Skip to main content

The Role of Mesenchymal Cells in Cancer: Contribution to Tumor Stroma and Tumorigenic Capacity

  • Chapter
  • First Online:
From Molecular to Modular Tumor Therapy

Part of the book series: The Tumor Microenvironment ((TTME,volume 3))

Abstract

Mesenchymal stromal cells were first isolated from the bone marrow, where they serve as a component of the tissue microenvironment. These cells provide a physical support for the other cells of the tissue; i.e., the hemopoietic cell lineage, and further participate in the formation of bone structures. Most importantly, stromal cells regulate the growth and differentiation of hemopoietic stem cells. The mesenchyme is not specific to the bone marrow: such cells are found body-wide, and serve similar regulatory functions. By the same token, the mesenchymal stroma contributes to tumor formation by providing regulatory signals. In addition, the stromal cells themselves may undergo transformation, and subsequently form tumors. This chapter discusses these two major aspects of stromal cell involvement in the tumorigenic process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McCulloch EA, Till JE. The radiation sensitivity of normal mouse bone marrow cells, determined by quantitative marrow transplantation into irradiated mice. Radiat Res 1960 July; 13: 115–125.

    Article  PubMed  CAS  Google Scholar 

  2. Friedenstein AJ, Chailakhyan RK, Latsinik NV, Panasyuk AF, Keiliss-Borok IV. Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo. Transplantation 1974; 17(4): 331–340.

    Article  PubMed  CAS  Google Scholar 

  3. Zipori D, Duksin D, Tamir M, Argaman A, Toledo J, Malik Z. Cultured mouse marrow stromal cell lines. II. Distinct subtypes differing in morphology, collagen types, myelopoietic factors, and leukemic cell growth modulating activities. J Cell Physiol 1985 Jan; 122(1): 81–90.

    Google Scholar 

  4. Zipori D, Friedman A, Tamir M, Silverberg D, Malik Z. Cultured mouse marrow cell lines: interactions between fibroblastoid cells and monocytes. J Cell Physiol 1984 Feb; 118(2): 143–152.

    Article  PubMed  CAS  Google Scholar 

  5. Zipori D, Toledo J, von der Mark K. Phenotypic heterogeneity among stromal cell lines from mouse bone marrow disclosed in their extracellular matrix composition and interactions with normal and leukemic cells. Blood 1985 Aug; 66(2): 447–455.

    PubMed  CAS  Google Scholar 

  6. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999 April 2; 284(5411): 143–147.

    Article  PubMed  CAS  Google Scholar 

  7. Dexter TM, Wright EG, Krizsa F, Lajtha LG. Regulation of haemopoietic stem cell proliferation in long-term bone marrow cultures. Biomedicine 1977 Dec; 27(9–10): 344–349.

    PubMed  CAS  Google Scholar 

  8. Zipori D, Sasson T. Adherent cells from mouse bone marrow inhibit the formation of colony stimulating factor (CSF) induced myeloid colonies. Exp Hematol 1980 July; 8(6): 816–817.

    PubMed  CAS  Google Scholar 

  9. Zipori D, Barda-Saad M. Role of activin A in negative regulation of normal and tumor B lymphocytes. J Leukoc Biol 2001; 69(6): 867–873.

    PubMed  CAS  Google Scholar 

  10. Zipori D, Tamir M, Toledo J, Oren T. Differentiation stage and lineage-specific inhibitor from the stroma of mouse bone marrow that restricts lymphoma cell growth. Proc Natl Acad Sci U S A 1986 June; 83(12): 4547–4551.

    Article  PubMed  CAS  Google Scholar 

  11. Zipori D. Regulation of hemopoiesis by cytokines that restrict options for growth and differentiation. Cancer Cells 1990; 2(7): 205–211.

    PubMed  CAS  Google Scholar 

  12. Zipori D. The renewal and differentiation of hemopoietic stem cells. FASEB J 1992; 6(9): 2691–2697.

    PubMed  CAS  Google Scholar 

  13. Xu G, Zhang L, Ren G, Yuan Z, Zhang Y, Zhao RC, et al. Immunosuppressive properties of cloned bone marrow mesenchymal stem cells. Cell Res 2007 March; 17(3): 240–248.

    PubMed  CAS  Google Scholar 

  14. Nauta AJ, Fibbe WE. Immunomodulatory properties of mesenchymal stromal cells. Blood 2007 Nov 15; 110(10): 3499–3506.

    Article  PubMed  CAS  Google Scholar 

  15. Pevsner-Fischer M, Morad V, Cohen-Sfady M, Rousso-Noori L, Zanin-Zhorov A, Cohen S, et al. Toll-like receptors and their ligands control mesenchymal stem cell functions. Blood 2007 Feb 15; 109(4): 1422–1432.

    Google Scholar 

  16. Barda-Saad M, Shav-Tal Y, Rozenszajn AL, Cohen M, Zauberman A, Karmazyn A, et al. The mesenchyme expresses T cell receptor mRNAs: relevance to cell growth control. Oncogene 2002; 21(13): 2029–2036.

    Article  PubMed  CAS  Google Scholar 

  17. Shani N, Rubin-Lifshitz H, Peretz-Cohen Y, Shkolnik K, Shinder V, Cohen-Sfady M, et al. Incomplete T cell receptor {beta} peptides target the mitochondrion and induce apoptosis. Blood 2009 Apr 9; 113(15): 3530–3541.

    Google Scholar 

  18. Lapter S, Livnat I, Faerman A, Zipori D. Structure and implied functions of truncated B-cell receptor mRNAs in early embryo and adult mesenchymal stem cells: Cdelta replaces Cmu in mu heavy chain-deficient mice. Stem Cells 2007 Mar; 25(3): 761–770.

    Article  PubMed  CAS  Google Scholar 

  19. Zipori D. Biology of stem cells and the molecular basis of the stem state. Humana Press 2009.

    Google Scholar 

  20. Sacchetti B, Funari A, Michienzi S, Di Cesare S, Piersanti S, Saggio I, et al. Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 2007 Oct 19; 131(2): 324–336.

    Article  PubMed  CAS  Google Scholar 

  21. Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 2008 Sep 11; 3(3): 301–313.

    Article  PubMed  CAS  Google Scholar 

  22. Morikawa S, Mabuchi Y, Kubota Y, Nagai Y, Niibe K, Hiratsu E, et al. Prospective identification, isolation, and systemic transplantation of multipotent mesenchymal stem cells in murine bone marrow. J Exp Med 2009 Oct 26; 206(11): 2483–2496.

    Article  PubMed  CAS  Google Scholar 

  23. Vojtassak J, Danisovic L, Kubes M, Bakos D, Jarabek L, Ulicna M, et al. Autologous biograft and mesenchymal stem cells in treatment of the diabetic foot. Neuro Endocrinol Lett 2006 Dec; 27(Suppl 2): 134–137.

    PubMed  Google Scholar 

  24. Horwitz EM, Prockop DJ, Gordon PL, Koo WW, Fitzpatrick LA, Neel MD, et al. Clinical responses to bone marrow transplantation in children with severe osteogenesis imperfecta. Blood 2001 March 1; 97(5): 1227–1231.

    Article  PubMed  CAS  Google Scholar 

  25. Salem HK, Thiemermann C. Mesenchymal Stromal Cells – Current Understanding and Clinical Status. Stem Cells 2009 Mar 31; 28(3): 585–596.

    Google Scholar 

  26. Quevedo HC, Hatzistergos KE, Oskouei BN, Feigenbaum GS, Rodriguez JE, Valdes D, et al. Allogeneic mesenchymal stem cells restore cardiac function in chronic ischemic cardiomyopathy via trilineage differentiating capacity. Proc Natl Acad Sci U S A 2009 Aug 18; 106(33): 14022–14027.

    Article  PubMed  Google Scholar 

  27. Arima N, Nakamura F, Fukunaga A, Hirata H, Machida H, Kouno S, et al. Single intra-arterial injection of mesenchymal stromal cells for treatment of steroid-refractory acute graft-versus-host disease: a pilot study. Cytotherapy 2010 Apr; 12(2): 265–268.

    Google Scholar 

  28. von Bonin M, Stolzel F, Goedecke A, Richter K, Wuschek N, Holig K, et al. Treatment of refractory acute GVHD with third-party MSC expanded in platelet lysate-containing medium. Bone Marrow Transplant 2009 Feb; 43(3): 245–251.

    Article  CAS  Google Scholar 

  29. Le Blanc K, Frassoni F, Ball L, Locatelli F, Roelofs H, Lewis I, et al. Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet 2008 May 10; 371(9624): 1579–1586.

    Article  PubMed  CAS  Google Scholar 

  30. Prigozhina TB, Khitrin S, Elkin G, Eizik O, Morecki S, Slavin S. Mesenchymal stromal cells lose their immunosuppressive potential after allotransplantation. Exp Hematol 2008 Oct; 36(10): 1370–1376.

    Article  PubMed  CAS  Google Scholar 

  31. Ramasamy R, Tong CK, Seow HF, Vidyadaran S, Dazzi F. The immunosuppressive effects of human bone marrow-derived mesenchymal stem cells target T cell proliferation but not its effector function. Cell Immunol 2008 Feb; 251(2): 131–136.

    Article  PubMed  CAS  Google Scholar 

  32. Chen L, Tredget EE, Wu PY, Wu Y. Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLoS ONE 2008; 3(4): e1886.

    Article  PubMed  CAS  Google Scholar 

  33. Sasaki M, Abe R, Fujita Y, Ando S, Inokuma D, Shimizu H. Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell types. J Immunol 2008 Feb 15; 180(4): 2581–2587.

    PubMed  CAS  Google Scholar 

  34. Rombouts WJ, Ploemacher RE. Primary murine MSCs show highly efficient homing to the bone marrow but lose homing ability following culture. Leukemia 2003 Jan; 17(1): 160–170.

    Article  PubMed  CAS  Google Scholar 

  35. Shi M, Li J, Liao L, Chen B, Li B, Chen L, et al. Regulation of CXCR4 expression in human mesenchymal stem cells by cytokine treatment: role in homing efficiency in NOD/SCID mice. Haematologica 2007 July; 92(7): 897–904.

    Article  PubMed  Google Scholar 

  36. Annabi B, Lee YT, Turcotte S, Naud E, Desrosiers RR, Champagne M, et al. Hypoxia promotes murine bone-marrow-derived stromal cell migration and tube formation. Stem Cells 2003; 21(3): 337–347.

    Article  PubMed  CAS  Google Scholar 

  37. Hung SC, Pochampally RR, Hsu SC, Sanchez C, Chen SC, Spees J, et al. Short-Term Exposure of Multipotent Stromal Cells to Low Oxygen Increases Their Expression of CX3CR1 and CXCR4 and Their Engraftment In Vivo. PLoS ONE 2007; 2: e416.

    Article  PubMed  CAS  Google Scholar 

  38. Kumar S, Ponnazhagan S. Bone homing of mesenchymal stem cells by ectopic alpha 4 integrin expression. FASEB J 2007 Dec; 21(14): 3917–3927.

    Article  PubMed  CAS  Google Scholar 

  39. Sackstein R, Merzaban JS, Cain DW, Dagia NM, Spencer JA, Lin CP, et al. Ex vivo glycan engineering of CD44 programs human multipotent mesenchymal stromal cell trafficking to bone. Nat Med 2008 Feb; 14(2): 181–187.

    Article  PubMed  CAS  Google Scholar 

  40. Ruster B, Gottig S, Ludwig RJ, Bistrian R, Muller S, Seifried E, et al. Mesenchymal stem cells display coordinated rolling and adhesion behavior on endothelial cells. Blood 2006 Dec 1; 108(12): 3938–3944.

    Article  PubMed  CAS  Google Scholar 

  41. Zipori D, Krupsky M, Resnitzky P. Stromal cell effects on clonal growth of tumors. Cancer 1987 Oct 15; 60(8): 1757–1762.

    Article  PubMed  CAS  Google Scholar 

  42. Dwyer RM, Potter-Beirne SM, Harrington KA, Lowery AJ, Hennessy E, Murphy JM, et al. Monocyte chemotactic protein-1 secreted by primary breast tumors stimulates migration of mesenchymal stem cells. Clin Cancer Res 2007 Sep 1; 13(17): 5020–5027.

    Article  PubMed  CAS  Google Scholar 

  43. Klopp AH, Spaeth EL, Dembinski JL, Woodward WA, Munshi A, Meyn RE, et al. Tumor irradiation increases the recruitment of circulating mesenchymal stem cells into the tumor microenvironment. Cancer Res 2007 Dec 15; 67(24): 11687–11695.

    Article  PubMed  CAS  Google Scholar 

  44. Beckermann BM, Kallifatidis G, Groth A, Frommhold D, Apel A, Mattern J, et al. VEGF expression by mesenchymal stem cells contributes to angiogenesis in pancreatic carcinoma. Br J Cancer 2008 Aug 19; 99(4): 622–631.

    Article  PubMed  CAS  Google Scholar 

  45. Spaeth EL, Dembinski JL, Sasser AK, Watson K, Klopp A, Hall B, et al. Mesenchymal stem cell transition to tumor-associated fibroblasts contributes to fibrovascular network expansion and tumor progression. PLoS One 2009; 4(4): e4992.

    Article  PubMed  CAS  Google Scholar 

  46. Rhodes LV, Muir SE, Elliott S, Guillot LM, Antoon JW, Penfornis P, et al. Adult human mesenchymal stem cells enhance breast tumorigenesis and promote hormone independence. Breast Cancer Res Treat 2010 Jun; 121(2): 293–300.

    Google Scholar 

  47. Mishra PJ, Humeniuk R, Medina DJ, Alexe G, Mesirov JP, Ganesan S, et al. Carcinoma-associated fibroblast-like differentiation of human mesenchymal stem cells. Cancer Res 2008 Jun 1; 68(11): 4331–4339.

    Article  PubMed  CAS  Google Scholar 

  48. Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW, et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 2007 Oct 4; 449(7162): 557–563.

    Article  PubMed  CAS  Google Scholar 

  49. Molloy AP, Martin FT, Dwyer RM, Griffin TP, Murphy M, Barry FP, et al. Mesenchymal stem cell secretion of chemokines during differentiation into osteoblasts, and their potential role in mediating interactions with breast cancer cells. Int J Cancer 2009 Jan 15; 124(2): 326–332.

    Article  PubMed  CAS  Google Scholar 

  50. Brosh N, Sternberg D, Honigwachs-Sha’anani J, Lee BC, Shav-Tal Y, Tzehoval E, et al. The plasmacytoma growth inhibitor restrictin-P is an antagonist of interleukin 6 and interleukin 11. Identification as a stroma-derived activin A. J Biol Chem 1995 Dec 8; 270(49): 29594–29600.

    Article  PubMed  CAS  Google Scholar 

  51. Sternberg D, Honigwachs-sha’anani J, Brosh N, Malik Z, Burstein Y, Zipori D. Restrictin-P/stromal activin A, kills its target cells via an apoptotic mechanism. Growth Factors 1995; 12(4): 277–287.

    Article  PubMed  CAS  Google Scholar 

  52. Sternberg D, Peled A, Shezen E, Abramsky O, Jiang W, Bertolero F, et al. Control of stroma-dependent hematopoiesis by basic fibroblast growth factor: stromal phenotypic plasticity and modified myelopoietic functions. Cytokines Mol Ther 1996 March; 2(1): 29–38.

    PubMed  CAS  Google Scholar 

  53. Shoham T, Sternberg D, Brosh N, Krupsky M, Barda-Saad M, Zipori D. The promotion of plasmacytoma tumor growth by mesenchymal stroma is antagonized by basic fibroblast growth factor induced activin A. Leukemia 2001 July; 15(7): 1102–1110.

    Article  PubMed  CAS  Google Scholar 

  54. Gunn WG, Conley A, Deininger L, Olson SD, Prockop DJ, Gregory CA. A crosstalk between myeloma cells and marrow stromal cells stimulates production of DKK1 and interleukin-6: a potential role in the development of lytic bone disease and tumor progression in multiple myeloma. Stem Cells 2006 April; 24(4): 986–991.

    Article  PubMed  CAS  Google Scholar 

  55. Corre J, Mahtouk K, Attal M, Gadelorge M, Huynh A, Fleury-Cappellesso S, et al. Bone marrow mesenchymal stem cells are abnormal in multiple myeloma. Leukemia 2007 May; 21(5): 1079–1088.

    PubMed  CAS  Google Scholar 

  56. Zipori D. The mesenchyme in cancer therapy as a target tumor component, effector cell modality and cytokine expression vehicle. Cancer Metastasis Rev 2006 Sep; 25(3): 459–467.

    Article  PubMed  Google Scholar 

  57. Studeny M, Marini FC, Champlin RE, Zompetta C, Fidler IJ, Andreeff M. Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Res 2002 July 1; 62(13): 3603–3608.

    PubMed  CAS  Google Scholar 

  58. Rabin N, Kyriakou C, Coulton L, Gallagher OM, Buckle C, Benjamin R, et al. A new xenograft model of myeloma bone disease demonstrating the efficacy of human mesenchymal stem cells expressing osteoprotegerin by lentiviral gene transfer. Leukemia 2007 Oct; 21(10): 2181–2191.

    Article  PubMed  CAS  Google Scholar 

  59. Nakamizo A, Marini F, Amano T, Khan A, Studeny M, Gumin J, et al. Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Res 2005 April 15; 65(8): 3307–3318.

    PubMed  CAS  Google Scholar 

  60. Menon LG, Kelly K, Yang HW, Kim SK, Black PM, Carroll RS. Human bone marrow-derived mesenchymal stromal cells expressing S-TRAIL as a cellular delivery vehicle for human glioma therapy. Stem Cells 2009 Sep; 27(9): 2320–2330.

    Article  PubMed  CAS  Google Scholar 

  61. Yong RL, Shinojima N, Fueyo J, Gumin J, Vecil GG, Marini FC, et al. Human bone marrow-derived mesenchymal stem cells for intravascular delivery of oncolytic adenovirus Delta24-RGD to human gliomas. Cancer Res 2009 Dec 1; 69(23): 8932–8940.

    Article  PubMed  CAS  Google Scholar 

  62. Ho IA, Chan KY, Ng WH, Guo CM, Hui KM, Cheang P, et al. Matrix metalloproteinase 1 is necessary for the migration of human bone marrow-derived mesenchymal stem cells toward human glioma. Stem Cells 2009 June; 27(6): 1366–1375.

    Article  PubMed  CAS  Google Scholar 

  63. Kanehira M, Xin H, Hoshino K, Maemondo M, Mizuguchi H, Hayakawa T, et al. Targeted delivery of NK4 to multiple lung tumors by bone marrow-derived mesenchymal stem cells. Cancer Gene Ther 2007 Nov; 14(11): 894–903.

    Article  PubMed  CAS  Google Scholar 

  64. Otsu K, Das S, Houser SD, Quadri SK, Bhattacharya S, Bhattacharya J. Concentration-dependent inhibition of angiogenesis by mesenchymal stem cells. Blood 2009 April 30; 113(18): 4197–4205.

    Article  PubMed  CAS  Google Scholar 

  65. Qiao L, Zhao TJ, Wang FZ, Shan CL, Ye LH, Zhang XD. NF-kappaB downregulation may be involved the depression of tumor cell proliferation mediated by human mesenchymal stem cells. Acta Pharmacol Sin 2008 March; 29(3): 333–340.

    Article  PubMed  CAS  Google Scholar 

  66. Wang SS, Asfaha S, Okumura T, Betz KS, Muthupalani S, Rogers AB, et al. Fibroblastic colony-forming unit bone marrow cells delay progression to gastric dysplasia in a helicobacter model of gastric tumorigenesis. Stem Cells 2009 Sep; 27(9): 2301–2311.

    Article  PubMed  CAS  Google Scholar 

  67. Zipori D. Cultured stromal cell lines from hemopoietic tissues. In: M Tavassoli (ed). Blood Cell Formation: The Role of the Hemopoietic Microenvironment. Humana Press: Clifton, NY, 1989, pp 287–333.

    Chapter  Google Scholar 

  68. Ksiazek K. A comprehensive review on mesenchymal stem cell growth and senescence. Rejuvenation Res 2009 Apr; 12(2): 105–116.

    Article  PubMed  CAS  Google Scholar 

  69. Wagner W, Horn P, Castoldi M, Diehlmann A, Bork S, Saffrich R, et al. Replicative senescence of mesenchymal stem cells: a continuous and organized process. PLoS ONE 2008; 3(5): e2213.

    Article  PubMed  CAS  Google Scholar 

  70. Bork S, Pfister S, Witt H, Horn P, Korn B, Ho AD, et al. DNA methylation pattern changes upon long-term culture and aging of human mesenchymal stromal cells. Aging Cell Feb; 9(1): 54–63.

    Google Scholar 

  71. Foudah D, Redaelli S, Donzelli E, Bentivegna A, Miloso M, Dalpra L, et al. Monitoring the genomic stability of in vitro cultured rat bone-marrow-derived mesenchymal stem cells. Chromosome Res 2009; 17(8): 1025–1039.

    Article  PubMed  CAS  Google Scholar 

  72. Josse C, Schoemans R, Niessen NA, Delgaudine M, Hellin AC, Herens C, et al. Systematic chromosomal aberrations found in murine bone marrow-derived mesenchymal stem cells. Stem Cells Dev 2010 Jan 28 ahead of print.

    Google Scholar 

  73. Tarte K, Gaillard J, Lataillade JJ, Fouillard L, Becker M, Mossafa H, et al. Clinical-grade production of human mesenchymal stromal cells: occurrence of aneuploidy without transformation. Blood 2010 Feb 25; 115(8): 1549–1553.

    Google Scholar 

  74. Grimes BR, Steiner CM, Merfeld-Clauss S, Traktuev DO, Smith D, Reese A, et al. Interphase FISH demonstrates that human adipose stromal cells maintain a high level of genomic stability in long-term culture. Stem Cells Dev 2009 June; 18(5): 717–724.

    Article  PubMed  CAS  Google Scholar 

  75. Bernardo ME, Zaffaroni N, Novara F, Cometa AM, Avanzini MA, Moretta A, et al. Human bone marrow derived mesenchymal stem cells do not undergo transformation after long-term in vitro culture and do not exhibit telomere maintenance mechanisms. Cancer Res 2007 Oct 1; 67(19): 9142–9149.

    Article  PubMed  CAS  Google Scholar 

  76. Izadpanah R, Kaushal D, Kriedt C, Tsien F, Patel B, Dufour J, et al. Long-term in vitro expansion alters the biology of adult mesenchymal stem cells. Cancer Res 2008 June 1; 68(11): 4229–4238.

    Article  PubMed  CAS  Google Scholar 

  77. Choumerianou DM, Dimitriou H, Perdikogianni C, Martimianaki G, Riminucci M, Kalmanti M. Study of oncogenic transformation in ex vivo expanded mesenchymal cells, from paediatric bone marrow. Cell Prolif 2008 Dec; 41(6): 909–922.

    Article  PubMed  CAS  Google Scholar 

  78. Aguilar S, Nye E, Chan J, Loebinger M, Spencer-Dene B, Fisk N, et al. Murine but not human mesenchymal stem cells generate osteosarcoma-like lesions in the lung. Stem Cells 2007 June; 25(6): 1586–1594.

    Article  PubMed  Google Scholar 

  79. Miura M, Miura Y, Padilla-Nash HM, Molinolo AA, Fu B, Patel V, et al. Accumulated chromosomal instability in murine bone marrow mesenchymal stem cells leads to malignant transformation. Stem Cells 2006 April; 24(4): 1095–1103.

    Article  PubMed  Google Scholar 

  80. Tolar J, Nauta AJ, Osborn MJ, Panoskaltsis Mortari A, McElmurry RT, Bell S, et al. Sarcoma derived from cultured mesenchymal stem cells. Stem Cells 2007 Feb; 25(2): 371–379.

    Article  PubMed  CAS  Google Scholar 

  81. Mohseny AB, Szuhai K, Romeo S, Buddingh EP, Briaire-de Bruijn I, de Jong D, et al. Osteosarcoma originates from mesenchymal stem cells in consequence of aneuploidization and genomic loss of Cdkn2. J Pathol 2009 Nov; 219(3): 294–305.

    Google Scholar 

  82. Li H, Fan X, Kovi RC, Jo Y, Moquin B, Konz R, et al. Spontaneous expression of embryonic factors and p53 point mutations in aged mesenchymal stem cells: a model of age-related tumorigenesis in mice. Cancer Res 2007 Nov 15; 67(22): 10889–10898.

    Article  PubMed  CAS  Google Scholar 

  83. Helman LJ, Meltzer P. Mechanisms of sarcoma development. Nat Rev Cancer 2003 Sep; 3(9): 685–694.

    Article  PubMed  CAS  Google Scholar 

  84. Tasso R, Augello A, Carida M, Postiglione F, Tibiletti MG, Bernasconi B, et al. Development of sarcomas in mice implanted with mesenchymal stem cells seeded onto bioscaffolds. Carcinogenesis 2009 Jan; 30(1): 150–157.

    Article  PubMed  CAS  Google Scholar 

  85. Wang Y, Huso DL, Harrington J, Kellner J, Jeong DK, Turney J, et al. Outgrowth of a transformed cell population derived from normal human BM mesenchymal stem cell culture. Cytotherapy 2005; 7(6): 509–519.

    Article  PubMed  CAS  Google Scholar 

  86. Rubio D, Garcia-Castro J, Martin MC, de la Fuente R, Cigudosa JC, Lloyd AC, et al. Spontaneous human adult stem cell transformation. Cancer Res 2005 April 15; 65(8): 3035–3039.

    PubMed  CAS  Google Scholar 

  87. Rosland GV, Svendsen A, Torsvik A, Sobala E, McCormack E, Immervoll H, et al. Long-term cultures of bone marrow-derived human mesenchymal stem cells frequently undergo spontaneous malignant transformation. Cancer Res 2009 July 1; 69(13): 5331–5339.

    Article  PubMed  CAS  Google Scholar 

  88. Rubio D, Garcia S, Paz MF, De la Cueva T, Lopez-Fernandez LA, Lloyd AC, et al. Molecular characterization of spontaneous mesenchymal stem cell transformation. PLoS One 2008; 3(1): e1398.

    Article  PubMed  CAS  Google Scholar 

  89. Amariglio N, Hirshberg A, Scheithauer BW, Cohen Y, Loewenthal R, Trakhtenbrot L, et al. Donor-derived brain tumor following neural stem cell transplantation in an ataxia telangiectasia patient. PLoS Med 2009 Feb 17; 6(2): e1000029.

    Article  PubMed  CAS  Google Scholar 

  90. Shackney SE, Smith CA, Miller BW, Burholt DR, Murtha K, Giles HR, et al. Model for the genetic evolution of human solid tumors. Cancer Res 1989 June 15; 49(12): 3344–3354.

    PubMed  CAS  Google Scholar 

  91. Holland AJ, Cleveland DW. Boveri revisited: chromosomal instability, aneuploidy and tumorigenesis. Nat Rev Mol Cell Biol 2009 July; 10(7): 478–487.

    Article  PubMed  CAS  Google Scholar 

  92. Storchova Z, Kuffer C. The consequences of tetraploidy and aneuploidy. J Cell Sci 2008 Dec 1; 121(Pt 23): 3859–3866.

    Article  PubMed  CAS  Google Scholar 

  93. Spitz R, Betts DR, Simon T, Boensch M, Oestreich J, Niggli FK, et al. Favorable outcome of triploid neuroblastomas: a contribution to the special oncogenesis of neuroblastoma. Cancer Genet Cytogenet 2006 May; 167(1): 51–56.

    Article  PubMed  CAS  Google Scholar 

  94. Baek KH, Zaslavsky A, Lynch RC, Britt C, Okada Y, Siarey RJ, et al. Down’s syndrome suppression of tumour growth and the role of the calcineurin inhibitor DSCR1. Nature 2009 June 25; 459(7250): 1126–1130.

    Article  PubMed  CAS  Google Scholar 

  95. Guidotti JE, Bregerie O, Robert A, Debey P, Brechot C, Desdouets C. Liver cell polyploidization: a pivotal role for binuclear hepatocytes. J Biol Chem 2003 May 23; 278(21): 19095–19101.

    Article  PubMed  CAS  Google Scholar 

  96. Ravid K, Lu J, Zimmet JM, Jones MR. Roads to polyploidy: the megakaryocyte example. J Cell Physiol 2002 Jan; 190(1): 7–20.

    Article  PubMed  CAS  Google Scholar 

  97. Goldberg ID, Rosen EM, Shapiro HM, Zoller LC, Myrick K, Levenson SE, et al. Isolation and culture of a tetraploid subpopulation of smooth muscle cells from the normal rat aorta. Science 1984 Nov 2; 226(4674): 559–561.

    Article  PubMed  CAS  Google Scholar 

  98. Quintyne NJ, Reing JE, Hoffelder DR, Gollin SM, Saunders WS. Spindle multipolarity is prevented by centrosomal clustering. Science 2005 Jan 7; 307(5706): 127–129.

    Article  PubMed  CAS  Google Scholar 

  99. Ganem NJ, Godinho SA, Pellman D. A mechanism linking extra centrosomes to chromosomal instability. Nature 2009 July 9; 460(7252): 278–282.

    Article  PubMed  CAS  Google Scholar 

  100. Castedo M, Coquelle A, Vivet S, Vitale I, Kauffmann A, Dessen P, et al. Apoptosis regulation in tetraploid cancer cells. EMBO J 2006 June 7; 25(11): 2584–2595.

    Article  PubMed  CAS  Google Scholar 

  101. Rodriguez R, Rubio R, Masip M, Catalina P, Nieto A, de la Cueva T, et al. Loss of p53 induces tumorigenesis in p21-deficient mesenchymal stem cells. Neoplasia 2009 April; 11(4): 397–407.

    PubMed  CAS  Google Scholar 

  102. Bar J, Feniger-Barish R, Lukashchuk N, Shaham H, Moskovits N, Goldfinger N, et al. Cancer cells suppress p53 in adjacent fibroblasts. Oncogene 2009 Feb 12; 28(6): 933–936.

    Article  PubMed  CAS  Google Scholar 

  103. Tataria M, Quarto N, Longaker MT, Sylvester KG. Absence of the p53 tumor suppressor gene promotes osteogenesis in mesenchymal stem cells. J Pediatr Surg 2006 Apr; 41(4): 624–632; discussion 624–632.

    Google Scholar 

  104. Nguyen HG, Makitalo M, Yang D, Chinnappan D, St Hilaire C, Ravid K. Deregulated Aurora-B induced tetraploidy promotes tumorigenesis. FASEB J 2009 Aug; 23(8): 2741–2748.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dov Zipori .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Netherlands

About this chapter

Cite this chapter

Shoshani, O., Zipori, D. (2010). The Role of Mesenchymal Cells in Cancer: Contribution to Tumor Stroma and Tumorigenic Capacity. In: Reichle, A. (eds) From Molecular to Modular Tumor Therapy. The Tumor Microenvironment, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9531-2_5

Download citation

Publish with us

Policies and ethics