Effectiveness of eriophyid mites for biological control of weedy plants and challenges for future research

Abstract

Eriophyid mites have been considered to have a high potential for use as classical biological control agents of weeds. We reviewed known examples of the use of eriophyid mites to control weedy plants to learn how effective they have been. In the past 13 years, since Rosenthal’s 1996 review, 13 species have undergone some degree of pre-release evaluation (Aceria genistae, A. lantanae, Aceria sp. [boneseed leaf buckle mite (BLBM)], A. salsolae, A. sobhiani, A. solstitialis, A. tamaricis, A. thalgi, A. thessalonicae, Cecidophyes rouhollahi, Floracarus perrepae, Leipothrix dipsacivagus and L. knautiae), but only four (A. genistae, Aceria sp. [BLBM], C. rouhollahi and F. perrepae) have been authorized for introduction. Prior to this, three species (Aceria chondrillae, A. malherbae and Aculus hyperici) were introduced and have become established. Although these three species impact the fitness of their host plant, it is not clear how much they have contributed to reduction of the population of the target weed. In some cases, natural enemies, resistant plant genotypes, and adverse abiotic conditions have reduced the ability of eriophyid mites to control target weed populations. Some eriophyid mites that are highly coevolved with their host plant may be poor prospects for biological control because of host plant resistance or tolerance of the plant to the mite. Susceptibility of eriophyids to predators and pathogens may also prevent them from achieving population densities necessary to reduce host plant populations. Short generation time, high intrinsic rate of increase and high mobility by aerial dispersal imply that eriophyids should have rapid rates of evolution. This raises concerns that eriophyids may be more likely to lose efficacy over time due to coevolution with the target weed or that they may be more likely to adapt to nontarget host plants compared to insects, which have a longer generation time and slower population growth rate. Critical areas for future research include life history, foraging and dispersal behavior, mechanisms controlling host plant specificity, and evolutionary stability of eriophyid mites. This knowledge is critical for designing and interpreting laboratory and field experiments to measure host plant specificity and potential impact on target and nontarget plants, which must be known before they can be approved for release. One of the more successful examples of an eriophyid mite controlling an invasive alien weed is Phyllocoptes fructiphilus, whose impact is primarily due to transmission of a virus pathogenic to the target, Rosa multiflora. Neither the mite nor the virus originated from the target weed, which suggests that using “novel enemies” may sometimes be an effective strategy for using eriophyid mites.

Keywords

Biocontrol Invasive plant Weed Host plant specificity Efficacy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amrine JW Jr (1996) Phyllocoptes fructiphilus and biological control of multiflora rose. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eriophyoid mites—their biology, natural enemies and control, vol 6. Elsevier, Amsterdam, pp 741–749CrossRefGoogle Scholar
  2. Amrine JW Jr (2002) Multiflora rose. In: Van Driesche R, Lyon S, Blossey B, Hoddle M, Reardon R (eds) Biological control of invasive plants in the eastern United States. USDA Forest Service Publication FHTET-2002-04, pp 265–292Google Scholar
  3. Amrine JW Jr, Stasny T (1989) The eriophyid mite, Paraphytoptus pannolus K. on giant ragweed, Ambrosia trifida L. Proc West Va Acad Sci 61(1):23Google Scholar
  4. Amrine JW Jr, Stasny TA (1994) Catalog of the Eriophyoidea (Acarina: Prostigmata) of the world. Indira Publishing House, MichiganGoogle Scholar
  5. Amrine JW Jr, Hindal DF, Williams R, Appel J, Stasny T, Kassar A (1990) Rose rosette as a biocontrol of multiflora rose, 1987–1989. In: Proceedings of the 43rd annual meeting of the Southern Weed Science Society, pp 316–320Google Scholar
  6. Andres LA (1983) Considerations in the use of phytophagous mites for the biological control of weeds. In: Hoy MA, Cunningham GL, Knutson L (eds) Biological control of pests by mites. Univ Calif Agri Exp Stn Special Publ 3304:53–60Google Scholar
  7. Baars JR, Neser S (1999) Past and present initiatives on the biological control of Lantana camara (Verbenaceae) in South Africa. Afr Entomol Mem 1:21–33Google Scholar
  8. Bacic J, Petanović R (1995) A study of fluctuations in the spurge eriophyid mite, Vasates euphorbiae Pet. populations. In: Kropczynska D, Boczek J, Tomczyk A (eds) The Acari, physiological and ecological aspects of Acari-host relationships. Oficyna Dabor, Warszawa, pp 163–171Google Scholar
  9. Baker GT, Stadelbacher EA, Chandrapatya A (1986) Abnormalities by Coptophylla caroliniani Chand. (Eriophyidae) on Geranium carolinianum. J Appl Entomol 101:313–316CrossRefGoogle Scholar
  10. Bergh JC (2001) Ecology and aerobiology of dispersing citrus rust mites (Acari: Eriophyidae) in central Florida. Environ Entomol 30(2):318–326CrossRefGoogle Scholar
  11. Boczek J (1995) Eriophyid mites (Acari: Eriophyoidea) as agents of biological weed control. In: Kropczynska D, Boczek J, Tomczyk A (eds) The Acari, Physiological and ecological aspects of Acari-host relationships. Oficyna Dabor, Warszawa, pp 601–606Google Scholar
  12. Boczek J, Chyczewski J (1978) Eriophyid mites (Acarina: Eriophyoidea) occurring on weed plants in Poland. Rcz nauk Rolnb, ser E 7(1):109–114Google Scholar
  13. Boczek J, Maciejczyk K (1995) [The bionomy of Aceria artemisiae (Acari: Eriophyidae) and the possibilities of use of the mite for control of Artemisia vulgaris.] Bionomia Aceria artemisiae (Acari: Eriophyidae) i mozliwosci wykorzystania tego szpeciela do zwalczania bylicy. Materiay Sesji Instytutu Ochrony Roslin 35(2):138–140Google Scholar
  14. Boczek JH, Petanović R (1996) Eriophyid mites as agents for the biological control of weeds. In: Moran VC, Hoffmann JH (eds) Proceedings of the IX international symposium on biological control of weeds, 19–26 January 1996, Stellenbosch, South Africa, University of Cape Town, pp 127–131Google Scholar
  15. Boldt PE, Sobhian R (1993) Release and establishment of Aceria malherbae (Acari: Eriophyidae) for control of field bindweed in Texas. Environ Entomol 22(1):234–237Google Scholar
  16. Boydston RA, Williams MM (2004) Combined effects of Aceria malherbae and herbicides on field bindweed (Convolvulus arvensis) growth. Weed Sci 52(2):297–301CrossRefGoogle Scholar
  17. Briese DT (2006) Host specificity testing of weed biological control agents: initial attempts to modernize the centrifugal phylogenetic method. In: Hoddle MS, Johnson MW (eds) Proceedings of the fifth California conference on biological control, 25–27 July 2006, The Historic Mission Inn, Riverside, California, pp 32–39Google Scholar
  18. Briese DT, Cullen JM (2001) The use and usefulness of mites in biological control of weeds. In: Halliday RB, Walter DE, Proctor HC, Norton RA, Colloff MJ (eds) Acarology: Proceedings of the 10th international congress. CSIRO Publishing, Melbourne, pp 453–463Google Scholar
  19. Britten DC, Schuster GL, Michels GJ Jr, Owings DA (2003) Using cold-stored or overwintering Aceria malherbae Nuzzaci (Acarina: Eriophyiidae [sic]), a gall-forming eriophyid mite, for infestation of field bindweed. Southwest Entomol 28:273–280Google Scholar
  20. Burdon JJ, Groves RH, Cullen JM (1981) The impact of biological control on the distribution and abundance of Chondrilla juncea in south-eastern Australia. J Appl Ecol 18(3):957–966CrossRefGoogle Scholar
  21. CABI (2008) Weed biological control quarterly report 30 September 2008. CABI Europe–Switzerland, DelémontGoogle Scholar
  22. CABI (2009) Biological control of perennial pepperweed, Lepidium latifolium Annual Report 2008. CABI Europe–Switzerland, DelémontGoogle Scholar
  23. Caresche LA, Wapshere AJ (1974) Biology and host specificity of the Chondrilla gall mite Aceria chondrillae (G. Can.) (Acarina, Eriophyidae). Bull Entomol Res 64:183–192CrossRefGoogle Scholar
  24. Castagnoli M (1978) [Investigation on the causes of withering and death of Spartium junceum in Italy. Eriophyes genistae (Nal.) and E. spartii (G. Can.) (Acarina, Eriophyoidea): redescription and outlines of biology and damage.] Ricerche sulle cause di deperimento e moria dello Spartium junceum L. in Italia. Eriophyes genistae (Nal.) e E. spartii (G. Can.) (Acarina, Eriophyoidea): ridescrizione, cenni di biologia e danni. Redia 61:539–550Google Scholar
  25. Castagnoli M (1992) Redescription of Aceria tamaricis (Trotter, 1901) (Acari, Eriophyidae). Redia 75(2):446–452Google Scholar
  26. Castagnoli M, Sobhian R (1991) Taxonomy and biology of Acaria centaureae (Nal.) and A. thessalonicae n. sp. (Acari: Eriophyoidea) associated with Centaurea diffusa Lam. in Greece. Redia 74(2):509–524Google Scholar
  27. Chan KL, Turner CE (1998) Discovery of the gall mite Aceria genistae (Nalepa) (Acarina: Eriophyidae) on gorse and French broom in the United States. Pan-Pac Entomol 74(1):55–57Google Scholar
  28. Chandrapatya A, Baker GT (1986) Biological aspects of the geranium mites, Coptophylla caroliniani and Aceria mississippiensis (Prostigmata: Eriophyidae). Exp Appl Acarol 2:201–216CrossRefGoogle Scholar
  29. Chumak VA (1975) Pests of Salvia sclarea. Zashchita Rastenii 12:35–36Google Scholar
  30. Clement SL, Rosenthal SS, Mimmocchi T, Cristofaro M, Nuzzaci G (1984) Concern for U.S. native plants affects biological control of field bindweed. 10th international congress of plant protection 1983. Volume 2. Proceedings of a conference held at Brighton, England, 20–25 November, 1983. Plant protection for human welfare. British Crop Protection Council, Croydon, UK. Publication 5A-R3:775Google Scholar
  31. Cock MJW (1982) Potential biological control agents for Mikania micrantha from the neotropical region. Trop Pest Manage 28(3):242–254CrossRefGoogle Scholar
  32. Cock MJW (1984) Possibilities for biological control of Chromolaena odorata. Trop Pest Manage 30(1):7–13CrossRefGoogle Scholar
  33. Cock MJW, Ellison CA, Evans HC, Ooi PAC (2000) Can failure be turned into success for biological control of mile-a-minute weed (Mikania micrantha)? In: Spencer NR (ed) Proceedings of the X international symposium on biological control of weeds, 4–14 July 1999, Montana State University, Bozeman, Montana, pp 155–167Google Scholar
  34. Cofrancesco AF Jr, Shearer JF (2004) Technical advisory group for biological control of weeds. In: Coombs EM, Clark JK, Piper GL, Cofrancesco AF Jr (eds) Biological control of invasive plants in the United States. Oregon State University Press, Corvallis, pp 38–41Google Scholar
  35. Cook MT (1909) Some insect galls of Cuba. Secretaria de Agricultura, Comercio y Trabajo de la Republica de Cuba, Estacion Central Agromonica, Second Report, pp 143–146Google Scholar
  36. Cordo HA (1996) [Biological control of weeds in Argentina: progress and actual situation, two decades after its initiation.] Control biologico de malezas en la Argentina: progresos y situacion actual, a dos decadas de su comienzo. In: Zapater MC (ed) El control biologico en America Latina: Actas de la “III mesa redonda de control biologico en el Neotropico”. Rio de Janeiro, Brazil, pp 9–15Google Scholar
  37. Craemer C (1995) Host specificity, and release in South Africa, of Aceria malherbae Nuzzaci (Acari, Eriophyoidea), a natural enemy of Convolvulus arvensis L. (Convolvulaceae). Afr Entomol 3(2):213–215Google Scholar
  38. Craemer C (1996) Eriophyoidea (Acari) associated with Lantana camara L., with descriptions of two new species. Afr Plant Prot 2(1):59–66Google Scholar
  39. Craemer C, Neser S (1990) Mites imported against lantana. Plant Prot News 19:3Google Scholar
  40. Craemer C, Neser S, Smith Meyer MKP (1996) [Eriophyid mites (Acari: Eriophyoidea: Eriophyidae) as possible control agents of undesirable introduced plants in South Africa.] Eriophyid-myte (Acari: Eriophyoidea: Eriophyidae) as moontlike beheeragente van ongewense uitheemse plante in Suid-Afrika. AS Tydskrif vir Natuur-wetenskap en Tegnologie 15:99–109Google Scholar
  41. Cromroy HL (1977) The potential use of eriophyoid mites for control of weeds. In: Freeman TE (ed) Proceedings of the IV international symposium on biological control of weeds, University of Florida, Gainesville, Florida, pp 294–296Google Scholar
  42. Cromroy HL (1979) Eriophyoidea in biological control of weeds. In: Rodriguez JG (ed) Recent advances in acarology, vol 1. Academic Press, New York, pp 473–475Google Scholar
  43. Cromroy HL (1983) Potential use of mites in biological control of terrestrial and aquatic weeds. In: Hoy MA, Cunningham GL, Knutson L (eds) Biological control of pests by mites. Univ Calif Agri Exp Stn Special Publ 3304:61–66Google Scholar
  44. Cruttwell RE (1977) Insects and mites attacking Eupatorium odoratum L. in the neotropics. 6. Two eriophyid mites, Acalitus adoratus Keifer and Phyllocoptes cruttwellae Keifer. Commonwealth Institute of Biological Control Tech Bull 18:59–63Google Scholar
  45. Cruttwell McFadyen RE (1995) The accidental introduction of the Chromolaena mite Acalitus adoratus into Southeast Asia. In: Delfosse ES, Scott RR (eds) Proceedings of the VIII international symposium on biological control of weeds, 2–7 February 1992, Lincoln University, Canterbury, New Zealand. DSIR/CSIRO, Melbourne, pp 649–652Google Scholar
  46. Cruttwell McFadyen RE (2002) Chromolaena in Asia and the Pacific: spread continues but control prospects improve. In: Zachariades C, Muniappan R, Strathie LW (eds) Proceedings of the fifth international workshop on biological control and management of Chromolaena odorata, Durban, South Africa. ARC-PPRI (2002), pp 13–18Google Scholar
  47. Cullen JM, Briese DT (2001) Host plant susceptibility to eriophyid mites used for weed biological control. In: Halliday RB, Walter DE, Proctor HC, Norton RA, Colloff MJ (eds) Acarology: Proceedings of the 10th international congress. CSIRO Publishing, Melbourne, pp 342–348Google Scholar
  48. Cullen JM, Moore AD (1983) The influence of three populations of Aceria chondrillae on three forms of Chondrilla juncea. J Appl Ecol 20(1):235–243CrossRefGoogle Scholar
  49. Cullen JM, Groves RH, Alex JF (1982) The influence of Aceria chondrillae on the growth and reproductive capacity of Chondrilla juncea. J Appl Ecol 19:529–537CrossRefGoogle Scholar
  50. Day MD, Urban AJ (2004) Ecological basis for selecting biocontrol agents for lantana. In: Cullen JM, Briese DT, Kriticos DJ, Lonsdale WM, Morin L, Scott JK (eds) Proceedings of the XI international symposium on biological control of weeds, 4–8 May, 2003, CSIRO Entomology, Canberra, Australia, pp 79–87Google Scholar
  51. Day MD, Broughton S, Hannan-Jones MA (2003a) Current distribution and status of Lantana camara and its biological control agents in Australia, with recommendations for further biocontrol introductions into other countries. Biocontrol News and Inf 24(3):63N–76NGoogle Scholar
  52. Day M, Wiley CH, Playford J, Zalucki MP (2003b) Lantana: current management status and future prospects. ACIAR Monograph 102Google Scholar
  53. de Lillo E, Duso C (1996) Currant and berries. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eriophyoid mites—their biology, natural enemies and control, vol 6. Elsevier, Amsterdam, pp 583–592 World Crop PestsGoogle Scholar
  54. de Lillo E, Monfreda R (2004) Salivary secretions of eriophyoids (Acari: Eriophyoidea): first results of an experimental model. Exp Appl Acarol 34(3–4):291–306PubMedGoogle Scholar
  55. de Lillo E, Skoracka A (2009) What’s “cool” on Eriophyoid mites? Exp Appl Acarol. doi: 10.1007/s10493-009-9297-4
  56. de Lillo E, Sobhian R (1994) Taxonomy, distribution and host specificity of a gall-making mite Aceria tamaricis (Trotter) (Acari–Eriophyoidea) asociated with Tamarix gallica L. (Parietales: Tamaricaceae) in southern France. Entomologica, Bari 28:5–16Google Scholar
  57. de Lillo E, Sobhian R (1996) A new Eriophyid species (Acari Eriophyoidea) on Salsola spp. (Centrospermae Chenopodiaceae) and a new report for Aceria tamaricis (Trotter). Entomologica, Bari 30:93–100Google Scholar
  58. de Lillo E, Baldari R, Cristofaro M, Kashefi J, Lifflefield J, Sobhian R, Tronci C (2004) Eriophyid mites for the biological control of knapweeds: morphological and biological observations. In: Cullen JM, Briese DT, Kriticos DJ, Lonsdale WM, Morin L, Scott JK (eds) Proceedings of the XI international symposium on biological control of weeds, 4–8 May, 2003, CSIRO Entomology, Canberra, Australia, pp 88–95Google Scholar
  59. de Lillo E, Craemer C, Amrine JW Jr, Nuzzaci G (2009) Recommended procedures and techniques for morphological studies of Eriophyoidea (Acari: Prostigmata). Exp Appl Acarol. doi:10.1007/s10493-009-9311-x
  60. Duffner K, Schruft G, Guggenheim R (2001) Passive dispersal of the grape rust mite Calepitrimerus vitis Nalepa 1905 (Acari, Eriophyoidea) in vineyards. Anz Schadl 74(1):1–6CrossRefGoogle Scholar
  61. Epstein AH, Hill JH (1999) Status of rose rosette disease as a biological control for multiflora rose. Plant Dis 83(2):92–101CrossRefGoogle Scholar
  62. Ewald PW (1995) The evolution of virulence: a unifying link between parasitology and ecology. J Parasitol 81(5):659–669PubMedCrossRefGoogle Scholar
  63. Fenton B (2002) Speciation and biogeography in eriophyid mites: a review. In: Bernini F, Nannelli R, Nuzzaci G, de Lillo E (eds) Acarid phylogeny and evolution: adaptation in mites and ticks. Proceedings of the IV symposium of the European association of acarologists. Kluwer, Dordrecht, Boston and London, pp 27–34Google Scholar
  64. Fenton B, Birch ANE, Malloch G, Lanham PG, Brennan RM (2000) Gall mite molecular phylogeny and its relationship to the evolution of plant host specificity. Exp Appl Acarol 24(10–11):831–861PubMedCrossRefGoogle Scholar
  65. Flechtmann CHW (1973) On an Eriophyid mite (Acari) from Lantana from Brazil. An Soc Entomol Brasil 2(1):109–110Google Scholar
  66. Flechtmann CHW, Harley KLS (1974) Preliminary report on mites (Acari) associated with Lantana camara in the neotropical region. An Soc Entomol Brasil 3:69–71Google Scholar
  67. Gassmann A, Tosevski I, Petanović R, Rancic D, Magud B, Maia G (2004) Biological control of Canada thistle (Cirsium arvense). In: CABI Bioscience Switzerland Centre Annual Report 2003. CABI Bioscience, Delémont, Switzerland, p 13Google Scholar
  68. Gassmann A, Gerber E, Tosevski I, Petanović R, Magud B, Cortat G (2005) Biological control of Canada thistle, Cirsium arvense. In: CABI Bioscience Switzerland Centre Annual Report 2004, CABI Bioscience, Delémont, Switzerland, p 27Google Scholar
  69. Gassmann A, Tosevski I, Petanović R, Magud B, Haefliger P, Chevillat V, Rheinhold T (2006) Biological control of Canada thistle, Cirsium arvense. In: CABI Bioscience Switzerland Centre annual report 2005. CABI Bioscience, Delémont, Switzerland, p 27Google Scholar
  70. Gerson U, Smiley RL, Ochoa R (2003) Mites (Acari) for pest control. Blackwell Science Ltd., Oxford, UK, pp 117–126Google Scholar
  71. Goeden RD, Andres LA (1999) Biological control of weeds in terrestrial and aquatic environments. In: Bellows TS, Fisher TW (eds) Handbook of biological control. Principles and applications of biological control. Academic Press, San Diego, pp 871–890Google Scholar
  72. Goeden RD, Louda SM (1976) Biotic interference with insects imported for weed control. Annu Rev Entomol 21:325–342CrossRefGoogle Scholar
  73. Goeden RD, Kovalev OV, Ricker DW (1974) Arthropods exported from California to the U.S.S.R. for ragweed control. Weed Sci 22:156–158Google Scholar
  74. Goolsby JA, Zonneveld R, Bourne A (2004) Prerelease assessment of impact on biomass production of an invasive weed, Lygodium microphyllum (Lygodiaceae: Pteridophyta), by a potential biological control agent, Floracarus perrepae (Acariformes: Eriophyidae). Environ Entomol 33(4):997–1002CrossRefGoogle Scholar
  75. Goolsby JA, Jesudasan RWA, Jourdan H, Muthuraj B, Bourne AS, Pemberton RW (2005a) Continental comparisons of the interaction between climate and the herbivorous mite, Floracarus perrepae (Acari: Eriophyidae). Florida Entomol 88(2):129–134CrossRefGoogle Scholar
  76. Goolsby JA, Zonneveld R, Makinson JR, Pemberton RW (2005b) Host-range and cold temperature tolerance of Floracarus perrepae Knihinicki & Boczek (Acari: Eriophyidae), a potential biological-control agent of Lygodium microphyllum (Pteridophyta: Lygodiaceae). Aust J Entomol 44(3):321–330CrossRefGoogle Scholar
  77. Goolsby JA, DeBarro PJ, Makinson JR, Pemberton RW, Hartley DM, Frohlich DR (2006) Matching origin of an invasive weed for selection of a herbivore haplotype for a biological control programme. Mol Ecol 15:287–297PubMedCrossRefGoogle Scholar
  78. Habeck DH (1990) Insects associated with poison ivy and their potential as biological control agents. In: Delfosse ES (ed) Proceedings of the VII international symposium on biological control of weeds, 6–11 March 1988, Rome, Italy. Istituto Sperimentale per la Patologia Vegetale, Ministero dell’Agricoltura, e delle Foreste, Rome, Italy, pp 329–337Google Scholar
  79. Hansen RW (2008) The accidentally introduced Canada thistle mite Aceria anthocoptes in the western USA: utilization of native Cirsium thistles? In: Julien MH, Sforza R, Bon MC, Evans HC, Hatcher PE, Hinz HL, Rector BG (eds) Proceedings of the XII international symposium on biological control of weeds. April 22–27, 2007, La Grande Motte, France, CAB International Wallingford, UK, p 635Google Scholar
  80. Henry JM, Wegulo SN, Gibeault VA, Autio R (2005) Turfgrass performance with reduced irrigation and nitrogen fertilization. Int Turfgrass Soc Res J 10:93–101Google Scholar
  81. Hijmans RJ, Guarino L, Cruz M, Rojas E (2001) Computer tools for spatial analysis of plant genetic resources data: 1 DIVA-GIS. Plant Genet Resour Newsl 127:15–19Google Scholar
  82. Hokkanen HMT, Pimentel D (1989) New associates in biological control: theory and practice. Can Ent 121(10):829–840CrossRefGoogle Scholar
  83. Hong XY, Dong HQ, Fu YG, Cheng LS, Oldfield GN (2001) Relationships between eriophyoid mites and their host plants, with a case review of Eriophyoidea fauna of China. Syst Appl Acarol 6:119–136Google Scholar
  84. Howard RA (1969) A check list of cultivar names used in the genus Lantana. Arnoldia, Jamaica Plain 29:73–109Google Scholar
  85. Hoy MA, Ouyang YL (1989) Selection of the western predatory mite, Metaseiulus occidentalis (Acari: Phytoseiidae), for resistance to abamectin. J Econ Entomol 82(1):35–40Google Scholar
  86. Hufbauer RA, Roderick GK (2005) Microevolution in biological control: Mechanisms, patterns, and processes. Biol Control 35(3):227–239CrossRefGoogle Scholar
  87. Michels GJ Jr, Carney VA, Lydon J, Ochoa R, Renn RL (2008) New records for Aceria anthocoptes (Acari: Eriophyidae) occurring on Canada thistle in Colorado, Nebraska and Wyoming, USA. Entomol News 119(5):483–491CrossRefGoogle Scholar
  88. Jupp PW, Cullen JM (1996) Expected and observed effects of the mite, Aculus hyperici on St. John’s wort, Hypericum perforatum, in Australia. In: Moran VC, Hoffmann JH (eds) Proceedings of the IX international symposium on biological control of weeds, 19–26 January 1996, Stellenbosch, South Africa, University of Cape Town, pp 365–370Google Scholar
  89. Jupp PW, Briese DT, Cullen JM (1997) Evidence for resistance in Hypericum perforatum to a biological control agent, the eriophyid mite Aculus hyperici. Plant Prot Q 12:67–70Google Scholar
  90. Kassar A, Amrine JW Jr (1990) Rearing and development of Phyllocoptes fructiphilus (Acari: Eriophyidae). Entomol News 101(5):276–282Google Scholar
  91. Keifer HH, Denmark HA (1976) Eriophyes lantanae Cook (Acarina: Eriophyidae) in Florida. Entomology circular, Division of Plant Industry, Florida Department of Agriculture and Consumer Services 166:1–2Google Scholar
  92. Keil DJ (2006) 21. Plectocephalus D. Don. In: Flora of North America Editorial Committee (eds), Flora of North America North of Mexico. Oxford University Press, Inc., New York. 19:175–177Google Scholar
  93. Kelch DG, Baldwin BG (2003) Phylogeny and ecological radiation of New World thistles (Cirsium, Cardueae-Compositae) based on ITS and ETS rDNA sequence data. Mol Ecol 12(1):141–151PubMedCrossRefGoogle Scholar
  94. Kerr P (2008) Biocontrol of rabbits in Australia. Outlooks on Pest Manage 19(4):184–188CrossRefGoogle Scholar
  95. Knihinicki DK, McCarren KL, Scott JK (2009) A new species of Aceria (Acari: Eriophyidae) damaging sowthistles, Sonchus spp. (Asteraceae), in Australia with notes on Aceria sonchi (Nalepa, 1902). Zootaxa 2119:23–38Google Scholar
  96. Kovalev OV, Shevchenko VG, Danilov LG (1975) Aceria acroptiloni, sp. n. (Acarina, Tetrapodili), a promising phytophage for the biological control of Russian knapweed [Acroptilon repens (L.) DC.]. Entomol Rev, Apr/June 1974 (Transl 1975), 53(2):25–34Google Scholar
  97. Lauriault LM, Thompson DC, Pierce JB, Michels GJ, Hamilton WV (2004) Managing Aceria malherbae gall mites for control of field bindweed. New Mexico State University, Cooperative Extension Service, Las Cruces, NM. Circular 600Google Scholar
  98. Lindquist EE, Sabelis MW, Bruin J (eds) (1996) Eriophyoid mites–their biology, natural enemies and control, vol. 6. Elsevier, Amsterdam, World Crop PestsGoogle Scholar
  99. Lindroth JI (1904) Nya och salsynta finska Eriophyider. Acta Soc Fauna Flora Fenn 26(4):3–18Google Scholar
  100. Lipa JJ (1976) A new record of Aceria drabae (Nal.) (Acarina: Eriophyidae) on a weed Cardaria draba (L.) (Cruciferae) in Poland. Bull Acad Polon Sci Cl 24(8):457–459Google Scholar
  101. Lipa JJ (1978) [Preliminary studies on Aceria drabae (Nal.) (Acarina, Eriophyiidae) and its usability in biological control of hoary cress (Cardaria draba L.) (Cruciferae).] Wstepne badania nad szpecielem Aceria drabae (Nal.) (Acarina, Eriophyiidae) i jego przydatnoscia w biologicznym zwalczaniu chwastu Cardaria draba L. (Cruciferae). Pr Nauk Inst Ochr Rosl. Poznan, Panstwowe Wydawn. Rolnicze i Lesne 20(1):139–155Google Scholar
  102. Lipa JJ (1983) Usefulness of Aceria drabae in biological control of hoary cress. Proceedings of the tenth international congress of plant protection. Volume 2. Proceedings of a conference held at Brighton, England, 20–25 November, 1983. Plant protection for human welfare, p 773Google Scholar
  103. Lipa JJ, Studzinski A, Malachowska D (1977) Insects and mites associated with cultivated and weedy cruciferous plants (Cruciferae) in Poland and central Europe. Owady i roztocze zwiazane z roslinami uprawnymi i chwastami z rodziny krzyzowych Cruciferae w Polsce i srodkowej Europie. Polish Academy of Sciences, Warsaw, PolandGoogle Scholar
  104. Lipa JJ, Murillo J, Castro F, Vinuela E, del Estal P, Budia F, Caballero P (1998) [First record of Aceria drabae (Nalepa) (Acarina: Eriophyidae) in Spain.] Primera cita de Aceria drabae (Nalepa) (Acarina: Eriophyidae) en Espana. Boletin de Sanidad Vegetal, Plagas 24(4):797–802Google Scholar
  105. Littlefield JL (2004) Spatial distribution and seasonal life history of Aceria malherbae (Acari: Eriophyidae) on Convolvulus arvensis in Montana, USA. In: Cullen JM, Briese DT, Kriticos DJ, Lonsdale WM, Morin L, Scott JK (eds) Proceedings of the XI international symposium on biological control of weeds, 4–8 May, 2003, CSIRO Entomology, Canberra, Australia, p 607Google Scholar
  106. Littlefield JL, Sobhian R (2000) The host specificity of Phyllocoptes nevadensis Roivainen (Acari: Eriophyidae), a candidate for the biological control of leafy and cypress spurges. In: Spencer NR (ed) Proceedings of the X international symposium on biological control of weeds, 4–14 July 1999, Montana State University, Bozeman, Montana, pp 621–626Google Scholar
  107. Littlefield JL, Sobhian R, Kashefi J, Sykes R (2000) A petition for the introduction and field release of the gall mite, Aceria centaureae (Nalepa) (Acari: Eriophyidae), for the biological control of diffuse and spotted knapweed in Montana. Petition 00-03. Submitted to USDA Technical Advisory Group, March 2000Google Scholar
  108. Littlefield JL, de Meij AE, Sobhian R (2001) Potential host range of two Urophora flies and an eriophyid mite for the biological control of Russian knapweed. In: Smith L (ed) Proceedings, 1st international knapweed symposium of the 21st century; 2001 March 15–16; Coeur d’Alene, ID. U.S. Department of Agriculture, Agricultural Research Service, Albany, California, pp 102–103Google Scholar
  109. Louda SM, Pemberton RW, Johnson MT, Follett PA (2003) Nontarget effects—the Achilles’ heel of biological control? Retrospective analyses reduce risk associated with biocontrol introductions. Annu Rev Entomol 48:365–396PubMedCrossRefGoogle Scholar
  110. Magud BD, Stanisavljević LZ, Petanović RU (2007) Morphological variation in different populations of Aceria anthocoptes (Acari: Eriophyoidea) associated with the Canada thistle, Cirsium arvense, in Serbia. Exp Appl Acarol 42(3):173–183PubMedCrossRefGoogle Scholar
  111. Mahr FA, Mayo G, Ainsworth N, Jupp P (2000) Monitoring the impact of the biological control agent Aculus hyperici on Hypericum perforatum across south eastern Australia. In: A.C. Bishop AC, M. Boersma M, Barnes CD (eds) Proceedings of the 12th Australian weeds conference, 12–16 September 1999, Wrest Point Convention Centre, Hobart, Tasmania, pp 335–338Google Scholar
  112. Manimekalai R, Nagarajan P (2007) Use of simple sequence repeat markers for estimation of genetic diversity in coconut (Cocos nucifera L.) germplasm accessions. J Plant Biochem Biotechnol 16(1):29–33Google Scholar
  113. Manson DCM (1989) New species and records of eriophyid mites from New Zealand. New Zealand J Zool 16:37–49Google Scholar
  114. Mayo GM, Roush RT (1997) Genetic variability of Hypericum perforatum L. (Clusiaceae) and the detection of resistance to the biological control agent Aculus hyperici Liro (Eriophyidae). Plant Prot Q 12(2):70–72Google Scholar
  115. McCaffrey JP, Campbell CL, Andres LA (1995) St. Johnswort. In: Nechols JR, Andres LA, Beardsley JW, Goeden RD, Jackson CG (eds) Biological control in the western United States: accomplishments and benefits of regional research project W-84, 1964-1989. Univ Calif Div Agric Nat Res, Oakland. Publication No. 3361, pp 281–285Google Scholar
  116. McClay AS (2005) Field evaluation of a gall mite for biological control of false cleavers. Canola Agronomic Research Program Project #AG-2002-20, Final ReportGoogle Scholar
  117. McClay AS, Balciunas JK (2005) The role of pre-release efficacy assessment in selecting classical biological control agents for weeds–applying the Anna Karenina principle. Biol Control 35(3):197–207CrossRefGoogle Scholar
  118. McClay AS, De Clerck-Floate RA (2002) Convolvulus arvensis L., field bindweed (Convolvulaceae). In: Mason PG, Huber JT (eds) Biological control programmes in Canada, 1981–2000. CABI Publishing, Wallingford, UK, pp 331–337Google Scholar
  119. McClay AS, Littlefield JL, Kashefi J (1999) Establishment of Aceria malherbae (Acari: Eriophyidae) as a biological control agent for field bindweed (Convolvulaceae) in the northern Great Plains. Can Entomol 131(4):541–547CrossRefGoogle Scholar
  120. McClay AS, Sobhian R, Zhang W (2002) Galium spurium L., false cleavers (Rubiaceae). In: Mason PG, Huber JT (eds) Biological control programmes in Canada, 1981–2000, pp 358–361Google Scholar
  121. McCoy CW (1996) Pathogens of eriophyoid mites. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eriophyoid mites–their biology, natural enemies and control, vol 6. Elsevier, Amsterdam, pp 481–490 World Crop PestsCrossRefGoogle Scholar
  122. Meyer MKPS (1981) South African Eriophyidae (Acari): The genus Aceria Keifer, 1944. Phytophylactica 13:117–126Google Scholar
  123. Mihajlović L, Petanović R, Stevanović V (1994) Entomofauna i akarofauna mlecika (Euphorbia L.) Deliblatske pescare. In: Marinković P (ed) Deliblatski pesak. Zbornik radova VI, pp 229–240Google Scholar
  124. Mihajlović LJ, Spasic R, Petanović R, Mihajlović N (1998) Entomofauna and acarofauna of Clematis vitalba L. in Yugoslavia. Acta Entomol Serbica 3(1/2):139–147Google Scholar
  125. Milan JD, Harmon BL, Prather TS, Schwarzlander M (2006) Winter mortality of Aceria chondrillae, a biological control agent released to control rush skeletonweed (Chondrilla juncea) in the western United States. J Appl Entomol 130(9–10):473–479CrossRefGoogle Scholar
  126. Mohanasundaram M, Muniappan R (1990) On the eriophyid fauna of Trinidad and Guyana: description of a new genus and species (Acari: Eriophyidae). Internat J Acarol 16(2):59–62CrossRefGoogle Scholar
  127. Monfreda R, de Lillo E (2006) [Current knowledge on the salivary secretions in Eriophyoidea, Acari.] Attuali conoscenze sulle secrezioni salivari negli Acari Eriophyoidea. Atti dell’Accad Naz Itala Entomol Rend 53(2005):379–388Google Scholar
  128. Monfreda R, de Lillo E, Cristofaro M (2008) Eriophyoid mites on Centaurea solstitialis L in the Mediterranean area. In: Julien MH, Sforza R, Bon MC, Evans HC, Hatcher PE, Hinz HL, Rector BG (eds) Proceedings of the XII international symposium on biological control of weeds. April 22–27, 2007, La Grande Motte, France, CAB International Wallingford, UK, pp 178–181Google Scholar
  129. Morley TB (2004a) Host-specificity testing of the boneseed (Chrysanthemoides monilifera ssp. monilifera) leaf buckle mite (Aceria neseri). In: Cullen JM, Briese DT, Kriticos DJ, Lonsdale WM, Morin L, Scott JK (eds) Proceedings of the XI international symposium on biological control of weeds, 4–8 May, 2003, CSIRO Entomology, Canberra, Australia, pp 297–300Google Scholar
  130. Morley TB (2004b) Application for approval to release the erineum-inducing Aceria sp. ex Chrysanthemoides monilifera (L.) Norl. spp. monilifera (boneseed leaf buckle mite) A potential biological control agent for Chrysanthemoides monilifera. Published by the Victorian Government Department of Primary Industries, Fankston, Victoria, AustraliaGoogle Scholar
  131. Morley TB, Morin L (2008) Progress on boneseed (Chrysanthemoides monilifera subsp. monilifera (L.) Norlindh) biological control: the boneseed leaf buckle mite Aceria (Keifer) sp., the lacy-winged seed fly Mesoclanis magnipalpis Bezzi and the boneseed rust Endophyllum osteopspermi (Doidge) A. R.Wood. Plant Prot Q 23(1):29–31Google Scholar
  132. Moura MZD, Soares GLG, Isaias RM dos S (2008) Species-specific changes in tissue morphogenesis induced by two arthropod leaf gallers in Lantana camara L. (Verbenaceae). Aust J Bot 56(2):153–160Google Scholar
  133. Mpedi PF, Urban AJ (2003) Host specificity report in relation to an application for permission to release the Central American mite, Aceria lantanae, from quarantine in Pretoria, for biological control of the noxious weed, Lantana camara, in South Africa. Unpublished report to the National Department of Agriculture: Directorate of Plant Health and Quality. ARC-PPRI, PretoriaGoogle Scholar
  134. Mpedi PF, Urban AJ (2005) Host Specificity Testing of Aceria lantanae (Acari: Eriophyidae), a candidate agent for biological control of Lantana camara (Verbenaceae). Final report to Department of Natural Resources and Mines, Alan Fletcher Research Station Brisbane, Queensland, Australia PFGoogle Scholar
  135. Muniappan R, Bamba J (2000) Biological control of Chromolaena odorata: successes and failures. In: Spencer NR (ed) Proceedings of the X international symposium on biological control of weeds, 4–14 July 1999, Montana State University, Bozeman, Montana, pp 81–85Google Scholar
  136. Muniappan R, Reddy GVP, Lai PY (2005) Distribution and biological control of Chromolaena odorata. In: Inderjit (ed) Invasive plants: ecological and agricultural aspects. Birkhäuser Verlag, Basel, Switzerland, pp 223–233Google Scholar
  137. Muniappan R, Englberger K, Reddy GVP (2006) Biological control of Chromolaena odorata in the American Pacific Micronesian Islands. In: Lai P-Y, Reddy GVP, Muniappan R (eds) Proceedings of the seventh international workshop on biological control and management of Chromolaena odorata and Mikania micrantha, Taiwan, September 12 to 15, 2006, pp 49–52Google Scholar
  138. Nalepa A (1892) Les acarocécides de Lorraine (Suite). In: Kieffer JJ (ed) Feuille jeun naturalistes Rev Mens Hist Nat, sér 3, 22(258):118–129Google Scholar
  139. Natchev PD (1987) [Studies on eriophyid mites in Bulgaria XVI. Eriophyes salviae (Nal.) (Acarina: Eriophyoidea), a new species for Bulgaria on salvia (Salvia sclarea L.)]. Proucavanije na eofidnite akari v Bulgaria. XVI Eriophyes salviae (Nal.) (Acarina, Eriophyoidea). Nov neprijatel po salvijata (Salvia sclarea L.). Pochvoznanie, Agrokhimiya i Rastitelna Zashchita [Soil Sci, Agrochem Plant Prot] 22(5):99–102Google Scholar
  140. Nault LR (1997) Arthropod transmission of plant viruses: a new synthesis. Ann Entomol Soc Am 90(5):521–541Google Scholar
  141. Navajas M, Navia D (2008) Critical aspects of DNA-based methods for eriophyoid mite diagnostics and genetic studies: review, prospects and challenges. In: Bertrand M, Kreiter S, McCoy KD, Migeon A, Navajas M, Tixier M-S, Vial L (eds) Integrative acarology. Proceedings of the 6th European congress, European Association of Acarologists, Montpellier, France, 21–25 July 2008, pp 300–305Google Scholar
  142. Navajas M, Navia D (2009) DNA-based methods for eriophyoid mite studies: review, critical aspects, prospects and challenges. Exp Appl Acarol. doi:10.1007/s10493-009-9301-z
  143. Navia D, de Moraes GJ, Roderick G, Navajas M (2005) The invasive coconut mite Aceria guerreronis (Acari: Eriophyidae): origin and invasion sources inferred from mitochondrial (16S) and nuclear (ITS) sequences. Bull Entomol Res 95(6):505–516PubMedCrossRefGoogle Scholar
  144. Navia D, de Moraes GJ, Querino RB (2006) Geographic variation in the coconut mite, Aceria guerreronis Keifer (Acari: Eriophyidae): a geometric morphometric analysis. Int J Acarol 32(3):301–314CrossRefGoogle Scholar
  145. Neser S, Cilliers CJ (1990) Work towards biological control of Lantana camara: perspectives. In: Delfosse ES (ed) Proceedings of the VII international symposium on biological control of weeds, 6–11 March 1988, Rome, Italy. Istituto Sperimentale per la Patologia Vegetale, Ministero dell’Agricoltura e delle Foreste, Rome, Italy, pp 363–369Google Scholar
  146. Nuzzaci G, Mimmocchi T, Clement SL (1985) A new species of Aceria (Acari: Eriophyidae) from Convolvulus arvensis L. (Convolvulaceae) with notes on other eriophyid associates of convolvulaceous plants. Entomologica 20:81–89Google Scholar
  147. Ochoa R, Erbe EF, Wergin WP, Frye C, Lydon J (2001) The presence of Aceria anthocoptes (Nalepa) (Acari: Eriophyidae) on Cirsium species in the United States. Int J Acarol 27(3):179–187CrossRefGoogle Scholar
  148. Oldfield GN, Proeseler G (1996) Eriophyoid mites as vectors of plant pathogens. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eriophyoid mites–their biology, natural enemies and control, vol 6. Elsevier, Amsterdam, pp 259–275 World Crop PestsCrossRefGoogle Scholar
  149. Oldfield GN, Creamer R, Gispert C, Osorio F, Rodriguez R, Perring TM (1995) Incidence and distribution of peach mosaic and its vector, Eriophyes insidiosus (Acari: Eriophyidae) in Mexico. Plant Dis 79:186–189CrossRefGoogle Scholar
  150. Ooi PAC (1992) Biological control of weeds in Malaysian plantations. Proceedings of the 1st international weed control congress. Weed Science Society of Victoria, Melbourne, Australia 1:248-255Google Scholar
  151. Orapa W, Bofeng I, Donnelly G (2002a) Management of Chromolaena odorata in Papua New Guinea: status of a biological control programme. In: Zachariades C, Muniappan R, Strathie LW (eds) Proceedings of the fifth international workshop on biological control and management of Chromolaena odorata, Durban, South Africa, 23–25 October 2000. ARC-PPRI (2002), pp 40–45Google Scholar
  152. Orapa W, Donnelly G, Bofeng I (2002b) The distribution of Siam weed, Chromolaena odorata, in Papua New Guinea. In: Zachariades C, Muniappan R, Strathie LW (eds) Proceedings of the fifth international workshop on biological control and management of Chromolaena odorata, Durban, South Africa, 23–25 October 2000. ARC-PPRI (2002), pp 19–25Google Scholar
  153. Ozman SK, Goolsby JA (2005) Biology and phenology of the eriophyid mite, Floracarus perrepae, on its native host in Australia, Old World climbing fern, Lygodium microphyllum. Exp Appl Acarol 35(3):197–213PubMedCrossRefGoogle Scholar
  154. Palmer WA, Pullen KR (1995) The phytophagous arthropods associated with Lantana camara, L. hirsuta, L. urticifolia and L. urticoides (Verbenaceae) in North America. Biol Control 5:54–72CrossRefGoogle Scholar
  155. Pavlinec M (1992) [The significance of phytophagous insects on Galium aparine (Rubiaceae) and other Galium species.] Die Bedeutung von Phytophagen an Galium aparine (Rubiaceae) und Anderen Galium-Arten. Mitt Dtsch Ges Allg Angew Entomol 8(1–3):169–173Google Scholar
  156. Pearson DE, Callaway RM (2005) Indirect nontarget effects of host-specific biological control agents: Implications for biological control. Biol Control 35(3):288–298CrossRefGoogle Scholar
  157. Pemberton RW (2000) Predictable risk to native plants in weed biological control. Oecologia 125:489–494CrossRefGoogle Scholar
  158. Petanović R (1990a) Host speciality and morphological variation in Epitrimerus taraxaci (Acarida Eriophyoidea). In: Delfosse ES (ed) Proceedings of the VII international symposium on biological control of weeds, 6–11 March 1988, Rome, Italy. Istituto Sperimentale per la Patologia Vegetale, Ministero dell’Agricoltura e delle Foreste, Rome, Italy, p 83Google Scholar
  159. Petanović RU (1990b) Host specificity and morphological variation in Epitrimerus taraxaci Liro (Acarida: Eriophyoidea) [in Yugoslavia]. Zast Bilja 41(4):387–394Google Scholar
  160. Petanović R (1996) Eriphyoid mites (Acari: Eriophyoidea) agents of biological control of weeds—basis for application and so far experiences. Zast Bilja 47(4):277–300Google Scholar
  161. Petanović R, Dimitrijević J (1995) [Intraspecific variability of Vasates euphorbiae Pet. (Acari: Eriophyoidea) on different subspecies of the host plant]. Intraspecijska varijabilnost Vasates euphorbiae Pet. (Acari: Eriophyoidea) na razlicitim podvrstama biljke domacina. Zast. Bilja 46(1):17–28Google Scholar
  162. Petanović R, Kielkiewicz M (2009) Plant-eriophyoid mite interactions: cellular biochemistry and metabolic responses induced in mite-injured plant. Part I. Exp Appl Acarol (in press)Google Scholar
  163. Petanović RU, Stevanović V (1996) Eriophyid mites (Acari: Eriophyoidea) on leafy spurges (Euphorbia spp.) (Euphorbiaceae) in Yugoslavia–their potential use in biological control. In: Moran VC, Hoffmann JH (eds) Proceedings of the IX international symposium on biological control of weeds, 19–26 January 1996, Stellenbosch, South Africa, University of Cape Town, p 233Google Scholar
  164. Petanović R, Dobrivojević K, Boczek J, Lazic S (1984) [Eriophyid mites (Eriophyoidea, Acarina) occurring on weed plants in the Belgrade Region]. Eriofidne grinje (Eriophyidae, Acarina) no korovskim biljk ama u okolini Beograda. J Sci Agric Res 44(156):455–460Google Scholar
  165. Petanović R, Boczek J, Stojnić B (1997) Taxonomy and bioecology of eriophyids (Acari: Eriophyoidea) associated with Canada thistle, Cirsium arvense (L.) Scop. Acarologia 38(2):181–192Google Scholar
  166. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259CrossRefGoogle Scholar
  167. Piper G (1985) Biological control of weeds in Washington: status report. In: Delfosse ES (ed), Proceedings of the sixth international symposium on biological control of weeds, 19–25 August 1984, Vancouver, Canada. Agriculture Canada, Ottawa, Canada, pp 817–826Google Scholar
  168. Piper GL, Andres LA (1995) Rush skeletonweed. In: Nechols JR, Andres LA, Beardsley JW, Goeden RD, Jackson CG (eds) Biological control in the western United States: accomplishments and benefits of regional research project W-84, 1964–1989. Univ Calif Div Agric Nat Res, Oakland. Publication No. 3361, pp 252–255Google Scholar
  169. Piper GL, Coombs EM, Markin GP, Joley DB (2004) Eriophyes chondrillae (=Aceria chondrillae). In: Coombs EM, Clark JK, Piper GL, Cofrancesco AF Jr (eds) Biological control of invasive plants in the United States. Oregon State University Press, Oregon, pp 298–300Google Scholar
  170. Rancic D, Paltrinieri S, Tosevski I, Petanović R, Stevanović B, Bertaccini A (2005) First Report of multiple inflorescence disease of Cirsium arvense and its association with a 16SrIIB subgroup phytoplasmas in Serbia. Plant Pathol 54:561CrossRefGoogle Scholar
  171. Rancic D, Stevanović B, Petanović R, Magud B, Tosevski I, Gassmann A (2006) Anatomical injury induced by the eriophyid mite Aceria anthocoptes on the leaves of Cirsium arvense. Exp Appl Acarol 38(4):243–253PubMedCrossRefGoogle Scholar
  172. Rector B, Harizanova GV, Sforza R, Widmer T, Wiedenmann RN (2006) Prospects for biological control of teasels. Dipsacus spp., a new target in the United States. Biol Control 31(1):1–14CrossRefGoogle Scholar
  173. Redfern M, Shirley P, Bloxham M (2002) British plant galls. Identification of galls on plants and fungi. Field Stud 10:207–531Google Scholar
  174. Reinert JA, Dudeck AE, Snyder GH (1978) Resistance in bermudagrass to the bermudagrass mite. Environ Entomol 7(6):885–888Google Scholar
  175. Reinert JA, Taliaferro CM, McAfee JA (2008) Susceptibility of Bermudagrass (Cynodon) varieties to bermduagrass mite (Eriophyes cynodoniensis). Acta Hort 783:519–528Google Scholar
  176. Rodgers CA, Baltensperger AA (2004) Registration of ‘FMC-6’ bermudagrass. Crop Sci 44(6):2262–2263CrossRefGoogle Scholar
  177. Rodríguez-Navarro S, Flores-Macías A, Torres-Martínez G (2008) Evaluation of infesting field bindweed (Convolvulus arvensis L.) with Aceria malherbae Nuzzaci (Acari Eriophyidae) under glasshouse conditions. Int J Acarol 34(2):151–154CrossRefGoogle Scholar
  178. Roivainen H (1950) Eriophyid news from Sweden. Acta Entomol Fenn 7:1–51Google Scholar
  179. Rosen D, Huffaker CB (1983) An overview of desired attributes of effective biological control agents, with particular emphasis on mites. In: Hoy MA, Cunningham GL, Knutson L (eds) Biological control of pests by mites. Univ Calif Agric Exp Stn Special Publ 3304:2–11Google Scholar
  180. Rosenthal SS (1983) Current status and potential for biological control of field bindweed, Convolvulus arvensis, with Aceria convolvuli. In: Hoy MA, Cunningham GL, Knutson L (eds) Biological control of pests by mites. Univ Calif Agric Exp Stn Special Publ 3304: 57–60Google Scholar
  181. Rosenthal SS (1996) Aceria, Epitrimerus and Aculus species and biological control of weeds. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eriophyoid mites–their biology, natural enemies and control, vol 6. Elsevier, Amsterdam, pp 729–739 World Crop PestsCrossRefGoogle Scholar
  182. Rosenthal SS, Platts BE (1990) Host specificity of Aceria (Eriophyes) malherbae, [Acari: Eriophyidae], a biological control agent for the weed, Convolvulus arvensis [Convolvulaceae]. Entomophaga 35(3):459–463CrossRefGoogle Scholar
  183. Sabelis MW (1996) Phytoseiidae. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eriophyoid mites–their biology, natural enemies and control, vol 6. Amsterdam, Elsevier, pp 427–456 World Crop PestsCrossRefGoogle Scholar
  184. Sabelis MW, Bruin J (1996) Evolutionary ecology: life history patterns, food plant choice and dispersal. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eriophyoid mites–their biology, natural enemies and control, vol 6. Elsevier, Amsterdam, pp 329–366 World Crop PestsCrossRefGoogle Scholar
  185. Sabelis MW, Lesna I, Aratchige NS (2007) A tritrophic perspective to the biological control of eriophyoid mites. IOBC WPRS Bull 30(5):91–94Google Scholar
  186. Sagliocco JL (2008) Biological Control of English broom with the broom gall mite. Landcare Notes. Department of Primary Industries, Frankston, Australia. http://www.dpi.vic.gov.au/dpi/nreninf.nsf/v/550141D14134082ECA257439001413B4/$file/Biological_Control_of_English_Broom_with_the_Broom_Gall_Mite.pdf. Accessed 12 Jan 2009
  187. Sagliocco JL, Bruzzese E (2004) Biological control of Rubus fruticosus agg. (blackberry): is the leaf rust the only option for Australia? In: Cullen JM, Briese DT, Kriticos DJ, Lonsdale WM, Morin L, Scott JK (eds) Proceedings of the XI international symposium on biological control of weeds, 4-8 May, 2003, CSIRO Entomology, Canberra, Australia, pp 141–144Google Scholar
  188. Sanders RW (2006) Taxonomy of Lantana sect. Lantana (Verbenaceae): I. Correct application of Lantana camara and associated names. Sida, Contributions to Botany. Dallas, Texas. 22:381–421Google Scholar
  189. Sankaran T, Ramaseshiah G (1981) Studies on some natural enemies of puncturevine Tribulus terrestris occurring in Karnataka State, India. In: Delfosse ES (ed) Proceedings of the v international symposium on biological control of weeds, 22–29 July 1980, Brisbane, Australia. Commonwealth Scientific and Industrial Research Organization, Australia, pp 153–160Google Scholar
  190. Scott JK (1990) Tribulus terrestris L. (Zygophyllaceae) in Southern Africa: an outline of biology and potential biological control agents for Australia. Plant Prot Q 5(3):103–106Google Scholar
  191. Scott JK, Yeoh PB, Knihinicki DK (2008) Redberry mite, Acalitus essigi (Hassan) (Acari: Eriophyidae), an additional biological control agent for Rubus species (blackberry) (Rosaceae) in Australia. Aust J Entomol 47:261–264CrossRefGoogle Scholar
  192. Sheppard AW, Hill R, DeClerck-Floate RA, McCIay A, Olckers T, Quimby PC Jr, Zimmermann HG (2003) A global review of risk-benefit-cost analysis for the introduction of classical biological control agents against weeds: a crisis in the making? Biocontrol News and Info 24(4):91N–108NGoogle Scholar
  193. Sheppard AW, van Klinken RD, Heard TA (2005) Scientific advances in the analysis of direct risks of weed biological control agents to nontarget plants. Biol Control 35(3):215–226CrossRefGoogle Scholar
  194. Sheppard AW, Hosking JR, Sagliocco JL, Thomann T, Downey PO, Kwong RM (2006) Biological control of brooms in Australia: an update. 15th Australian Weeds Conference, Papers and proceedings, Adelaide, South Australia, 24–28 September 2006: Managing weeds in a changing climate, pp 573–576Google Scholar
  195. Skoracka A (2008) Reproductive barriers between populations of cereal rust mite Abacarus hystrix confirm their host specialization. Evol Ecol 22(5):607–616CrossRefGoogle Scholar
  196. Skoracka A, Kuczynski L (2006) Host related differences in the development and reproduction of the cereal rust mite, Abacarus hystrix (Acari: Eriophyidae) in Poland. Int J Acarol 32(4):397–405CrossRefGoogle Scholar
  197. Skoracka A, Kuczynski L, Magowsky W (2002) Morphological variation in different host populations of Abacarus hystrix (Acari: Prostigmata: Eriophyoidea). Exp Appl Acarol 26(3–4):187–193PubMedCrossRefGoogle Scholar
  198. Skoracka A, Oldfield G, Smith L, Cristofaro M, Ochoa R, Amrine JW Jr. (2009) Host plant specificity and specialization in eriophyoid mites. Exp Appl Acarol (in press)Google Scholar
  199. Smith L (2004) Avoiding and exploiting trophic cascading: Its role in the selection of weed biological control agents. In: Cullen JM, Briese DT, Kriticos DJ, Lonsdale WM, Morin L, Scott JK (eds) Proceedings of the XI international symposium on biological control of weeds, 4–8 May, 2003, CSIRO Entomology, Canberra, Australia, pp 175–179Google Scholar
  200. Smith L (2005) Host plant specificity and potential impact of Aceria salsolae (Acari: Eriophyidae), an agent proposed for biological control of Russian thistle (Salsola tragus). Biol Control 34(1):83–92CrossRefGoogle Scholar
  201. Smith L (2006) Cause and effect, and how to make a better biocontrol agent. Biocontrol News and Info 27(2):28N–30NGoogle Scholar
  202. Smith L, de Lillo E, Stoeva A, Cristofaro M, Rector B (2008) Challenges to evaluation of eriophyid mites for biological control of invasive plants. In: Bertrand M, Kreiter S, McCoy KD, Migeon A, Navajas M, Tixier M-S, Vial L (eds) Integrative acarology. Proceedings of the 6th European congress, European association of acarologists, Montpellier, France, pp 312–316Google Scholar
  203. Smith L, Cristofaro M, de Lillo E, Monfreda R, Paolini A (2009) Field assessment of host plant specificity and potential effectiveness of a prospective biological control agent, Aceria salsolae, of Russian thistle, Salsola tragus. Biol Control 48:237–243CrossRefGoogle Scholar
  204. Sobhian R, Andres LA (1978) The response of the skeletonweed gall midge, Cystiphora schmidti (Diptera: Cecidomyiidae), and gall mite, Aceria chondrillae (Eriophyidae) to North American strains of rush skeletonweed (Chondrilla juncea). Environ Entomol 7:506–508Google Scholar
  205. Sobhian R, Katsoyannos BI, Kashefi J (1989) Host specificity of Aceria centaureae (Nalepa), a candidate for biological control of Centaurea diffusa De Lamarck. Entomol Hell 7:27–30Google Scholar
  206. Sobhian R, Tunç I, Erler F (1999) Preliminary studies on the biology and host specificity of Aceria salsolae de Lillo and Sobhian (Acari, Eriophyidae) and Lixus salsolae Becker (Col., Curculionidae), two candidates for biological control of Salsola kali. J Appl Entomol 123(4):205–209CrossRefGoogle Scholar
  207. Sobhian R, McClay A, Hasan S, Peterschmitt M, Hughes RB (2004) Safety assessment and potential of Cecidophyes rouhollahi (Acari, Eriophyidae) for biological control of Galium spurium (Rubiaceae) in North America. J Appl Entomol 128(4):258–266CrossRefGoogle Scholar
  208. Spies JJ (1984) A cytotaxonomic study of Lantana camara (Verbenaceae) from South Africa. S Afri J Bot 3:231–250Google Scholar
  209. Stirton CH (1977) Some thoughts on the polyploid complex Lantana camara L. (Verbenaceae). In: Balkema AA (ed) Proceedings of the second national weeds conference of South Africa, Cape Town, pp 321–344Google Scholar
  210. Stirton CH (1999) The naturalized Lantana camara L. (Lantaneae-Verbenaceae) complex in KwaZulu-Natal, South Africa: A dilemma for the culton concept. In: Andrews S, Leslie AC, Alexander G (eds) Proceedings of the third international symposium on the taxonomy of cultivated plants, Edinburgh, UK, 20–26 July 1998. Royal Botanic Gardens, Richmond, UK, pp 311–324Google Scholar
  211. Stoeva A, Rector BG, Harizanova V (2008) Host-specificity testing on Leipothrix dipsacivagus (Acari: Eriophyidae), a candidate for biological control of Dipsacus spp. In: Julien MH, Sforza R, Bon MC, Evans HC, Hatcher PE, Hinz HL, Rector BG (eds) Proceedings of the XII international symposium on biological control of weeds. April 22–27, 2007, La Grande Motte, France, CAB International Wallingford, UK, pp 328–332Google Scholar
  212. Supkoff DM, Joley DB, Marois JJ (1988) Effect of introduced biological control organisms on the density of Chondrilla juncea in California. J Appl Ecol 25(3):1089–1095CrossRefGoogle Scholar
  213. Sutherst RW, Maywald GF, Bottomley W, Bourne A (2004) CLIMEX v2. Hearne Scientific Software Pty. Ltd, Melbourne, AustraliaGoogle Scholar
  214. Tzanetakis IE, Gergerich RC, Martin RR (2006) A new Ilarvirus found in rose. Plant Pathol 55(4):568CrossRefGoogle Scholar
  215. Urban A, Day M, Ellison C, den Breeÿen A (2001a) Global lantana biocontrol initiative. Biocontrol News and Info 22:56N–58NGoogle Scholar
  216. Urban AJ, Mpedi PF, Neser S, Craemer C (2001b) Potential of the flower gall mite, Aceria lantanae (Cook) (Acari: Eriophyidae), for biocontrol of the noxious weed, Lantana camara L. (Verbenaceae). In: Olckers T, Brothers DJ (eds) Proceedings of the 13th entomological congress organised by the entomological society of Southern Africa, Hatfield, South Africa, pp 67–68Google Scholar
  217. Urban AJ, Simelane DO, Mpedi PF, Day MD, Neser S, Craemer C (2004) Varietal resistance in lantana: fact or fiction? In: Cullen JM, Briese DT, Kriticos DJ, Lonsdale WM, Morin L, Scott JK (eds) Proceedings of the XI international symposium on biological control of weeds, 4–8 May, 2003, CSIRO Entomology, Canberra, Australia, p 232Google Scholar
  218. van Driesche R, Hoddle M, Center T (2008) Control of pests and weeds by natural enemies. Wiley-Blackwell, Malden, MassachusettsGoogle Scholar
  219. van Loan AN, Meeke JR, Minno MC (2002) Cogon Grass. In: van Driesche R, Lyon S, Blossey B, Hoddle M, Reardon R (eds) Biological control of invasive plants in the eastern United States, USDA Forest Service Publication FHTET-2002-04, pp 353–364Google Scholar
  220. Vidović B, Petanović R, Stanisavljević LJ (2008) Morphological variation of Aceria spp. (Acari: Eriophyoidea) inhabiting Cirsium species (Asteraceae) in Serbia. In: Bertrand M, Kreiter S, McCoy KD, Migeon A, Navajas M, Tixier M-S, Vial L (eds) Integrative acarology. Proceedings of the 6th European congress, European association of acarologists, Montpellier, France, 21–25 July 2008, pp 331–339Google Scholar
  221. Volkov OG, Izhevskii GG (1996) Tetrapod gall mite as a promising phytophage against repent stagger-bush. Zashchita i Karantin Rastenii 6:32–33Google Scholar
  222. Walter DE (1999) Cryptic inhabitants of a noxious weed: Mites (Arachnida: Acari) on Lantana camara L. invading forests in Queensland. Aust J Entomol 38:197–200CrossRefGoogle Scholar
  223. Waterhouse DF (1994) 4.4 Chromolaena odorata (L.) R. M. King and H. Robinson. In: Biological control of weeds: Southeast Asian prospects. Canberra, ACIAR Monograph No. 26, pp 34–53Google Scholar
  224. Whitson TD, Burrill LC, Dewey SA, Cudney DW, Nelson BE, Lee RD, Parker R (eds) (2000) Weeds of the West. 9th edn. The Western Society of Weed Science, Newark, CaliforniaGoogle Scholar
  225. Willis AJ, Berentson PR, Ash JE (2003) Impacts of a weed biocontrol agent on recovery from water stress in a target and a non-target Hypericum species. J Appl Ecol 40(2):320–333Google Scholar
  226. Zachariades C, Day M, Muniappan R, Reddy GVP (2009) Chromolaena odorata (L.) King and Robinson (Asteraceae). In: Muniappan R, Reddy GVP, Raman A (eds) Biological control of tropical weeds using arthropods. Cambridge University Press, Cambridge, pp 130–160CrossRefGoogle Scholar
  227. Zalucki MP, Day MD, Playford J (2007) Will biological control of Lantana camara ever succeed? Patterns, processes & prospects. Biol Control 42(3):251–261CrossRefGoogle Scholar
  228. Zhao S, Amrine JW Jr (1997) Investigation of snowborne mites (Acari) and relevancy to dispersal. Int J Acarol 23(3):209–213CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.USDA-ARS Western Regional Research CenterAlbanyUSA
  2. 2.Dipartimento di Biologia e Chimica Agroforestale e Ambientale, Facoltà di AgrariaUniversità Bari, ItalyBariItaly
  3. 3.Department of BiologyWest Virginia UniversityMorgantownUSA

Personalised recommendations