores (Annelida) in the north-east Atlantic. Deep Sea Res I 55:966–996Google Scholar
  45. Dattagupta S, Miles LL, Barnabei MS, Fisher CR (2006) The hydrocarbon seep tubeworm Lamellibrachia luymesi primarily eliminates sulfate and hydrogen ions across its roots to conserve energy and ensure sulfide supply. J Exp Biol 209(19):3795–3805Google Scholar
  46. Dattagupta S, Arthur MA, Fisher CR (2008) Modification of sediment geochemistry by the hydrocarbon seep tubeworm Lamellibrachia luymesi: A combined empirical and modeling approach. Geochem Cosmochem Acta 72(9):2298–2315Google Scholar
  47. Desbruyères D, Chevaldonné P, Alayse A-M, Jollivet D, Lallier FH, Jouin-Toulmond C, Zal F, Sarradin P-M, Cosson R, Caprais J-C, Arndt C, O’Brien J, Guezennec J, Hourdez S, Riso R, Gaill F, Laubier L, Toulmond A (1998) Biology and ecology of the “Pompeii worm” (Alvinella pompejana Desbruyères and Laubier) a normal dweller of an extreme deep-sea environment: A synthesis of current knowledge and recent developments. Deep Sea Res II 45:383–422Google Scholar
  48. Desbruyères D, Almeida A, Biscoito M, Comtet T, Khripounoff A, Le Bris N, Sarradin P-M, Segonzac M (2000) A review of the distribution of hydrothermal vent communities along the northern Mid-Atlantic Ridge: dispersal vs. environmental controls. Hydrobiologia 440:201–216Google Scholar
  49. Dreyer JC, Knick KE, Flickinger WB, Van Dover CL (2005) Development of macrofaunal community structure in mussel beds on the northern East Pacific Rise. Mar Ecol Prog Ser 302:121–134Google Scholar
  50. Dubilier N, Bergin C, Lott C (2008) Symbiotic diversity in marine animals: the art of harnessing chemosynthesis. Nat Rev Microbiol 6:725–740Google Scholar
  51. Duperron S, Bergin C, Zielinski F, Blazejak A, Pernthaler A, McKiness ZP, DeChaine E, Cavanaugh CM, Dublier N (2006) A dual symbiosis shared by two mussel species, Bathymodiolus azoricus and Bathymodiolus puteoserpentis (Bivalvia: Mytilidae), from hydrothermal vents along the northern Mid-Atlantic Ridge. Environ Microbiol 8(8):1441–1447Google Scholar
  52. Ergorov AV, Crane K, Vogt PR, Rozhkov AN (1999) Gas hydrates that outcrop the sea floor: stability models. Geo Mar Lett 19:89–96Google Scholar
  53. Fisher CR (1990) Chemoautotrophic and methanotrophic symbioses in marine invertebrates. Rev Aquat Sci 2:399–436Google Scholar
  54. Fisher CR, Childress JJ, Arp JJ, Brooks JM, Distel D, Favuzzi JA, Felbeck H, Hessler RR, Johnson KS, Kennicutt MC, Macko SA, Newton A, Powell MA, Somero GN, Soto T (1988a) Microhabitat variation in the hydrothermal vent mussel Bathymodiolus thermophilus, at Rose Garden vent on the Galapagos rift. Deep Sea Res A 35:1769–1792Google Scholar
  55. Fisher CR, Childress JJ, Arp JJ, Brooks JM, Distel D, Dugan JA, Felbeck H, Fritz LW, Hessler RR, Johnson CR, Kennicut MC II, Lutz RA, Macko SA, Newton A, Powell MA, Somero GN, Soto T (1988b) Variation in the hydrothermal vent clam, Calyptogena magnifica, at the Rose Garden vent on the Galapagos spreading center. Deep Sea Res A 35:1811–1831Google Scholar
  56. Fisher CR, Childress JJ, Macko SA, Brooks JM (1994) Nutritional interactions in Galapagos Rift hydrothermal vent communities: inferences from stable carbon and nitrogen isotope analyses. Mar Ecol Prog Ser 103:45–55Google Scholar
  57. Fornari DJ, Shank TM, Von Damm KL, Gregg TKP, Lilley M, Levai G, Bray A, Haymon RM, Perfit MR, Lutz RA (1998) Time-series temperature measurements at high-temperature hydrothermal vents, East Pacific Rise (9°49-51’N): evidence for monitoring a crustal cracking event. Earth Planet Sci Lett 160(3–4):419–431Google Scholar
  58. Gebruk AV, Chevaldonné P, Shank TM, Lutz RA, Vrijenhoek RC (2000) Deep-sea hydrothermal vent communities of the Logatchev area (14°45’N, Mid-Atlantic Ridge): diverse biotopes and high biomass. J Mar Biol Assoc UK 80(3):383–393Google Scholar
  59. Girguis PR, Lee RW (2006) Thermal preference and tolerance of alvinellids. Science 312:231Google Scholar
  60. Govenar B, Fisher CR (2007) Experimental evidence of habitat provision by aggregations of Riftia pachyptila at hydrothermal vents on the East Pacific Rise. Mar Ecol 28:3–14Google Scholar
  61. Govenar B, Bergquist DC, Urcuyo IA, Eckner JT, Fisher CR (2002) Three Ridgeia piscesae assemblages from a single Juan de Fuca Ridge sulphide edifice: structurally different and functionally similar. Cah Mar Biol 43(3–4):247–252Google Scholar
  62. Govenar B, Freeman M, Bergquist DC, Johnson GA, Fisher CR (2004) Composition of a one-year-old Riftia pachyptila community following a clearance experiment: Insight to succession patterns at deep-sea hydrothermal vents. Biol Bull 207(3):177–182Google Scholar
  63. Govenar B, Le Bris N, Gollner S, Glanville J, Aperghis AB, Hourdez S, Fisher CR (2005) Epifaunal community structure associated with Riftia pachyptila in chemically different hydrothermal vent habitats. Mar Ecol Prog Ser 305:67–77Google Scholar
  64. Grassle JF, Maciolek NJ (1992) Deep-sea species richness-regional and local diversity estimates from quantitative bottom samples. Am Nat 139(2):313–341Google Scholar
  65. Grieshaber MK, Volkel S (1998) Animal adaptations for tolerance and exploitation of poisonous sulfide. Annu Rev Physiol 60:33–53Google Scholar
  66. Hacker SD, Gaines SD (1997) Some implications of direct positive interactions for community diversity. Ecology 78(7):1990–2003Google Scholar
  67. Hanski I (1998) Metapopulation dynamics. Nature 396:41–49Google Scholar
  68. Haymon RM, Fornari DJ, Edwards MH, Carbotte S, Wright D, Macdonald KC (1991) Hydrothermal vent distribution along the East Pacific Rise crest (9°09’-54’N) and its relationship to magmatic and tectonic processes on fast-spreading mid-ocean ridges. Earth Planet Sci Lett 104:513–534Google Scholar
  69. Haymon RM, Fornari DJ, Von Damm KL, Lilley MD, Perfit MR, Edmond JM, Shanks WC, Lutz RA, Grebmeier JM, Carbotte S, Wright D, McLaughlin E, Smith M, Beedle N, Olson E (1993) Volcanic eruption of the midocean ridge along the East Pacific Rise crest at 9°45-52’N: Direct submersible observations of sea-floor phenomena associated with an eruption event in April, 1991. Earth Planet Sci Lett 119(1–2):85–101Google Scholar
  70. Hessler RR, Smithey WM Jr (1983) The distribution and community structure of megafauna at the Galapagos Rift hydrothermal vents. In: Rona PA, Bostrom K, Laubier L, Smith KL Jr (eds) Hydrothermal processes at seafloor spreading centers. Plenum, New YorkGoogle Scholar
  71. Hessler RR, Smithey WM, Boudrias MA, Keller CH, Lutz RA, Childress JJ (1988) Temporal change in megafauna at the Rose Garden hydrothermal vent (Galapagos Rift; eastern tropical Pacific). Deep Sea Res A 35:1681–1710Google Scholar
  72. Hunt HL, Metaxas A, Jennings RM, Halanych KM, Mullineaux LS (2004) Testing biological control of colonization by vestimentiferan tubeworms at deep-sea hydrothermal vents (East Pacific Rise, 9°50’N). Deep Sea Res I 51(2):225–234Google Scholar
  73. Jannasch HW, Wirsen CO (1979) Chemosynthetic primary production at East Pacific Rise seafloor spreading centers. Biosci 29(10):592–598Google Scholar
  74. Johnson KS, Childress JJ, Beehler CL (1988) Short-term temperature variability in the Rose Garden hydrothermal vent field: an unstable deep-sea environment. Deep Sea Res A 35:1711–1721Google Scholar
  75. Johnson KS, Childress JJ, Beehler CL, Sakamoto CM (1994) Biogeochemistry of hydrothermal vent mussel communities: the deep-sea analogue to the intertidal zone. Deep Sea Res I 41:993–1011Google Scholar
  76. Jones CG, Lawton JH, Shachak M (1994) Organisms as ecosystem engineers. Oikos 69:373–386Google Scholar
  77. Jones CG, Lawton JH, Shachak M (1997) Positive and negative effects of organisms as physical ecosystem engineers. Ecology 78(7):1946–1957Google Scholar
  78. Julian D, Gaill F, Wood E, Arp AJ, Fisher CR (1999) Roots as a site of hydrogen sulphide uptake in the hydrocarbon seep vestimentiferan Lamellibrachia sp. J Exp Biol 202:2245–2257Google Scholar
  79. Juniper SK, Tunnicliffe V (1997) Crustal accretion and the hot vent ecosystem. Phil Soc Roy Soc Lond A 355:459–474Google Scholar
  80. Juniper SK, Johnasson IR, Tunnicliffe V, Southward AJ (1992) Influence of a tube-building polychaete on hydrothermal chimney mineralization. Geology 20(10):895–898Google Scholar
  81. Kadar E, Costa V, Martins I, Serrao-Santos R, Powell JJ (2005a) Enrichment in trace metals (Al, Mn, Co, Cu, Mo, Cd, Fe, Zn, Pb, and Hg) of macro-invertebrate habitats at hydrothermal vents along the Mid-Atlantic Ridge. Hydrobiologia 548:191–205Google Scholar
  82. Kadar E, Costa V, Segonzac M (2005b) Trophic influences of metal accumulation in natural pollution laboratories at deep-sea hydrothermal vents of the Mid-Atlantic Ridge. Sci Tot Environ 373:464–472Google Scholar
  83. Kadar E, Costa V, Santos RS (2006) Distribution of micro-essential (Fe, Cu, Zn) and toxic (Hg) metals in tissues of two nutritionally distinct hydrothermal shrimps. Sci Tot Environ 358:143–150Google Scholar
  84. Karl DM (1995) Ecology of free-living, hydrothermal vent microbial communities. In: Karl DM (ed) The microbiology of deep-sea hydrothermal vents. CRC Press, Boca Raton, FLGoogle Scholar
  85. Kelly N, Metaxas A (2007) Diversity of invertebrate colonists on simple and complex substrates at hydrothermal vents on the Juan de Fuca Ridge. Aquat Biol 3:271–281Google Scholar
  86. Le Bris N, Sarradin PM, Caprias JC (2003) Contrasted sulphide chemistries in the environment of 13° N EPR vent fauna. Deep Sea Res I 50:737–747Google Scholar
  87. Le Bris N, Zbinden M, Gaill F (2005) Processes controlling the physico-chemcial micro-environments associated with Pompeii worms. Deep-Sea Res I 52:1071–1083Google Scholar
  88. Le Bris N, Govenar B, Le Gall C, Fisher CR (2006a) Variability of physico-chemical conditions in 9°50’N EPR diffuse flow vent habitats. Mar Chem 98:167–182Google Scholar
  89. Le Bris N, Rodier P, Sarradin P-M, Le Gall C (2006b) Is temperature a good proxy for sulfide in hydrothermal vent habitats? Cah Biol Mar 47(4):465–470Google Scholar
  90. Levesque C, Juniper SK, Marcus J (2003) Food resource partitioning and competition among alvinellid polychaetes of Juan de Fuca Ridge hydrothermal vents. Mar Ecol Prog Ser 246:173–182Google Scholar
  91. Levin LA (2005) Ecology of cold seep sediments: interactions of fauna with flow, chemistry, and microbes. Oceanogr Mar Biol 43:1–46Google Scholar
  92. Levin LA, Mendoza GF (2007) Community structure and nutrition of deep methane-seep macrobenthos from the North Pacific (Aleutian) Margin and the Gulf of Mexico (Florida Escarpment). Mar Ecol 28:131–151Google Scholar
  93. Levin LA, James DW, Martin CM, Rathburn AE, Harris LH, Michener RH (2000) Do methane seeps support distinct macrofaunal assemblages? Observations on community structure and nutrition from the northern California slope and shelf. Mar Ecol Prog Ser 208:21–39Google Scholar
  94. Levin LA, Etter RJ, Rex MA, Gooday AJ, Smith CR, Pineda J, Stuart CT, Hessler RR, Pawson D (2001) Environmental influences on regional deep-sea species diversity. Annu Rev Ecol Syst 32:51–93Google Scholar
  95. Levin LA, Mendoza GF, Konotchick T, Lee R (2009) Macrobenthos community structure and trophic relationships within active and inactive Pacific hydrothermal sediments. Deep Sea Res II 56:1632–1648Google Scholar
  96. Luther GW III, Rozan TF, Talliefert M, Nuzzio DB, Di Meo CA, Shank TM, Lutz RA, Cary SC (2001) Chemical speciation drives hydrothermal vent ecology. Nature 410:813–816Google Scholar
  97. MacAvoy SE, Carney RS, Fisher CR, Macko SA (2002) Use of chemosynthetic biomass by large, mobile, benthic predators in the Gulf of Mexico. Mar Ecol Prog Ser 225:65–78Google Scholar
  98. MacAvoy SE, Morgan E, Carney RS, Macko SA (2008) Chemoautotrophic production incorporated by heterotrophs in Gulf of Mexico hydrocarbon seeps: An examination of mobile benthic predators and seep residents. J Shell Res 27(1):153–161Google Scholar
  99. MacDonald IR, Boland GS, Baker JS, Brooks JM, Kennicutt MC, Bidigare RR (1989) Gulf of Mexico hydrocarbon seep communities, 2: Spatial distribution of seep organisms and hydrocarbons at Bush Hill. Mar Biol 101(2):235–247Google Scholar
  100. Machicote M, Branch LC, Villarreal D (2004) Burrowing owls and burrowing mammals: are ecosystem engineers interchangeable as facilitators? Oikos 106:527–535Google Scholar
  101. Matabos M, Le Bris N, Pendlebury S, Thiébaut E (2008) Role of physico-chemical environment on gastropod assemblages at hydrothermal vents on the East Pacific Rise (13°N/ EPR). J Mar Biol Assoc UK 88(5):995–1008Google Scholar
  102. McArthur RA, Wilson EO (1967) The theory of island biogeography. Princeton University Press, Princeton, NJGoogle Scholar
  103. McCollom TM, Shock EL (1997) Geochemical constraints on chemolithoautotrophic metabolism by microorganisms in seafloor hydrothermal systems. Geochem Cosmochim Acta 61:4375–4391Google Scholar
  104. McGill BJ, Enquist BJ, Weiher E, Westoby M (2006) Rebuilding community ecology from functional traits. Trends Ecol Evol 21(4):178–185Google Scholar
  105. McKinness ZP, McMullin ER, Fisher CR, Cavanaugh CM (2005) A new bathymodioline mussel symbiosis at the Juan de Fuca hydrothermal vents. Mar Biol 348:109–116Google Scholar
  106. McMullin ER, Hourdez S, Schaeffer SW, Fisher CR (2003) Phylogeny and biogeography of deep sea vestimentiferan tubeworms and their bacterial symbionts. Symbiosis 34(1):1–41Google Scholar
  107. Menge BA, Sutherland JP (1976) Species diversity gradients, synthesis of the roles of predation, competition, and temporal heterogeneity. Am Nat 110:351–369Google Scholar
  108. Micheli F, Peterson CH, Mullineaux LS, Fisher CR, Mills SW, Sancho G, Johnson GA, Lenihan HS (2002) Predation structures communities at deep-sea hydrothermal vents. Ecol Mongr 72:365–382Google Scholar
  109. Mills LS, Soulé ME, Doak DF (1993) The keystone-species concept in ecology and conversation. Bioscience 43(4):219–224Google Scholar
  110. Mills SW, Mullineaux LS, Tyler PA (2007) Habitat associations in gastropod species at East Pacific Rise hydrothermal vents. Biol Bull 212:185–194Google Scholar
  111. Mullineaux LS, Fisher CR, Peterson CH, Schaeffer SW (2000) Tubeworm succession at hydrothermal vents: use of biogenic cues to reduce habitat selection error? Oecologia 123:275–284Google Scholar
  112. Mullineaux LS, Peterson CH, Micheli F, Mills SW (2003) Successional mechanism varies along a gradient in hydrothermal fluid flux at deep-sea vents. Ecol Mongr 73:523–542Google Scholar
  113. Nees HA, Moore TS, Mullaugh KM, Holyoke RR, Janzen CP, Ma S, Metzger E, Waite TJ, Yucel M, Lutz RA, Shank TM, Vetriani C, Nuzzio DB, Luther GW III (2008) Hydrothermal vent mussel habitat chemistry, pre- and post-eruption at 9°50’N on the East Pacific Rise. J Shell Res 27(1):169–175Google Scholar
  114. Nix ER, Fisher CR, Vodenichar J, Scott KM (1995) Physiological ecology of a mussel with methanotrophic endosymbionts a three hydrocarbon seep sites in the Gulf of Mexico. Mar Biol 122(4):605–617Google Scholar
  115. Olu-le Roy K, Sibuet M, Fiala-Médioni A, Gofas S, Salas C, Mariotti A, Foucher J-P, Woodside J (2004) Cold seep communities in the deep eastern Mediterranean Sea: composition, symbiosis and spatial distribution on mud volcanoes. Deep Sea Res I 51:1915–1936Google Scholar
  116. Olu-le Roy K, Caprais J-C, Fifis A, Fabri M-C, Galéron J, Budzinsky H, Le Ménach K, Khripounoff A, Ondréas H, Sibuet M (2007) Cold-seep assemblages on a giant pockmark off West Africa: spatial patterns and environmental control. Mar Ecol 28:115–130Google Scholar
  117. Ott J, Bright M, Bulgheresi S (2005) Marine microbial thiotrophic ectosymbioses. Ocean Mar Biol 42:95–118Google Scholar
  118. Paine RT (1974) Intertidal community structure: experimental studies on the relationship between a dominant competitor and its principle competitor. Oecologia 15:93–120Google Scholar
  119. Power ME, Tilman D, Estes JA, Menge BA, Bond WJ, Mills LS, Daily G, Castilla JC, Lubchenco J, Paine RT (1996) Challenges in the quest for keystones. Bioscience 46(8):609–620Google Scholar
  120. Renninger GH, Kass L, Gleeson RA, Van Dover CL, Battelle B-A, Jinks RN, Herzog ED, Chamberlain SC (1995) Sulfide as a chemical stimulus for deep-sea hydrothermal vent shrimp. Biol Bull 189:69–76Google Scholar
  121. Rex MA, Stuart CT, Hessler RR, Allen JA, Sanders HL, Wilson GDF (1993) Global-scale latitudinal patterns of species diversity in the deep-sea benthos. Nature 365:636–639Google Scholar
  122. Ricklefs RE (1987) Community diversity: Relative roles of local and regional processes. Science 235:167–171Google Scholar
  123. Robigou V, Delaney JR, Stakes DS (1993) Large massive sulphide deposits in a newly discovered active hydrothermal system, the High Rise Field, Endeavour Segment, Juan de Fuca Ridge. Geophys Res Lett 20(17):1887–1890Google Scholar
  124. Robinson CA, Bernhard JM, Levin LA, Mendoza GF, Blanks JK (2004) Surficial hydrocarbon seep infauna from the Blake Ridge (Atlantic Ocean, 2150 m) and the Gulf of Mexico (690–2240 m). PSZN Mar Ecol 25(4):313–336Google Scholar
  125. Rona PA, Thompson G, Mottl MJ, Karson JA, Jenkins WJ, Graham D, Mallette M, Von Damm K, Edmond JM (1984) Hydrothermal activity at the Trans-Atlantic Geotraverse Hydrothermal Field, Mid-Atlantic Ridge crest at 26°N. J Geophys Res 89:1365–1377Google Scholar
  126. Sahling H, Rickert D, Lee RW, Linke P, Suess E (2002) Macrofaunal community structure and sulfide flux at gas hydrate deposits from the Cascadia convergent margin, NE Pacific. Mar Ecol Prog Ser 231:121–138Google Scholar
  127. Sancho G, Fisher CR, Mills SW, Micheli F, Johnson GA, Lenihan HS, Peterson CH, Mullineaux LS (2005) Selective predation by the zoarcid fish Thermarces cerberus at hydrothermal vents. Deep Sea Res I 52:837–844Google Scholar
  128. Sarradin P-M, Lannuzel D, Waeles M, Crassous P, Le Bris N, Caprais JC, Fouqet Y, Fabri MC, Riso R (2007) Dissolved and particulate metals (Fe, Zn, Cu, Cd, Pb) in two habitats from an active hydrothermal field on the EPR at 13°N. Sci Tot Environ 392:119–129Google Scholar
  129. Sarrazin J, Robigou V, Juniper SK, Delaney JR (1997) Biological and geological dynamics over four years on a high-temperature sulfide structure at the Juan de Fuca Ridge hydrothermal observatory. Mar Ecol Prog Ser 153:5–24Google Scholar
  130. Sarrazin J, Juniper SK, Massoth G, Legendre P (1999) Physical and chemical factors influencing species distributions on hydrothermal sulfide edifices of the Juan de Fuca Ridge, northeast Pacific. Mar Ecol Prog Ser 190:89–112Google Scholar
  131. Scheirer DS, Shank TM, Fornari DJ (2006) Temperature variations at diffuse and focused flow hydrothermal vent sites along the northern East Pacific Rise. Geochem Geophys Geosyst 7:Q03002Google Scholar
  132. Schmidt C, Vuillemin R, Le Gall C, Gaill F, Le Bris N (2008) Geochemical energy sources for microbial primary production in the environment of hydrothermal vent shrimps. Mar Chem 108:18–31Google Scholar
  133. Shank TM, Fornari DJ, Von Damm KL, Lilley MD, Haymon RM, Lutz RA (1998) Temporal and spatial patterns of biological community development at nascent deep-sea hydrothermal vents (9°50’ N, East Pacific Rise). Deep Sea Res II 45:465–515Google Scholar
  134. Shank TM, Govenar B, Buckman K, Fornari DJ, Soule SA, Luther GW III, Lutz RA, Vetriani C, Tolstoy M, Cowen JP, Von Damm KL (2006) Initial biological, chemical, and geological observations after the 2005-6 volcanic eruption on the East Pacific Rise. Eos Trans. AGU, 87(52), Fall Meet. Suppl., Abstract V13C–04Google Scholar
  135. Sibuet M, Olu K (1998) Biogeography, biodiversity and fluid dependence of deep-sea cold-seep communities at active and passive margins. Deep Sea Res II 45(1–3):517–567Google Scholar
  136. Smith EB, Scott KM, Nix ER, Korte C, Fisher CR (2000) Growth and condition of seep mussels (Bathymodiolus childressi) at a Gulf of Mexico Brine Pool. Ecology 81(9):2392–2403Google Scholar
  137. Sommer S, Linke P, Pfannkuche O, Schleicher T, Schneider von Deimling J, Reitz A, Haeckle M, Flogel S, Hensen C (2009) Seabed methane emissions and the habitat of frenulate tubeworms on the Captain Arutyunov mud volcano (Gulf of Cadiz). Mar Ecol Prog Ser 382:69–86Google Scholar
  138. Stewart FJ, Newton ILG, Cavanaugh CM (2005) Chemosynthetic endosymbioses: adaptations to oxic–anoxic interfaces. Trends Microbiol 13(9):439–448Google Scholar
  139. Tolstoy M, Cowen JP, Baker ET, Fornari DJ, Rubin KH, Shank TM, Waldhauser F, Bohnenstiehl DR, Forsyth DW, Holmes RC, Love B, Perfit MR, Weekly RT, Soule SA, Glazer B (2006) A sea-floor spreading event captured by seismometers. Science 314:1920–1922Google Scholar
  140. Tsurumi M, Tunniclffe V (2001) Characteristics of a hydrothermal vent assemblage on a volcanically active segment of Juan de Fuca Ridge, northeast Pacific. Can J Fish Aquat Sci 58(3):530–542Google Scholar
  141. Tsurumi M, Tunniclffe V (2003) Tubeworm-associated communities at hydrothermal vents on the Juan de Fuca Ridge, northeast Pacific. Deep Sea Res I 50(5):611–629Google Scholar
  142. Tunnicliffe V (1988) Biogeography and evolution of hydrothermal-vent fauna in the eastern Pacific Ocean. Proc R Soc Lond B 233:347–366Google Scholar
  143. Tunnicliffe V (1991) The biology of hydrothermal vents – ecology and evolution. Oceanogr Mar Biol 29:319–407Google Scholar
  144. Tunnicliffe V (1992) The nature and origin of the modern hydrothermal vent fauna. Palaios 7:338–350Google Scholar
  145. Tunnicliffe V, Fowler CMR, McArthur AG (1996) Plate tectonic history and hot vent biogeography. In: Rona PA, MacLeod CJ, Tyler PA, Walker CL (eds) Tectonic, magmatic, hydrothermal and biological segmentation of Mid-Ocean Ridges. Geological Society Special Publication No. 118. Geological Society of LondonGoogle Scholar
  146. Tunnicliffe V, Embley RW, Holden JF, Butterfield DA, Massoth GJ, Juniper SK (1997) Biological colonization of new hydrothermal vents following an eruption on Juan de Fuca Ridge. Deep Sea Res I 44(9–10):1627–1644Google Scholar
  147. Tunnicliffe V, McArthur AG, McHugh D (1998) A biogeographical perspective of the deep-sea hydrothermal vent fauna. Adv Mar Biol 34:353–442Google Scholar
  148. Turnipseed M, Knick KI, Lipcius RN, Dreyer J, Van Dover CL (2003) Diversity in mussel beds at deep-sea hydrothermal vents and cold seeps. Ecol Lett 6:518–523Google Scholar
  149. Turnipseed M, Jenkins CD, Van Dover CL (2004) Community structure in Florida Escarpment seep and Snake Pit (Mid-Atlantic Ridge) vent mussel bed. Mar Biol 145:121–132Google Scholar
  150. Underwood AJ, Chapman MG, Connell SD (2000) Observations in ecology: you can’t make progress on processes without understanding the patterns. J Exp Mar Biol Ecol250 (1-2):97–115Google Scholar
  151. Urcuyo IA, Massoth GJ, Julian D, Fisher CR (2003) Habitat, growth, and physiological ecology of a basaltic community of Ridgeia piscesae from the Juan de Fuca Ridge.Deep Sea Res I50 (6):763–780Google Scholar
  152. Urcuyo IA, Bergquist DC, MacDonald IR, Van Horn MJ, Fisher CR (2007) Growth and longevity of the tubeworm Ridgeia piscesae in the variable diffuse flow habitats of the Juan de Fuca Ridge. Mar Ecol Prog Ser 344:143–157Google Scholar
  153. van de Koppel J, Altieri AH, Silliman BR, Bruno JF, Bertness MD (2006) Scale-dependent interactions and community structure on cobble beaches. Ecol Lett 9:45–50Google Scholar
  154. Van Dover CL (2002) Community structure of mussel beds at deep-sea hydrothermal vents. Mar Ecol Prog Ser 230:137–158Google Scholar
  155. Van Dover CL (2003) Variation in community structure within hydrothermal vent mussel beds of the East Pacific Rise. Mar Ecol Prog Ser 253:55–66Google Scholar
  156. Van Dover CL, Doerries MB (2005) Community structure in mussel beds at Logatchev hydrothermal vents and a comparison of macrofaunal species richness on slow- and fast-spreading mid-ocean ridges. Mar Ecol 26:110–120Google Scholar
  157. Van Dover CL, Lutz RA (2004) Experimental ecology at deep-sea hydrothermal vents: a perspective. J Exp Mar Biol Ecol 300:273–307Google Scholar
  158. Van Dover CL, German CR, Speer KG, Parson LM, Vrijenhoek RC (2002) Evolution and biogeography of deep-sea vent and seep invertebrates. Science 295:1253–1257Google Scholar
  159. Van Dover CL, Aharon P, Bernhard JM, Caylor E, Doerries M, Flickinger W, Gilhooly W, Goffredi SK, Knick KE, Macko SA, Rapoport S, Raulfs EC, Ruppel C, Salerno JL, Seitz RD, Sen Gupta BK, Shank T, Turnipseed M, Vrijenhoek R (2003) Blake Ridge methane seeps: characterization of a soft-sediment, chemosynthetically based ecosystem. Deep Sea Res I 50(2):281–300Google Scholar
  160. Vismann B (1991) Sulfide tolerance: Physiological mechanisms and ecological implications. Ophelia 34(1):1–27Google Scholar
  161. Voight JR (2005) Hydrothermal vent octopuses of Vulcanoctopus hydrothermalis, feed on bathypelagic amphipods of Halice hesmonectes. J Mar Biol Assoc UK 85(4):985–988Google Scholar
  162. Voight JR, Sigwart JD (2007) Scarred limpets at hydrothermal vents: evidence of predation by deep-sea whelks. Mar Biol 152(1):129–133Google Scholar
  163. Von Damm KL, Lilley MD (2004) Diffuse flow hydrothermal fluids from 9°50’N East Pacific Rise: origin, evolution and biogeochemical controls. AGU Monogr 144:245–268Google Scholar
  164. Wright JP, Jones CG (2004) Predicting effects of ecosystem engineers on patch-scale species richness from primary productivity. Ecology 85(8):2071–2081Google Scholar
  165. Wright JP, Jones CG (2006) The concept of organisms as ecosystem engineers ten years on: progress, limitations, and challenges. Bioscience 56(3):203–236Google Scholar
  166. Wright JP, Jones CG, Flecker AS (2002) An ecosystem engineer, the beaver, increases species richness and the landscape scale. Oecologia 132(1):96–101Google Scholar
  167. Wright JP, Gurney WSC, Jones CG (2004) Patch dynamics in a landscape modified by ecosystem engineers. Oikos 105:336–348Google Scholar
  168. You CF, Bickle MJ (1998) Evolution of an active sea-floor massive sulphide deposit. Nature 394:668–671Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Biology DepartmentWoods Hole Oceanographic InstitutionWoods HoleUSA

Personalised recommendations