Bioimaging ASIP benchmark study

  • Francky Catthoor
  • Praveen Raghavan
  • Andy Lambrechts
  • Murali Jayapala
  • Angeliki Kritikakou
  • Javed Absar


This chapter describes the application of the main techniques proposed in this book to a realistic application benchmark, namely a bioimaging detection and tracking algorithm for on-line animal monitoring. Most of the components and contributions presented in this book have been applied and illustrated in this realistic demonstrator. In particular we exploit the distributed loop buffer organisation, the very wide register with a wide interface to the SRAM scratchpad, and the SoftSIMD concept in the data-path including the constant multiplication strength reduction. All these are embedded in an instance of the Feenecs architecture template of Chapter 3.


Detection Algorithm Addition Operation Constant Multiplication Tracking Algorithm Functional Unit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ler06.
    T.Leroy, E.Vranken, A.Van Brecht, E.Streulens, B.Sonck, D.Berckmans, “A computer vision method for on-line behavioral quantification of individually caged poultry”, Trans. of the ASAE, Vol.49, No.3, pp.795–802, 2006.Google Scholar
  2. Nov08.
    D.Novo, B.Bougard, A.Lambrechts, L.Van der Perre, and F.Catthoor. Scenario-based fixed-point data format refinement to enable energy-scalable software defined radios. Proc. of Design and Test in Europe Conf.(DATE), pages 722–727, March 2008.Google Scholar
  3. Nov09.
    D.Novo, B.Bougard, L.Van der Perre, F.Catthoor, “Finite-precision processing in wireless applications”, Proc. 12th ACM/IEEE Design and Test in Europe Conf.(DATE), Nice, France, pp.1230–1233, April 2009.Google Scholar
  4. Kri09.
    A.Kritikakou. Low cost low energy embedded processor for online biotechnology monitoring applications. Master’s thesis, Dept. of Computer Eng. and Informatics, Univ. of Patras and IMEC, Feb. 2009.Google Scholar
  5. Maz93.
    C. Mazenc, X. Merrheim, J. Muller, “Computing Functions cos/sup -1/ and sin/sup -1/ Using CORDIC”, IEEE Trans. on Computers, Vol.C-42, No.1, pp.118–122, Jan. 1993.Google Scholar
  6. Vol59.
    J.Volder, “The CORDIC trigonometric computing technique”, IRE Trans. on Electron. Computing, Vol.EC-8, pp.330–334, Sept. 1959.Google Scholar
  7. Pau92.
    M. Pauwels, Filip Thoen, Eric Beeckmans, Gert Goossens, Francky Catthoor, Hugo De Man, “An Application Specific Multi-precision Multiplier Architecture for a Dynamic Range Compressor for Audio”, Proc. 6th Eur. Signal Processing Conf., EUSIPCO-92, Brussels, Belgium, Elsevier Publ., Amsterdam, pp.1569–1572, Aug. 1992.Google Scholar
  8. Pau95.
    M.Pauwels, G.Goossens, F.Catthoor, H.De Man, “Formalisation of multi-precision arithmetic for high-level synthesis of DSP architectures”, special issue on “VLSI Design Methodologies for DSP Systems”, M.Bayoumi (Ed.), J. of VLSI Signal Processing, Kluwer, Boston, No.11, Oct. 1995.Google Scholar
  9. Rag07b.
    P. Raghavan, N. Sethubalasubramanian, S.Munaga, E.Rey Ramos, M.Jayapala, D.Weiss, F.Catthoor, D.Verkest, “Semi Custom Design: A Case Study on SIMD Shufflers”, Proc. IEEE Wsh. on Power and Timing Modeling, Optimization and Simulation (PATMOS), Lecture Notes in Computer Science Vol.4644, Goteborg, Sweden, pp.433–442, Sep. 2007.Google Scholar
  10. Rag07c.
    P.Raghavan, S.Munaga, E.Rey Ramos, A.Lambrechts, M.Jayapala, F.Catthoor, D.Verkest, “A Customized Cross-bar for Data-shuffling in Domain-specific SIMD Processors”, Proc. Intnl. Wsh. on Architecture of Computing Systems (ARCS), Zurich, Switzerland, pp.57–68, March 2007.Google Scholar
  11. Cat09.
    F.Catthoor, “Back- and foreground memory organisation for energy-efficient data parallel access”, IMEC Internal report, Feb. 2009.Google Scholar
  12. Cos08.
    S.Cosemans, W.Dehaene, and F.Catthoor. A 3.6pj/access 480mhz, 128kbit on-chip sram with 850mhz boost mode in 90nm cmos with tunable sense amplifiers to cope with variability. Proc. 34th Europ. Solid-State Circuits Conf., ESSCIRC, Edinburgh, UK, pp.278–281, Sep. 2008.Google Scholar
  13. Laf99.
    G.Lafruit, F.Catthoor, J.Cornelis, H.De Man, “An efficient VLSI architecture for the 2-D wavelet transform with novel image scan”, IEEE Trans. on VLSI Systems, Vol.7, No.1, pp.56–68, March 1999.CrossRefGoogle Scholar
  14. Psy10.
    G.Psychou. Optimized SIMD scheduling and architecture implementation for ultra-low energy bioimaging processor. Master’s thesis, Dept. of Computer Eng. and Informatics, Univ. of Patras and IMEC, March 2010.Google Scholar
  15. Tar08.
    Target, IP Designer, 2008.
  16. Tal08.
    G.Talavera, M.Jayapala, J.Carrabina, F.Catthoor, “Address Generation Optimization for Embedded High-Performance Processors: a Survey”, J. of Signal Processing Systems, Springer, May 2008 (on-line); Vol.53, No.3, pp.271–284, Sep. 2008.Google Scholar
  17. Gee09.
    P.Geens, “Active supply control in static random-access memories”, Doctoral dissertation, ESAT/EE Dept., K.U.Leuven, Belgium, April 2009.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Francky Catthoor
    • 1
  • Praveen Raghavan
    • 1
  • Andy Lambrechts
    • 1
  • Murali Jayapala
    • 1
  • Angeliki Kritikakou
    • 2
  • Javed Absar
    • 3
  1. 1.Interuniversity MicroElectronics Center IMECLeuvenBelgium
  2. 2.VLSI Design LabUniv. PatrasPatrasGreece
  3. 3.Samsung India Software Operations Pvt. LtdBangaloreIndia

Personalised recommendations