Skip to main content

Mitogen-Activated Protein Kinase-Activated Protein Kinases and Metastasis

  • Chapter
  • First Online:
Signal Transduction in Cancer Metastasis

Part of the book series: Cancer Metastasis - Biology and Treatment ((CMBT,volume 15))

Abstract

Cancer is characterized by cells that disobey the stringent control mechanisms of cellular processes such as division and growth, survival, homeostasis, motility, and tissue invasion. Signalling pathways, including the mitogen-activated protein kinase (MAPK) signalling pathways, regulate these cellular processes. Not unexpectedly, cancer cells display defects in signalling pathways due to mutations in genes encoding signal transduction proteins. The typical MAPK pathways transmit, amplify and translate signals through consecutive phosphorylation events engaging a MAPK kinase kinase, a MAPK kinase, and a MAPK, which finally phosphorylates substrates. These substrates can be non-protein kinases or protein kinases. The latter are referred to as MAPK-activating protein kinases. Escalating evidence exists that the MAPK signal transduction pathways can be implicated in metastasis. This review focuses on the specific roles of MAPK-activating protein kinases in metastasis and summarizes potential small inhibitors against MAPK-activating protein kinases that may find their way in cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AMPK:

AMP-activated protein kinase

BRSK2:

brain-specific kinase 2

CaMKK:

calmodulin-dependent kinase

CHK2:

checkpoint kinase 2

CK:

casein kinase

DYRK:

dual-specificity tyrosine-(Y)-phosphorylation regulated kinase

EPCG:

Epigallocatechin gallate

ERK8:

extracellular-signal-regulated kinase 8

GSK3β:

glycogen synthase kinase 3β

HIPK:

homeodomain-interacting protein kinase 2

IKK:

IkappaB kinase

LCK:

lymphocyte cell-specific protein tyrosine kinase

MARK3:

microtubule-affinity-regulating kinase

MELK:

maternal embryonic leucine-kinase

MST2:

mammalian homologue Ste20-like kinase 2

PDK1:

3-phosphoinositide-dependent protein kinase

PHK:

phosphorylase kinase

PIM:

provirus integration site for Moloney murine leukaemia virus

PKA:

protein kinase A/cAMP-dependent protein kinase

PKBα:

protein kinase B isoform α

PKCα:

protein kinase C isoform α

PRK2:

protein kinase C-related kinase 2

ROCK-II:

Rho-dependent kinase II

SGK1:

serum- and glucocorticoid-induced kinase 1

Src:

sarcoma kinase

SRPK1:

serine-arginine protein kinase 1

S6K1:

p70 ribosomal protein S6 kinase 1

References

  1. Åberg E, Perander M, Johansen B, Julien C, Meloche S, Keyse SM, Seterens OM. Regulation of MAPK-activated protein kinase 5 activity and subcellular localization by the atypical MAPK ERK4/MAPK4. J. Biol. Chem. 2006; 281: 35499–35510.

    PubMed  Google Scholar 

  2. Allen MP, Linseman DA, Udo H, Xu M, Schaack JB, Varnum B, Kandel ER, Heidenreich KA, Wierman ME. Novel mechanism for gonadotropin-releasing hormone neuronal migration involving Gas6/Ark signaling to p38 mitogen-activated protein kinase. Mol. Cell Biol. 2002; 22: 599–613.

    PubMed  CAS  Google Scholar 

  3. Anderson DR, Meyers MJ, Vernier WF, Mahoney MW, Kurumbail RG, Caspers N, Poda GI, Schindler JF, Reitz DB, Mourey RJ. Pyrrolopyridine inhibitors of mitogen-activated protein kinase-activated protein kinase 2 (MK-2). J. Med. Chem. 2007; 50: 2647–2654.

    PubMed  CAS  Google Scholar 

  4. Anjum R, Blenis J. The RSK family of kinases: emerging roles in cellular signaling. Nat. Rev. Mol. Cell Biol. 2008; 9: 747–758.

    PubMed  CAS  Google Scholar 

  5. Arthur JSC. MSK activation and physiological roles. Front Biosci. 2008; 13: 5866–5879.

    PubMed  CAS  Google Scholar 

  6. Bain J, McLauchlan H, Elliott M, Cohen P. The specificities of protein kinase inhibitors: an update. Biochem. J. 2003; 371: 199–204.

    PubMed  CAS  Google Scholar 

  7. Bain J, Plater L, Elliott M, Shpiro N, Hastie CJ, McLauchlan H, Klevernic I, Arthur JS, Alessi DR, Cohen P. The selectivity of protein kinase inhibitors: a further update. Biochem. J. 2007; 408: 297–315.

    PubMed  CAS  Google Scholar 

  8. Bakin AV, Rinehart C, Tomlinson AK, Arteaga CL. p38 mitogen-activated protein kinase is required for TGFβ-mediated fibroblastic transdifferentiation and cell migration. J. Cell. Sci. 2002; 115: 3193–3206.

    PubMed  CAS  Google Scholar 

  9. Bamford MJ, Bailey N, Davies S, Dean DK, Francis L, Panchal TA, Parr CA, Sehmi S, Steadman JG, Takle AK, Townsend JT, Wilson DM. 1H-imidazo[4,5-c]pyridin-2-yl)-1,2,5-oxadiazol-3-ylamine derivatives: further optimisation as highly potent and selective MSK-1-inhibitors. Bioorg. Med. Chem. Lett. 2005; 15: 3407–3411.

    PubMed  CAS  Google Scholar 

  10. Baranwal S, Alahari SK. Molecular mechanisms controlling E-cadherin expression in breast cancer. Biochem. Biophys. Res. Commun. 2009; 384: 6–11.

    PubMed  CAS  Google Scholar 

  11. Berns K, Hijmans EM, Mullenders J, Brummelkamp TR, Velds A, Heimerikx M, Kerkhoven RM, Madiredjo M, Nijkamp W, Weigelt B, Agami R, Ge W, Cavet G, Linsley PS, Beijersbergen RL, Bernards R. A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature 2004; 428: 431–437.

    PubMed  CAS  Google Scholar 

  12. Besson A, Gurian-West M, Schmidt A, Hall A, Roberts JM. p27Kip1 modulates cell migration through the regulation of RhoA activation. Genes Dev. 2004; 18: 862–876.

    PubMed  CAS  Google Scholar 

  13. Bianchini A, Loiarro M, Bielli P, Busà R, Paronetto MP, Loreni F, Geremia R, Sette C. Phosphorylation of eIF4E by MNKs supports protein synthesis, cell cycle progression and proliferation in prostate cancer cells. Carcinogenesis 2008; 29: 2279–2288.

    PubMed  CAS  Google Scholar 

  14. Bignone PA, Lee KY, Liu Y, Emilion G, Finch J, Soosay AER, Charnock FML, Beck S, Dunham I, Mungall AJ, Ganesan TS. RPSKA2, a putative tumour suppressor gene at 6q27 in sporadic epithelial ovarian cancer. Oncogene 2007; 26: 683–700.

    PubMed  CAS  Google Scholar 

  15. Bourquignong LY. Hyaluronan-mediated CD44 activation of RhoGTPase signaling and cytoskeleton function promotes tumor progression. Semin. Cancer Biol. 2008; 18: 251–259.

    Google Scholar 

  16. Bukholm IK, Nesland JM, Kåresen R, Jacobsen U, Børresen-Dale AL. Expression of E-cadherin and its relation to the p53 protein status in human breast carcinomas. Virchows Arch. 1997; 431: 317–321.

    PubMed  CAS  Google Scholar 

  17. Butcher EC, Williams M, Youngman K, Rott L, Briskin M. Lymphocyte trafficking and regional immunity. Adv. Immunol. 1999; 72: 209–253.

    PubMed  CAS  Google Scholar 

  18. Buxade M, Parra-Paula JL, Proud CG. The Mnks: MAP kinase-interacting kinases (MAP kinase signal-integrating kinases). Front Biosci. 2008; 13: 5359–5374.

    PubMed  CAS  Google Scholar 

  19. Byers HR, Etoh T, Doherty JR, Sober AJ, Mihm MC Jr. Cell migration and actin organization in cultured human primary, recurrent cutaneous and metastatic melanoma. Time-lapse and image analysis. Am. J. Pathol. 1991; 139: 423–435.

    PubMed  CAS  Google Scholar 

  20. Calderwood SK, Ciocca DR. Heat shock proteins: stress proteins with Janus-like properties in cancer. Int. J. Hypertherm. 2008; 24: 31–39.

    CAS  Google Scholar 

  21. Caldwell JE, Heiss SG, Mermall V, Cooper JA. Effects of CapZ, an actin capping protein of muscle, on the polymerization of actin. Biochemistry 1989; 28: 8506–8514.

    PubMed  CAS  Google Scholar 

  22. Campbell JJ, Butcher EC. Chemokines in tissue-specific and microenvironment-specific lymphocyte homing. Curr. Opin. Immunol. 2000; 12: 336–341.

    PubMed  CAS  Google Scholar 

  23. Carriere A, Ray H, Blenis J, Roux PP. The RSK factors of activating the Ras/MAPK signaling cascade. Front Biosci. 2008; 13: 4258–4275.

    PubMed  CAS  Google Scholar 

  24. Charles EE, Robert JC, Aramandla R, Francis MG, Suzanne F, Raymond D. Up-regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterology 1994; 107: 1183–1188.

    Google Scholar 

  25. Chen G, Hitomi M, Han J, Stacey DW. The p38 pathway provides negative feedback for Ras proliferative signaling. J. Biol. Chem. 2000; 275: 38973–38980.

    PubMed  CAS  Google Scholar 

  26. Cheng TJ, Tseng YF, Chang WM, Chang MD, Lai YK. Retaining of the assembly capability of vimentin phosphorylated by mitogen-activated protein kinase-activated protein kinase-2. J. Cell. Biochem. 2003; 89: 589–602.

    PubMed  CAS  Google Scholar 

  27. Chiang AC, Massagué J. Molecular basis of metastasis. New Engl. J. Med. 2009; 359: 2814–2823.

    Google Scholar 

  28. Cho YY, Yao K, Kim HG, Kang BS, Zheng D, Bode AM, Dong Z. Ribosomal S6 kinase 2 is a key regulator in tumor promoter induced cell transformation. Cancer Res. 2007; 67: 8104–8112.

    PubMed  CAS  Google Scholar 

  29. Chrestensen CA, Eschenroeder A, Ross WG, Ueda T, Watanabe-Fukunaga R, Fukunaga R, Sturgill TW. Loss of MNK function sensitizes fibroblasts to serum-withdrawal induced apoptosis. Genes Cells 2007a; 12: 1133–1140.

    PubMed  CAS  Google Scholar 

  30. Chrestensen CA, Shuman JK, Eschenroeder A, Worthington M, Gram H, Sturgill TW. MNK1 and MNK2 regulation in HER2-overexpressing breast cancer cell lines. J. Biol. Chem. 2007b; 282: 4243–4252.

    PubMed  CAS  Google Scholar 

  31. Chu IM, Hengst L, Slingerland JM. The Cdk inhibitor p27 in human cancer: prognostic potential and relevance to anticancer therapy. Nat. Rev Cancer 2008; 8: 253–267.

    PubMed  CAS  Google Scholar 

  32. Clark DE, Errington TM, Smith JA, Frierson HF Jr, Weber MJ, Lannigan DA. The serine/threonine protein kinase, p90 ribosomal S6 kinase, is an important regulator of prostate cancer cell proliferation. Cancer Res. 2005; 65: 3108–3116.

    PubMed  CAS  Google Scholar 

  33. Clinical trials: http://clinicaltrials.gov/.

  34. Cohen MS, Zhang C, Shokat KM, Tauton J. Structural bioinformatics-based design of selective, irreversible kinase inhibitors. Science 2005; 308: 1318–1321.

    PubMed  CAS  Google Scholar 

  35. Corcoran DL, Pandit KV, Gordon B, Bhattacharjee A, Kaminski N, Benos PV. Features of mammalian microRNA promoters emerge from polymerase II chromatin immunoprecipitation data. PLoS 2009; 4: e5279.

    Google Scholar 

  36. Cuenda A, Rousseau S. p38 MAP-kinases pathway regulation, function and role in human diseases. Biochim. Biophys. Acta 2007; 1773: 1358–1375.

    PubMed  CAS  Google Scholar 

  37. Cuevas B, Abell A, Johnson G. Role of mitogen-activated protein kinase kinase kinases in signal integration. Oncogene 2007; 26: 3159–3171.

    PubMed  CAS  Google Scholar 

  38. Davies SP, Reddy H, Caivano M, Cohen P. Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem. J. 2000; 351: 95–105.

    PubMed  CAS  Google Scholar 

  39. Davies H, Hunter C, Smith R, Stephens P, Greenman C, Bignell G, Teague J, Butler A, Edkins S, Stevens C, Parker A, O’Meara S, Avis T, Barthorpe S, Brackenbury L, Buck G, Clements J, Cole J, Dicks E, Edwards K, Forbes S, Gorton M, Gray K, Halliday K, Harrison R, Hills K, Hinton J, Jones D, Kosmidou V, Laman R, Lugg R, Menzies A, Perry J, Petty R, Raine K, Shepherd R, Small A, Solomon H, Stephens Y, Tofts C, Varian J, Webb A, West S, Widaa S, Yates A, Brasseur F, Cooper CS, Flanagan AM, Green A, Knowles M, Leung SY, Looijenga LH, Malkowicz B, Pierotti MA, Teh BT, Yuen ST, Lakhani SR, Easton DF, Weber BL, Goldstraw P, Nicholson AG, Wooster R, Stratton MR, Futreal PA. Somatic mutations of the protein kinase gene family in human lung cancer. Cancer Res. 2005; 65: 7591–7595.

    PubMed  CAS  Google Scholar 

  40. Davis T, Bagley MC, Dix MC, Murziani PGS, Rokicki MJ, Widdowson CS, Zayed JM, Bachler MA, Kipling D. Synthesis and in vivo activity of MK2 and MK2 substrate-selective p38αMAPK inhibitors in Werner syndrome cells. Bioorg. Med. Chem. Lett. 2007; 17: 6832–6835.

    PubMed  CAS  Google Scholar 

  41. Deryugina EI, Quigley JP. Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev. 2006; 25: 9–34.

    PubMed  CAS  Google Scholar 

  42. Desmarais V, Ghosh M, Eddy R, Condeelis J. Cofilin takes the lead. J. Cell Sci. 2005; 118: 19–26.

    PubMed  CAS  Google Scholar 

  43. Dhanasekaran DN, Johnson GL. MAPKs: function, regulation, role in cancer and therapeutic targeting. Oncogene 2007; 26: 3097–3099.

    PubMed  CAS  Google Scholar 

  44. Dhillon AS, Hagan S, Rath O, Kolch W. MAP kinase signalling pathways in cancer. Oncogene 2007; 26: 3279–3290.

    PubMed  CAS  Google Scholar 

  45. Dixon DA, Kaplan CD, McIntyre TM, Zimmerman GA, Prescott SM. Post-transcriptional control of cyclooxygenase-2 gene expression. The role of the 3-untranslated region. J. Biol. Chem. 2000; 275: 11750–11757.

    PubMed  CAS  Google Scholar 

  46. Doehn U, Hauge C, Frank SR, Jensen CJ, Duda K, Nielsen JV, Cohen MS, Johansen JV, Winther BR, Lund LR, Winther O, Tauton J, Hansen SH, Frödin M. RSK is a principal effector of the RAS-ERK pathway for eliciting a coordinate promotile/invasive gene program and phenotype in epithelial cells. Mol. Cell 2009: 35: 511–522.

    PubMed  CAS  Google Scholar 

  47. Dohadwala M, Luo J, Zhu L, Lin Y, Dougherty GJ, Sharma S, Huang M, Pold M, Batra RK, Dubinett SM. Non-small cell lung cancer cyclooxygenase-2-dependent invasion is mediated by CD44. J. Biol. Chem. 2001; 276: 20809–20812.

    PubMed  CAS  Google Scholar 

  48. Dohadwala M, Yang SC, Luo J, Sharma S, Batra RK, Huang M, Lin Y, Goodglick L, Krysan K, Fishbein MC, Hong L, Lai C, Cameron RB, Gemmill RM, Drabkin HA, Dubinett SM. Cyclooxygenase-2-dependent regulation of E-cadherin: prostaglandin E(2) induces transcriptional repressors ZEB1 and snail in non-small cell lung cancer. Cancer Res. 2006; 66: 5338–5345.

    PubMed  CAS  Google Scholar 

  49. Dreyfuss G, Kim VN, Kataoka N. Messenger-RNA-binding proteins and the messages they carry. Nat. Rev. Mol. Cell Biol. 2002; 3: 195–205.

    PubMed  CAS  Google Scholar 

  50. Dubuisson L, Monvoisin A, Nielsen BS, Le Bail B, Bioulac-Sage P, Rosenbaum J. Expression and cellular localization of the urokinase-type plasminogen activator and its receptor in human hepatocellular carcinoma. J. Pathol. 2000 ; 190: 190–195.

    PubMed  CAS  Google Scholar 

  51. Dumont N, Tlsty TD. Reflections on miR-ing effects in metastasis. Cancer Cell. 2009; 16: 3–4.

    PubMed  CAS  Google Scholar 

  52. Eliopoulos AG, Dumitriu CD, Wang CC, Cho J, Tsichlis PN. Induction of COX-2 by LPS in macrophages is regulated by Tpl2-dependent CREB activation signals. EMBO J. 2002; 21: 4831–4840.

    PubMed  CAS  Google Scholar 

  53. Erikson E, Maller JL. A Protein Kinase from Xenopus Eggs Specific for Ribosomal Protein S6. Proc. Natl Acad. Sci. USA 1985; 82: 742–746.

    PubMed  CAS  Google Scholar 

  54. Eyers CE, McNeill H, Knebel A, Morrice N, Arthur SJC, Cuenda A, Cohen P. The phosphorylation of CapZ-interacting protein (CapZIP) by stress-activated protein kinases triggers its dissociation from CapZ. Biochem. J. 2005; 389: 127–135.

    PubMed  CAS  Google Scholar 

  55. Feng Y, Walsh CA. The many faces of filamin: a versatile molecular scaffold for cell motility and signalling. Nat. Cell Biol. 2004; 6: 1034–1038.

    PubMed  CAS  Google Scholar 

  56. Ferrara N. Vascular endothelial growth factor: basic science and clinical progress. Endocr. Rev. 2004; 25: 581–611.

    PubMed  CAS  Google Scholar 

  57. Folmer F, Blasius R, Morceau F, Tabudravu J, Dicato M, Jaspars M, Diederich M. Inhibition of TNFalpha-induced activation of nuclear factor kappaB by kava (Piper methysticum) derivatives. Biochem. Pharmacol. 2006; 71: 1206–1218.

    PubMed  CAS  Google Scholar 

  58. Funding AT, Johansen C, Kragballe K, Iversen L. Mitogen-and stress-activated protein kinase 2 and cyclic AMP response element binding protein are activated in lesional psoriatic epidermis. J. Invest. Dermatol. 2007; 127: 2012–2019.

    PubMed  CAS  Google Scholar 

  59. Gaestel M. MAPKAP kinases – MKs – two’s company, three’s a crowd. Nat. Rev. Mol. Cell Biol. 2006; 7: 120–130.

    PubMed  CAS  Google Scholar 

  60. Gaestel M, Mengel A, Bothe U, Asadullah K. Protein kinases as small molecule inhibitor targets in inflammation. Curr. Med. Chem. 2007; 14: 2214–2234.

    PubMed  CAS  Google Scholar 

  61. Gaestel M, Kotlyarov A, Kracht M. Targeting innate immunity protein kinase signalling in inflammation. Nat. Rev. Drug Discov 2009; 8: 480–499.

    PubMed  CAS  Google Scholar 

  62. Garcia-Closas M, Chanok S. Genetic susceptibility loci for breast cancer by estrogen receptor status. Clin. Cancer Res. 2008; 14: 8000–8009.

    PubMed  CAS  Google Scholar 

  63. Gerits N, Kostenko S, Moens U. In vivo functions of mitogen-activated protein kinases: conclusions from knock-in and knock-out mice. Transgenic Res. 2007a; 16: 281–314.

    PubMed  CAS  Google Scholar 

  64. Gerits N, Mikalsen T, Kostenko S, Shiryaev A, Johannessen M, Moens U. Modulation of F-actin rearrangement by the cyclic AMP/cAMP-dependent protein kinase (PKA) pathway is mediated by MAPK-activated protein kinase 5 and requires PKA-induced nuclear export of MK5. J. Biol. Chem. 2007b; 282: 37232–37243.

    PubMed  CAS  Google Scholar 

  65. Gerits N, Van Belle W, Moens U. Transgenic mice expressing constitutive active MAPKAPK5 display gender-dependent differences in exploration and activity. Behav. Brain Funct. 2007c; 3: e58.

    Google Scholar 

  66. Gerits N, Shiryaev A, Kostenko S, Klenow H, Shiryaeva O, Johannessen M, Moens U. The transcriptional regulation and cell-specific expression of the MAPK-activated protein kinase MK5. Cell Mol. Biol. Lett. 2009; 14: 548–574.

    PubMed  CAS  Google Scholar 

  67. Gohla A, Bokock GM. 14-3-3 regulates actin dynamics by stabilizing phosphorylated cofilin. Curr. Biol. 2002; 12: 1704–1710.

    PubMed  CAS  Google Scholar 

  68. Goldman RD, Grin B, Mendez MG, Kuczmarski ER. Intermediate filaments: versatile building blocks of cell structure. Curr. Opin. Cell Biol. 2008; 20: 28–34.

    PubMed  CAS  Google Scholar 

  69. Goldstein DM, Gray NS, Zarrinkar PP. High-throughput kinase profiling as a platform for drug discovery. Nat. Rev. Drug Discov. 2008; 7: 391–397.

    PubMed  CAS  Google Scholar 

  70. Greenman C, Stephens P, Smith R, Dalgliesh GL, Hunter C, Bignell G, Davies H, Teague J, Butler A, Stevens C, Edkins S, O’Meara S, Vastrik I, Schmidt EE, Avis T, Barthorpe S, Bhamra G, Buck G, Choudhury B, Clements J, Cole J, Dicks E, Forbes S, Gray K, Halliday K, Harrison R, Hills K, Hinton J, Jenkinson A, Jones D, Menzies A, Mironenko T, Perry J, Raine K, Richardson D, Shepherd R, Small A, Tofts C, Varian J, Webb T, West S, Widaa S, Yates A, Cahill DP, Louis DN, Goldstraw P, Nicholson AG, Brasseur F, Looijenga L, Weber BL, Chiew YE, DeFazio A, Greaves MF, Green AR, Campbell P, Birney E, Easton DF, Chenevix-Trench G, Tan MH, Khoo SK, Teh BT, Yuen ST, Leung SY, Wooster R, Futreal PA, Stratton MR. Patterns of somatic mutation in human cancer genomes. Nature 2007; 446: 153–158.

    PubMed  CAS  Google Scholar 

  71. Günthert U, Hofmann M, Rudy W, Reber S, Zöller M, Haussmann I, Matzku S, Wenzel A, Ponta H, Herrlich P. A new variant of glycoprotein CD44 confers metastatic potential to rat carcinoma cells. Cell 1991; 65: 13–24.

    PubMed  Google Scholar 

  72. Hafizi S, Dahlbäck B. Gas6 and protein S. Vitamin K-dependent ligands for the Axl receptor tyrosine kinase subfamily. FEBS J. 2006; 273: 5231–5244.

    PubMed  CAS  Google Scholar 

  73. Han J, Sun P. The pathways to tumor suppression via route p38. Trends Biochem. Sci. 2007; 32: 364–371.

    PubMed  CAS  Google Scholar 

  74. Han Q, Leng J, Bian D, Mahanivong C, Carpenter KA, Pan ZK, Han J, Huang S. Rac1-MKK3-p38-MAPKAPK2 pathway promotes urokinase plasminogen activator mRNA stability in invasive breast cancer cells. J. Biol. Chem. 2002; 277: 48379–48385.

    PubMed  CAS  Google Scholar 

  75. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000; 100: 57–70.

    PubMed  CAS  Google Scholar 

  76. Haynes BF, Telen MJ, Hale LP, Denning SM. CD44–a molecule involved in leukocyte adherence and T-cell activation. Immunol. Today 1989; 10: 423–428.

    PubMed  CAS  Google Scholar 

  77. Heath VL, Bicknell R. Anticancer strategies involving the vasculature. Nature Rev. Clin. Oncol. 2009; 6: 395–404.

    CAS  Google Scholar 

  78. Hendrickx N, Volanti C, Moens U, Seternes OM, de Witte P, Vandenheede JR, Piette J, Agostinis P. Up-regulation of cyclooxygenase-2 and apoptosis resistance by p38 MAPK in hypericin-mediated photodynamic therapy of human cancer cells. J. Biol. Chem. 2003; 278: 52231–52239.

    PubMed  CAS  Google Scholar 

  79. Hendrix MJ, Seftor EA, Chu YW, Trevor KT, Seftor RE. Role of intermediate filaments in migration, invasion and metastasis. Cancer Metastasis Rev. 1996; 15: 507–525.

    PubMed  CAS  Google Scholar 

  80. Hildenbrand R, Leitz M, Magdolen V, Luther T, Albrecht S, Graeff H, Stutte HJ, Bleyl U, Schmitt M. Validation of immunolocalization of the urokinase receptor expression in ductal carcinoma in situ of the breast: comparison with detection by non-isotopic in-situ hybridization. Histopathology 2000; 36: 499–504.

    PubMed  CAS  Google Scholar 

  81. Hitti E, Iakovleva T, Brook M, Deppenmeier S, Gruber AD, Radzioch D, Clark AR, Blackshear PJ, Kotlyarov A, Gaestel M. Mitogen-activated protein kinase-activated protein kinase 2 regulates tumor necrosis factor mRNA stability and translation mainly by altering tristetraprolin expression, stability, and binding to adenine/uridine-rich element. Mol. Cell Biol. 2006; 26: 2399–2407.

    PubMed  CAS  Google Scholar 

  82. Holbro T, Hynes NE. ErbB receptors: directing key signaling networks throughout life. Annu. Rev. Pharmacol. Toxicol. 2004; 44: 195–217.

    PubMed  CAS  Google Scholar 

  83. Huang S, New L, Pan Z, Han J, Nemerow GR. Urokinase plasminogen activator/urokinase-specific surface receptor expression and matrix invasion by breast cancer cells requires constitutive p38alpha mitogen-activated protein kinase activity. J. Biol. Chem. 2000; 275: 12266–12272.

    PubMed  CAS  Google Scholar 

  84. Huang B, Zhao J, Unkeless JC, Feng ZH, Xiong H. TLR signaling by tumor and immune cells: a double-edged sword. Oncogene 2008; 27: 218–224.

    PubMed  CAS  Google Scholar 

  85. Huang C, Jacobson K, Schaller MD. MAP kinases and cell migration. J. Cell Sci. 2009; 117: 4619–4628.

    Google Scholar 

  86. Hunter C, Smith R, Cahill DP, Stephens P, Stevens C, Teague J, Greenman C, Edkins S, Bignell G, Davies H, O’Meara S, Parker A, Avis T, Barthorpe S, Brackenbury L, Buck G, Butler A, Clements J, Cole J, Dicks E, Forbes S, Gorton M, Gray K, Halliday K, Harrison R, Hills K, Hinton J, Jenkinson A, Jones D, Kosmidou V, Laman R, Lugg R, Menzies A, Perry J, Petty R, Raine K, Richardson D, Shepherd R, Small A, Solomon H, Tofts C, Varian J, West S, Widaa S, Yates A, Easton DF, Riggins G, Roy JE, Levine KK, Mueller W, Batchelor TT, Louis DN, Stratton MR, Futreal PA, Wooster R. A hypermutation phenotype and somatic MSH6 mutations in recurrent human malignant gliomas after alkylator chemotherapy. Cancer Res. 2006; 66: 3987–3991.

    PubMed  CAS  Google Scholar 

  87. Hwang D, Scollard D, Byrne J, Levine E. Expression of cyclooxygenase-1 and cyclooxygenase-2 in human breast cancer. J. Natl Cancer Inst. 1998; 90: 455–460.

    PubMed  CAS  Google Scholar 

  88. Hynes NE, Stern DF. The biology of erbB-2/neu/HER-2 and its role in cancer. Biochim. Biophys. Acta 1994; 1198: 165–184.

    PubMed  Google Scholar 

  89. Imajo M, Tsuchiya Y, Nishida E. Regulatory mechanisms and functions of MAP kinase signaling pathways. IUBMB Life 2006; 58: 312–317.

    PubMed  CAS  Google Scholar 

  90. Inagaki M, Matsuoka Y, Isujimura K, Ando S, Tokui T, Takahashi T, Inagaki N. Dynamic property of intermediate filaments: regulation by phosphorylation. BioEssays 1996; 18: 481–487.

    CAS  Google Scholar 

  91. Ivaska J, Pallari HM, Nevo J, Eriksson JE. Novel functions of vimentin in cell adhesion, migration, and signaling. Exp. Cell Res. 2007; 313: 2050–2062.

    PubMed  CAS  Google Scholar 

  92. Izawa I, Inagaki M. Regulatory mechanisms and functions of intermediate filaments: a study using site- and phosphorylation state-specific antibodies. Cancer Sci. 2006; 97: 167–174.

    PubMed  CAS  Google Scholar 

  93. Jang BC, Sanchez T, Schaefers HJ, Trifan OC, Liu CH, Creminon C, Huang CK, Hla T. Serum withdrawal-induced post-transcriptional stabilization of cyclooxygenase-2 mRNA in MDA-MB-231 mammary carcinoma cells requires the activity of the p38 stress-activated protein kinase. J. Biol. Chem. 2000; 275: 39507–39515.

    PubMed  CAS  Google Scholar 

  94. Johnson GL, Lapadat R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 2002; 298: 1911–1912.

    PubMed  CAS  Google Scholar 

  95. Jongstra-Bilen J, Jongstra J. Leukocyte-specific protein 1 (LSP1): a regulator of leukocyte emigration in inflammation. Immunol. Res. 2006; 35: 65–74.

    PubMed  CAS  Google Scholar 

  96. Jothy S. CD44 and its partners in metastasis. Clin. Exp. Metastasis 2003; 20: 195–201.

    PubMed  CAS  Google Scholar 

  97. Juarez JG, Thien M, Dela Pena A, Baraz R, Bradstock KF, Bendall LJ. CXCR4 mediates the homing of B cell progenitor acute lymphoblastic leukaemia cells to the bone marrow via activation of p38MAPK. Br. J. Haematol. 2009; 145: 491–499.

    PubMed  CAS  Google Scholar 

  98. Kant LT, Vanderhoek JY. Mono (S) hydroxy fatty acids: novel ligands for cytosolic actin. J.Lipid Res. 1998; 39: 1476–1482.

    Google Scholar 

  99. Kant S, Schumacher S, Singh MK, Kispert A, Kotlyarov A, Gaestel M. Characterization of the atypical MAPK ERK4 and its activation of the MAPK-activated protein kinase MK5. J. Biol. Chem. 2006; 281: 35511–35519.

    PubMed  CAS  Google Scholar 

  100. Katori M, Majima M. Cyclooxygenase-2: its rich diversity of roles and possible application of its selective inhibitors. Inflamm. Res. 2000; 49: 367–392.

    PubMed  CAS  Google Scholar 

  101. Kelley LC, Shahab S, Weed SA. Actin cytoskeletal mediators of motility and invasion amplified and overexpressed in head and neck cancer. Clin. Exp. Metastasis 2008; 25: 289–304.

    PubMed  CAS  Google Scholar 

  102. Khamsi F, Armstrong DT, Zhang X. Expression of urokinase-type plasminogen activator in human preimplantation embryos. Mol. Hum. Reprod. 1996; 2: 273–276.

    PubMed  CAS  Google Scholar 

  103. Kim HG, Lee KW, Cho YY, Kang NJ, Oh SM, Bode AM, Dong Z. Mitogen- and stress-activated kinase 1-mediated histone H3 phosphorylation is crucial for cell transformation. Cancer Res. 2008; 68: 2538–2547.

    PubMed  CAS  Google Scholar 

  104. Knauf U, Tschopp C, Gram H. Negative regulation of protein tanslation by mitogen-activated protein kinase-interacting protein kinases 1 and 2. Mol. Cell Biol. 2001; 21: 5500–5511.

    PubMed  CAS  Google Scholar 

  105. Kobayashi M, Nishita M, Mishima T, Ohashi K, Mizuno K. MAPKAPK-2-mediated LIM-kinase activation is critical for VEGF-induced actin remodeling and cell migration. EMBO J. 2006; 25: 713–726.

    PubMed  CAS  Google Scholar 

  106. Kostenko S, Moens U. Heat shock protein 27 phosphorylation: kinases, phosphatases, functions and pathology. Cell Mol. Life Sci. 2009; 66: 3289–3307.

    PubMed  CAS  Google Scholar 

  107. Kostenko S, Shiryaev A, Gerits N, Moens U.The roles of mammalian mitogen-activated protein kinases-activating protein kinases (MAPKAPKs) in cell cycle control. In: Progress in Cell Cycle Control Research. Chen KL (Ed.). Nova Science Publisher, Inc.: New York 2008; pp. 295–320.

    Google Scholar 

  108. Kostenko S, Johannessen M, Moens U. PKA-induced F-actin rearrangement requires phosphorylation of Hsp27 by the MAPKAP kinase MK5. Cell Signal 2009; 21: 712–718.

    PubMed  CAS  Google Scholar 

  109. Kotlyarov A, Neininger A, Schubert C, Eckert R, Birchmeier C, Volk HD, Gaestel M. MAPKAP kinase 2 is essential for LPS-induced TNF-α biosynthesis. Nat. Cell Biol. 1999; 1: 94–97.

    PubMed  CAS  Google Scholar 

  110. Kotlyarov A, Yannoni Y, Fritz S, Laass K, Telliez JB, Pitman D, Lin LL, Gaestel M. Distinct cellular functions of MK2. Mol. Cell Biol. 2002; 22: 4827–4835.

    PubMed  CAS  Google Scholar 

  111. Krendel M, Mooseker MS. Mysosins: tails (and heads) of functional diversity. Physiology 2005; 20: 239–251.

    PubMed  CAS  Google Scholar 

  112. Krishna M, Narang H. The complexity of mitogen-activated protein kinases (MAPKs) made simple. Cell Mol. Life Sci. 2008; 65: 3525–3544.

    PubMed  CAS  Google Scholar 

  113. Krygier S, Djakiew D. Neurotrophin receptor p75(NTR) suppresses growth and nerve growth factor-mediated metastasis of human prostate cancer cells. Int. J. Cancer 2002; 98: 1–7.

    PubMed  CAS  Google Scholar 

  114. Kumar S, Weaver VM. Mechanics, malignancy, and metastasis: the force journey of a tumor cell. Cancer Metastasis Rev. 2009; 28: 113–127.

    PubMed  Google Scholar 

  115. Kunda P, Baum B. The actin cytoskeleton in spindle assembly and positioning. Trends Cell Biol. 2009; 19: 174–179.

    PubMed  CAS  Google Scholar 

  116. Kwong J, Hong L, Liao R, Deng Q, Han J, Sun P. p38alpha and p38gamma mediate oncogenic ras-induced senescence through differential mechanisms. J. Biol. Chem. 2009; 284: 11237–11246.

    PubMed  CAS  Google Scholar 

  117. Landry J, Huot J. Regulation of actin dynamics by stress-activated protein kinase 2 (SAPK2)-dependent phosphorylation of heat-shock protein of 27 kDa (Hsp27). Biochem. Soc. Symp. 1999; 64: 79–89.

    PubMed  CAS  Google Scholar 

  118. Lanzetti L. Actin in membrane trafficking. Curr. Opin. Cell Biol. 2007; 19: 453–458.

    PubMed  CAS  Google Scholar 

  119. Larrea MD, Hong F, Wander SA, da Silva TG, Helfman D, Lannigan D, Smith JA, Slingerland JM. RSK1 drives p27Kip1 phosphorylation at T198 to promote RhoA inhibition and increase cell motility. Proc. Natl Acad. Sci. USA 2009; 106: 9268–9273.

    PubMed  CAS  Google Scholar 

  120. Lasa M, Mahtani KR, Finch A, Brewer G, Saklatvala J, Clark AR. Regulation of cyclooxygenase 2 mRNA stability by the mitogen-activated protein kinase p38 signaling cascade. Mol. Cell Biol. 2000; 20: 4265–4274.

    PubMed  CAS  Google Scholar 

  121. Lasagni L, Francalanci M, Annunziato F, Lazzeri E, Giannini S, Cosmi L, Sagrinati C, Mazzinghi B, Orlando C, Maggi E, Marra F, Romagnani S, Serio M, Romagnani P. An alternatively spliced variant of CXCR3 mediates the inhibition of endothelial cell growth induced by IP-10, Mig, and I-TAC, and acts as functional receptor for platelet factor 4. J. Exp. Med. 2003; 197: 1537–1549.

    PubMed  CAS  Google Scholar 

  122. Lemaire M, Froment C, Boutros R, Mondesert O, Nebreda AR, Monsarrat B, Ducommun B. CDC25B phosphorylation by p38 and MK-2. Cell Cycle 2006; 5: 1649–1653.

    PubMed  CAS  Google Scholar 

  123. Liang S, Yu Y, Yang P, Gu S, Xue Y, Chen X. Analysis of the protein complex associated with 14-3-3 epsilon by a deuterated-leucine labeling quantitative proteomics strategy. J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 2009; 877: 627–634.

    PubMed  CAS  Google Scholar 

  124. Loesch M, Chen M. The p38 MAPK stress pathway as a tumor suppressor or more? Front Biosci. 2008; 13: 3581–3593.

    PubMed  CAS  Google Scholar 

  125. Lopes LB, Flynn C, Komalavilas P, Panitch A, Brophy CM, Seal BL. Inhibition of HSP27 phosphorylation by a cell-permeant MAPKAP Kinase 2 inhibitor. Biochem. Biophys. Res. Commun. 2009; 382: 535–539.

    PubMed  CAS  Google Scholar 

  126. Ma L, Weinberg RA. MicroRNAs in malignant progression. Cell Cycle 2008; 7: 570–572.

    PubMed  CAS  Google Scholar 

  127. Machesky LM, Insall RH. Scar1 and the related Wiskott-Aldrich syndrome protein, WASP, regulate the actin cytoskeleton through the Arp2/3 complex. Curr. Biol. 1998; 8: 1347–1356.

    PubMed  CAS  Google Scholar 

  128. Machesky LM, Tang HR. Actin-based protrusions: promoters or inhibitors of cancer invasion? Cancer Cell 2009; 16: 5–7.

    PubMed  CAS  Google Scholar 

  129. Maher P. p38 mitogen-activated protein kinase activation is required for fibroblast growth factor-2-stimulated cell proliferation but not differentiation. J. Biol. Chem. 1999; 274: 17491–17498.

    PubMed  CAS  Google Scholar 

  130. Manke IA, Nguyen A, Lim D, Stewart MQ, Elia AE, Yaffe MB. MAPKAP kinase-2 is a cell cycle checkpoint kinase that regulates the G2/M transition and S phase progression in response to UV irradiation. Mol. Cell 2005; 171: 37–48.

    Google Scholar 

  131. Manning G, Plowman GD, Hunter T, Sudarsanam S. Evolution of protein kinase signaling from yeast to man. Trends Biochem. Sci. 2002; 27: 514–520.

    PubMed  CAS  Google Scholar 

  132. Mikalsen T, Gerits N, Moens U. Inhibitors of signal transduction protein kinases as targets for cancer therapy. Biotechnol. Annu. Rev. 2006; 12: 153–223.

    PubMed  CAS  Google Scholar 

  133. Morris PG, Fornier MN. Microtubule active agents: beyond the taxane frontier. Clin. Cancer Res. 2008; 14: 7167–7172.

    PubMed  CAS  Google Scholar 

  134. Mott JD, Werb Z. Regulation of matrix biology by matrix metalloproteinases. Curr. Opin. Cell Biol. 2004; 16: 558–564.

    PubMed  CAS  Google Scholar 

  135. Mounier N, Arrigo AP. Actin cytoskeleton and small heat shock proteins: how do they interact? Cell Stress Chaperones 2002; 7: 167–176.

    Google Scholar 

  136. Müller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, McClanahan T, Murphy E, Yuan W, Wagner SN, Barrera JL, Mohar A, Verástegui E, Zlotnik A. Involvement of chemokine receptors in breast cancer metastasis. Nature 2001; 410: 50–56.

    PubMed  Google Scholar 

  137. Murphy PM. Chemokines and the molecular basis of cancer metastasis. N. Engl. J. Med. 2001; 345: 833–835.

    PubMed  CAS  Google Scholar 

  138. Nagano O, Saya H. Mechanism and biological significance of CD44 cleavage. Cancer Sci 2004; 95: 930–935.

    PubMed  CAS  Google Scholar 

  139. Nalbandian A, Djakiew D. The p75NTR metastasis suppressor inhibits urokinase plaminogen activator, matrix metalloproteinase-2 and matrix metalloproteinase-9 in PC-3 prostate cancer cells. Clin. Exp. Metastasis 2006; 23: 107–116.

    PubMed  CAS  Google Scholar 

  140. Nanbu R, Montero L, D’Orazio D, Nagamine Y. Enhanced stability of urokinase-type plasminogen activator mRNA in metastatic breast cancer MDA-MB-231 cells and LLC-PK1 cells down-regulated for protein kinase C–correlation with cytoplasmic heterogeneous nuclear ribonucleoprotein C. Eur. J. Biochem. 1997; 247: 169–174.

    PubMed  CAS  Google Scholar 

  141. Naor D, Sionov RV, Ish-Shalom D. CD44: structure, function, and association with the malignant process. Adv. Cancer Res. 1997; 71: 241–319.

    PubMed  CAS  Google Scholar 

  142. Neininger A, Kontoyiannis D, Kotlyarov A, Winzen R, Eckert R, Volk HD, Holtmann H, Kollias G, Gaestel M. MK2 targets AU-rich elements and regulates biosynthesis of tumor necrosis factor and interleukin-6 independently at different post-transcriptional levels. J. Biol. Chem. 2002; 277: 3065–3068.

    PubMed  CAS  Google Scholar 

  143. New L, Jiang Y, Zhao M, Liu K, Zhu W, Flood LJ, Kato Y, Parry GC, Han J. PRAK, a novel protein kinase regulated by the p38 MAP kinase. EMBO J. 1998; 17: 3372–3384.

    PubMed  CAS  Google Scholar 

  144. Ni H, Wang XS, Diener K, Yao Z. MAPKAPK5, a novel mitogen-activated protein kinase (MAPK)-activated protein kinase, is a substrate of the extracellular-regulated kinase (ERK) and p38 kinase. Biochem. Biophys. Res. Commun. 1998; 243: 49249–49256.

    Google Scholar 

  145. O’Connell CB, Tyska MJ, Mooseker MS. Myosin at work: motor adaptations for a variety of cellular functions. Biochim. Biophys. Acta 2007; 1773: 615–630.

    PubMed  Google Scholar 

  146. Offner S, Hekele A, Teichmann U, Weinberger S, Gross S, Kufer P, Itin C, Baeuerle PA, Kohleisen B. Epithelial tight junction proteins as potential antibody targets for pancarcinoma therapy. Cancer Immunol. Immunother. 2005; 54: 431–445.

    PubMed  CAS  Google Scholar 

  147. Okami J, Yamamoto H, Fujiwara Y, Tsujie M, Kondo M, Noura S, Oshima S, Nagano H, Dono K, Umeshita K, Ishikawa O, Sakon M, Matsuura N, Nakamori N, Monden M. Overexpression of cyclooxygenase-2 in carcinoma of the pancreas. Clin. Cancer Res. 1999; 5: 2018–2024.

    PubMed  CAS  Google Scholar 

  148. Olive KP, Tuveson DA, Ruhe ZC, Yin B, Willis NA, Bronson RT, Crowley D, Jacks T. Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome. Cell 2004; 119: 847–860.

    PubMed  CAS  Google Scholar 

  149. Olson MF, Sahai E. The actin cytoskeleton in cancer cell motility. Clin. Exp. Metastasis 2009; 26: 273–287.

    PubMed  Google Scholar 

  150. Ordóñez-Morán P, Larriba MJ, Pálmer HG, Valero RA, Barbáchano A, Duñach M, de Herreros AG, Villalobos C, Berciano MT, Lafarga M, Muñoz A. RhoA–ROCK and p38MAPK-MSK1 mediate vitamin D effects on gene expression, phenotype, and Wnt pathway in colon cancer cells. J. Cell Biol. 2008; 183: 697–710.

    PubMed  Google Scholar 

  151. Oshima RG. Intermediate filaments: a historical perspective. Exp. Cell Res. 2007; 313: 1981–1994.

    PubMed  CAS  Google Scholar 

  152. Paavilainen VO, Bertling E, Falck S, Lappalainen P. Regulation of cytoskeletal dynamics by actin-monomer-binding proteins. Trends Cell Biol. 2004; 14: 386–394.

    PubMed  CAS  Google Scholar 

  153. Pan MR, Chang HC, Wu YC, Huang CC, Hung WC. Tubocapsanolide A inhibits transforming growth factor-beta-activating kinase 1 to suppress NF-kappaB-induced CCR7. J. Biol. Chem. 2009; 284: 2746–2754.

    PubMed  CAS  Google Scholar 

  154. Parry MA, Zhang XC, Bode I. Molecular mechanisms of plasminogen activation: bacterial cofactors provide clues. Trends Biochem. Sci. 2000; 25: 53–59.

    PubMed  CAS  Google Scholar 

  155. Pathak SK, Bhattacharyya A, Pathak S, Basak C, Mandal D, Kundu M, Basu J. Toll-like receptor 2 and mitogen- and stress-activated kinase 1 are effectors of Mycobacterium avium-induced cyclooxygenase-2 expression in macrophages. Biol. Chem. 2004; 279: 55127–55136.

    CAS  Google Scholar 

  156. Pawson T, Scott JD. Protein phosphorylation in signaling–50 years and counting. Trends Biochem. Sci. 2005; 30: 286–290.

    PubMed  CAS  Google Scholar 

  157. Perander M, Keyse SM, Seternes OM. Does MK5 reconcile classical and atypical MAP kinases? Front Biosci. 2008; 13: 4617–4624.

    PubMed  CAS  Google Scholar 

  158. Pérez-Moreno M, Jamora C, Fuchs E. Sticky business: orchestrating cellular signals at adherens junctions. Cell 2003; 112: 535–548.

    PubMed  Google Scholar 

  159. Petrai I, Rombouts K, Lasagni L, Annunziato F, Cosmi L, Romanelli RG, Sagrinati C, Mazzinghi B, Pinzani M, Romagnani S, Romagnani P, Marra F. Activation of p38(MAPK) mediates the angiostatic effect of the chemokine receptor CXCR3-B. Int. J. Biochem. Cell Biol. 2008; 40: 1764–1774.

    PubMed  CAS  Google Scholar 

  160. Pollard TD. The cytoskeleton, cellular motility and the reductionist agenda. Nature 2003; 422: 741–745.

    PubMed  CAS  Google Scholar 

  161. Pollard TD, Beltzner CC. Structure and function of the Arp2/3 complex. Curr. Opin. Struct. Biol. 2002; 12: 768–774.

    PubMed  CAS  Google Scholar 

  162. Pomérance M, Quillard J, Chantoux F, Young J, Blondeau JP. High-level expression, activation, and subcellular localization of p38-MAP kinase in thyroid neoplasms. J. Pathol. 2006; 209: 298–306.

    PubMed  Google Scholar 

  163. Psaila B, Lyden D. The metastatic niche: adapting the foreign soil. Nat. Rev. Cancer 2009; 9: 285–293.

    PubMed  CAS  Google Scholar 

  164. Quann EJ, Khwaja F, Djakiew D. The p38 MAPK pathway mediates aryl propionic acid-induced messenger RNA stability of p75NTR in prostate cancer cells. Cancer Res 2007; 67: 11402–11410.

    PubMed  CAS  Google Scholar 

  165. Rådmark O, Werz O, Steinhibler D, Samuelsson B. 5-Lipoxygenase: regulation of expression and enzyme activity. Trends Biochem. Sci 2007; 32: 332–341.

    PubMed  Google Scholar 

  166. Rakonjac M, Fischer L, Provost P, Werz O, Steinhibler D, Samuelsson B, Rådmark O. Coactin-like protein supports 5-lipoxygenase enzyme activity and up-regulates leukotriene A4 production. Proc. Natl Acad. Sci. USA 2006; 103: 13150–13155.

    PubMed  CAS  Google Scholar 

  167. Raman M, Chen W, Cobb MH. Differential regulation and properties of MAPKs. Oncogene 2007; 26: 3100–3112.

    PubMed  CAS  Google Scholar 

  168. Rausch O, Marshall CJ. Cooperation of p38 and extracellular signal-regulated kinase mitogen-activated protein kinase pathways during granulocyte colony-stimulating factor-induced hemopoietic cell proliferation. J. Biol. Chem. 1999; 274: 4096–4105.

    PubMed  CAS  Google Scholar 

  169. Reddy KB, Nabha SM, Atanaskova N. Role of MAP kinase in tumor progression and invasion. Cancer Metastasis Rev. 2003; 22: 395–403.

    PubMed  CAS  Google Scholar 

  170. Reinhardt HC, Aslanian AS, Lees JA, Yaffe MB. p53-deficient cells rely on ATM- and ATR-mediated checkpoint signaling through the p38MAPK/MK2 pathway for survival after DNA damage. Cancer Cell 2007; 11: 175–189.

    PubMed  CAS  Google Scholar 

  171. Risinger AL, Giles FJ, Mooberry SL. Microtubule dynamics as a target in oncology. Cancer Treat Rev. 2009; 35: 255–261.

    PubMed  CAS  Google Scholar 

  172. Robbins EW, Travanty EA, Yang K, Iczkowski KA. MAP kinase pathways and calcitonin influence CD44 alternate isoform expression in prostate cancer cells. BMC Cancer 2008; 8: 260.

    PubMed  Google Scholar 

  173. Roberts PJ, Der CJ. Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 2007; 26: 3291–3310.

    PubMed  CAS  Google Scholar 

  174. Robledo MM, Bartolome RA, Longo N, Rodríguez-Frade JM, Mellado M, Longo I, van Muijen GN, Sánchez-Mateos P, Teixidó J. Expression of functional chemokine receptors CXCR3 and CXCR4 on human melanoma cells. J. Biol. Chem. 2001; 276: 45098–45105.

    PubMed  CAS  Google Scholar 

  175. Rocchi P, Beraldi E, Ettinger S, Fazli L, Vessella RL, Nelson C, Gleave M. Increased Hsp27 after androgen ablation facilitates androgen-independent progression in prostate cancer via signal transducers and activators of transcription 3-mediated suppression of apoptosis. Cancer Res. 2005; 65: 11083–11093.

    PubMed  CAS  Google Scholar 

  176. Ronkina N, Kotlyarov A, Dittrich-Breiholz O, Kracht M, Hitti E, Milarski K, Askew R, Marusic S, Lin LL, Gaestel M, Telliez JB. The mitogen-activated protein kinase (MAPK)-activated protein kinases MK2 and MK3 cooperate in stimulation of tumor necrosis factor biosynthesis and stabilization of p38 MAPK. Mol. Cell Biol. 2007; 27: 170–181.

    PubMed  CAS  Google Scholar 

  177. Ronkina N, Kotlyarov A, Gaestel M. MK2 and MK3 – a pair of isoenzymes? Front Biosci. 2008; 13: 5511–5521.

    PubMed  CAS  Google Scholar 

  178. Rousseau S, Morrice N, Peggie M, Campbell DG, Gaestel M, Cohen P. Inhibition of SAPK2a/p38 prevents hnRNP A0 phosphorylation by MAPKAP-K2 and its interaction with cytokine mRNAs. EMBO J. 2002; 21: 6505–6514.

    PubMed  CAS  Google Scholar 

  179. Rousseau S, Dolado I, Beardmore V, Shpiro N, Marquez R, Nebreda AR, Arthur JS, Case LM, Tessier-Lavigne M, Gaestel M, Cuenda A, Cohen P. Cell Signal 2006; 18: 1897–1905.

    PubMed  CAS  Google Scholar 

  180. Roux PP, Blenis J. ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol. Mol. Biol. Rev. 2004; 68: 320–344.

    PubMed  CAS  Google Scholar 

  181. Roze E, betuing S, Devts C, Marcon E, Brami-Cherrier K, Pagès C, Humbert S, Mérienne K, Caboche J. Mitogen- and stress-activated protein kinase-1 deficiency is involved in expanded-huntingtin-induced transcriptional dysregulation and striatal death. FASEB J. 2008; 22: 1083–1093.

    PubMed  CAS  Google Scholar 

  182. Sano H, Kawahito Y, Wilder RL, Hashiramoto A, Mukai S, Asai K, Kimura S, Kato H, Kondo M, Hla T. Expression of cyclooxygenase-1 and -2 in human colorectal cancer. Cancer Res. 1995; 55: 3785–3789.

    PubMed  CAS  Google Scholar 

  183. Sapkota GP, Cummings L, Newell FS, Armstrong C, Bain J, Frodin M, Grauert M, Hoffmann M, Schnapp G, Steegmaier M, Cohen P, Alessi DR. BI-D1870 is a specific inhibitor of the p90 RSK (ribosomal S6 kinase) isoforms in vitro and in vivo. Biochem J. 2007; 401: 29–38.

    PubMed  CAS  Google Scholar 

  184. Satoh J, Yamamura T, Arima K. The 14-3-3 protein epsilon isoform expressed in reactive astrocytes in demyelinating lesions of multiple sclerosis binds to vimentin and glial fibrillary acidic protein in cultured human astorcytes. Am. J. Pathol. 2004; 165: 577–592.

    PubMed  CAS  Google Scholar 

  185. Schiller M, Böhm M, Dennler S, Ehrchen JM, Mauviel A. Mitogen- and stress-activated protein kinase 1 is critical for interleukin-1-induced, CREB-mediated, c-fos gene expression in keratinocytes. Oncogene 2006; 25: 4449–4457.

    PubMed  CAS  Google Scholar 

  186. Schumacher S, Laass K, Kant S, Shi Y, Visel A, Gruber AD, Kotlyarov A, Gaestel M. Scaffolding by ERK3 regulates MK5 in development. EMBO J. 2004; 23: 4770–4779.

    PubMed  CAS  Google Scholar 

  187. Sellers JR. Myosins: a diverse superfamily. Biochim. Biophys. Acta 2000; 1496: 3–22.

    PubMed  CAS  Google Scholar 

  188. Seternes OM, Mikalsen T, Johansen B, Michaelsen E, Armstrong CG, Morrice NA, Turgeon B, Meloche S, Moens U, Keyse SM. Activation of MK5/PRAK by the atypical MAP kinase ERK3 defines a novel signal transduction pathway. EMBO J. 2004; 23: 4780–4791.

    PubMed  CAS  Google Scholar 

  189. Shi Y, Massague J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 2003; 113: 685–700.

    PubMed  CAS  Google Scholar 

  190. Sihag RK, Inagaki M, Yamaguchi T, Shea TB, Pant HC. Role of phosphorylation on the structural dynamics and function of types III and IV intermediate filaments. Exp. Cell Res. 2007; 313: 2098–2109.

    PubMed  CAS  Google Scholar 

  191. Singh S, Powell DW, Rane MJ, Millard TH, Trent JO, Pierce WM, Klein JB, Machesky LM, McLeish KR. Identification of the p16-Arc subunit of the Arp 2/3 complex as a substrate of MAPK-activated protein kinase 2 by proteomic analysis. J. Biol. Chem. 2003; 278: 36410–36417.

    PubMed  CAS  Google Scholar 

  192. Smith JA, Poteet-Smith CE, Xu Y, Errington TM, Hecht SM, Lannigan DA. Identification of the first specific inhibitor of p90 ribosomal S6 kinase (RSK) reveals an unexpected role for RSK in cancer cell proliferation. Cancer Res. 2005; 65: 1027–1034.

    PubMed  CAS  Google Scholar 

  193. Stephens P, Edkins S, Davies H, Greenman C, Cox C, Hunter C, Bignell G, Teague J, Smith R, Stevens C, O’Meara S, Parker A, Tarpey P, Avis T, Barthorpe A, Brackenbury L, Buck G, Butler A, Clements J, Cole J, Dicks E, Edwards K, Forbes S, Gorton M, Gray K, Halliday K, Harrison R, Hills K, Hinton J, Jones D, Kosmidou V, Laman R, Lugg R, Menzies A, Perry J, Petty R, Raine K, Shepherd R, Small A, Solomon H, Stephens Y, Tofts C, Varian J, Webb A, West S, Widaa S, Yates A, Brasseur F, Cooper CS, Flanagan AM, Green A, Knowles M, Leung SY, Looijenga LH, Malkowicz B, Pierotti MA, Teh B, Yuen ST, Nicholson AG, Lakhani S, Easton DF, Weber BL, Stratton MR, Futreal PA, Wooster R. A screen of the complete protein kinase gene family identifies diverse patterns of somatic mutations in human breast cancer. Nat. Genet. 2005; 37: 590–592.

    PubMed  CAS  Google Scholar 

  194. Stossel TP, Fenteany G, Hartwig JH. Cell surface actin remodeling. J. Cell Sci. 2006; 119: 3261–3264.

    PubMed  CAS  Google Scholar 

  195. Strelkov IS, Davie JR. Ser-10 phosphorylation of histone H3 and immediate early gene expression in oncogene-transformed mouse fibroblasts. Cancer Res. 2002; 62: 75–78.

    PubMed  CAS  Google Scholar 

  196. Subbaramaiah K, Marmo TP, Dixon DA, Dannenberg AJ. Regulation of cyclooxgenase-2 mRNA stability by taxanes: evidence for involvement of p38, MAPKAPK-2, and HuR. J. Biol. Chem. 2003; 278: 37637–37647.

    PubMed  CAS  Google Scholar 

  197. Suizu F, Ueda K, Iwasaki T, Murata-Hori M, Hosoya H. Activation of actin-activated MgATPase activity of myosin II by phosphorylation with MAPK-activated protein kinase-1b (RSK-2). J. Biochem. 2000; 128: 435–440.

    PubMed  CAS  Google Scholar 

  198. Sun P, Yoshizuka N, New L, Moser BA, Li Y, Liao R, Xie C, Chen J, Deng Q, Yamout M, Dong MQ, Frangou CG, Yates JR III, Wright PE, Han J. PRAK is essential for ras-induced senescence and tumor suppression. Cell 2007; 128: 295–308.

    PubMed  CAS  Google Scholar 

  199. Tak H, Jang E, Kim SB, Park J, Suk J, Yoon YS, Ahn JK, Lee J-H, Joe CO. 14-3-3epsilon inhibits MK5-mediated cell migration by disrupting F-actin polymerization. Cell Signal 2007; 19: 2379–2387.

    PubMed  CAS  Google Scholar 

  200. Takeichi M. Cadherins in cancer: implications for invasion and metastasis. Curr. Opin. Cell Biol. 1993; 5: 806–811.

    PubMed  CAS  Google Scholar 

  201. Thakur A, Sun Y, Bollig A, Wu J, Biliran H, Banerjee S, Sarkar FH, Liao DJ. Anti-invasive and antimetastatic activities of ribosomal protein S6 kinase 4 in breast cancer cells. Clin. Cancer Res. 2008; 14: 4427–4436.

    PubMed  CAS  Google Scholar 

  202. Thomas T, Timmer M, Cesnulevicius K, Hitti E, Kotlyarov A, Gaestel M. MAPKAP kinase 2-deficiency prevents neurons from cell death by reducing neuroinflammation–relevance in a mouse model of Parkinson’s disease. J. Neurochem. 2008; 105: 2039–2052.

    PubMed  CAS  Google Scholar 

  203. Trivier E, De Cesare D, Jacquot S, Pannetier S, Zackai E, Young I, Mandel JL, Sassone-Corsi P, Hanauer A. Mutations in the kinase Rsk-2 associated with Coffin-Lowry syndrome. Nature 1996; 384: 567–570.

    PubMed  CAS  Google Scholar 

  204. Tsatsanis C, Androulidaki A, Venihaki M, Margioris AN. Signalling networks regulating cyclooxygenase-2. Int. J. Biochem. Cell Biol. 2006; 38: 1654–1661.

    PubMed  CAS  Google Scholar 

  205. Vermeulen L, Vanden Berghe W, Beck IME, De Bosscher K, Haegeman G. The versatile role of MSKs in transcriptional regulation. Trends Biochem. Sci. 2009; 34: 311–318.

    PubMed  CAS  Google Scholar 

  206. Vertii A, Hakim C, Kotlyarov A, Gaestel M. Analysis of properties of small heat shock protein Hsp25 in MAPK-activated protein kinase (MK2)-deficient cells. MK2-dependent insolubilization of Hsp25 oligomers correlates with susceptibility to stress. J. Biol. Chem. 2006; 281: 26966–26975.

    PubMed  CAS  Google Scholar 

  207. Viala E, Pouysségur J. Regulation of tumor cell motility by ERK mitogen-activated protein kinases. Ann. N. Y. Acad. Sci. 2004; 1030: 208–218.

    PubMed  Google Scholar 

  208. Vicente-Manzanares M, Choi CK, Horwitz AR. Integrins in cell migration–the actin connection. J. Cell Sci. 2009; 122: 199–206.

    PubMed  CAS  Google Scholar 

  209. Vogelstein B, Lane D, Levine AJ. Surfing the p53 network. Nature 2000; 408: 307–310.

    PubMed  CAS  Google Scholar 

  210. Voncken JW, Niessen H, Neufeld B, Rennefahrt U, Dahlmans V, Kubben N, Holzer B, Ludwig S, Rapp UR. MAPKAP kinase 3pK phosphorylates and regulates chromatin association of the polycomb group protein Bmi1. J. Biol. Chem. 2005; 280: 5178–5187.

    PubMed  CAS  Google Scholar 

  211. Vousden KH, Lane DP. p53 in health and disease. Nat. Rev. Mol. Cell Biol. 2007; 8: 275–283.

    PubMed  CAS  Google Scholar 

  212. Wang W, Eddy R, Condeelis J. The cofilin pathway in breast cancer invasion and metastasis. Nat. Rev. Cancer 2007; 7: 429–440.

    PubMed  CAS  Google Scholar 

  213. Wang SJ, Wong G, de Heer AM, Xia W, Bourguignon LY. CD44 variant isoforms in head and neck squamous cell carcinoma progression. Laryngoscope 2009a; 119: 1518–1530.

    PubMed  CAS  Google Scholar 

  214. Wang SP, Wang WL, Chang YL, Wu CT, Chao YC, Kao SH, Yuan A, Lin CW, Yang SC, Chan WK, Li KC, Hong TM, Yang PC. p53 controls cancer cell invasion by inducing the MDM2-mediated degradation of Slug. Nat. Cell Biol. 2009b; 11: 694–704.

    PubMed  CAS  Google Scholar 

  215. Weber HO, Ludwig RL, Morrison D, Kotlyarov A, Gaestel M, Voudsen KH. HDM2 phosphorylation by MAPKAP kinase 2. Oncogene 2005; 24: 1965–1972.

    PubMed  CAS  Google Scholar 

  216. Wendel HG, Silva RL, Malina A, Mills JR, Zhu H, Ueda T, Watanabe-Fukunaga R, Fukunaga R, Teruva-Feldstein J, Pelletier J, Lowe SW. Dissecting eIF4E action in tumorigenesis. Genes Dev. 2007; 21: 3232–3237.

    PubMed  CAS  Google Scholar 

  217. Werz O, Klemm J, Samuelsson B, Radmark O. 5-lipoxygenase is phosphorylated by p38 kinase-dependent MAPKAPK kinases. Proc. Natl Acad. Sci. USA 2000; 97: 5261–5266.

    PubMed  CAS  Google Scholar 

  218. Weston CR, Davis RJ. The JNK signal transduction pathway. Curr. Opin. Cell Biol. 2007; 19: 142–149.

    PubMed  CAS  Google Scholar 

  219. Whipple RA, Balzer EM, Cho EH, Matrone MA, Yoon JR, Martin SS. Vimentin filaments support extension of tubulin-based microtentacles in detached breast tumor cells. Cancer Res. 2008; 68: 5678–5688.

    PubMed  CAS  Google Scholar 

  220. Whitmarsh AJ, Davis RJ. Role of mitogen-activated protein kinase kinase 4 in cancer. Oncogene 2007; 26: 3172–3184.

    PubMed  CAS  Google Scholar 

  221. Wiggin GR, Soloaga A, Foster JM, Murray-Tait V, Cohen P, Arthur JS. MSK1 and MSK2 are required for the mitogen- and stress-induced phosphorylation of CREB and ATF1 in fibroblasts. Mol. Cell Biol. 2002; 22: 2871–2881.

    PubMed  CAS  Google Scholar 

  222. Williams CS, Tsujii M, Reese J, Dey SK, DuBois RN. Host cyclooxygenase-2 modulates carcinoma growth. J. Clin. Invest. 2000; 105: 1589–1594.

    PubMed  CAS  Google Scholar 

  223. Winzen R, Kracht M, Ritter B, Wilhelm A, Chen CY, Shyu AB, Müller M, Gaestel M, Resch K, Holtmann H. The p38 MAP kinase pathway signals for cytokine-induced mRNA stabilization via MAP kinase-activated protein kinase 2 and an AU-rich region-targeted mechanism. EMBO J. 1999; 18: 4969–4980.

    PubMed  CAS  Google Scholar 

  224. Woo MS, Ohta Y, Rabinovitz I, Stossel TP, Blenis J. Ribosomal S6 kinase (RSK) regulates phosphorylation of filamin A on an important regulatory site. Mol. Cell Biol. 2004; 24: 3025–3035.

    PubMed  CAS  Google Scholar 

  225. Wood LD, Parsons DW, Jones S, Lin J, Sjöblom T, Leary RJ, Shen D, Boca SM, Barber T, Ptak J, Silliman N, Szabo S, Dezso Z, Ustyanksky V, Nikolskaya T, Nikolsky Y, Karchin R, Wilson PA, Kaminker JS, Zhang Z, Croshaw R, Willis J, Dawson D, Shipitsin M, Willson JK, Sukumar S, Polyak K, Park BH, Pethiyagoda CL, Pant PV, Ballinger DG, Sparks AB, Hartigan J, Smith DR, Suh E, Papadopoulos N, Buckhaults P, Markowitz SD, Parmigiani G, Kinzler KW, Velculescu VE, Vogelstein B. The genomic landscapes of human breast and colorectal cancers. Science 2007; 318: 1108–1113.

    PubMed  CAS  Google Scholar 

  226. Worch J, Tickenbrock L, Schwäble J, Steffen B, Cauvet T, Mlody B, Buerger H, Koeffler HP, Berdel WE, Serve H, Müller-Tidow C. The serine-threonine kinase MNK1 is post-translationally stabilized by PML-RARalpha and regulates differentiation of hematopoietic cells. Oncogene 2004; 23: 9162–9172.

    PubMed  CAS  Google Scholar 

  227. Xiao Z, Xue J, Sowin TJ, Zhang H. Differential roles of checkpoint kinase 1, checkpoint kinase 2, and mitogen-activated protein kinase-activated protein kinase 2 in mediating DNA damage-induced cell cycle arrest: implications for cancer therapy. Mol. Cancer Ther. 2006; 5: 1935–1943.

    PubMed  CAS  Google Scholar 

  228. Xie TX, Wei D, Liu M, Gao AC, Ali-Osman F, Sawaya R, Huang S. Stat3 activation regulates the expression of matrix metalloproteinase-2 and tumor invasion and metastasis. Oncogene 2004; 23: 3550–3560.

    PubMed  CAS  Google Scholar 

  229. Xu L, Chen S, Bergan RS. MAPKAPK2 and HSP27 are downstream effectors of p38 MAP kinase-mediated matrix metalloproteinase type 2 activation and cell invasion in human prostate cancer. Oncogene 2006; 25: 2987–2998.

    PubMed  CAS  Google Scholar 

  230. Yamaguchi H, Condeelis J. Regulation of the actin cytoskeleton in cancer cell migration and invasion. Biochim. Biophys. Acta 2007; 1773: 642–652.

    PubMed  CAS  Google Scholar 

  231. Yang CS, Wang X, Lu G, Picinich SC. Cancer prevention by tea: animal studies, molecular mechanisms and human relevance. Nat. Rev. Cancer 2009; 9: 429–439.

    PubMed  CAS  Google Scholar 

  232. Yoshida S, Takahashi H. Expression of extracellular matrix molecules in brain metastasis. J. Surg. Oncol. 2009; 100: 65–68.

    PubMed  CAS  Google Scholar 

  233. Yoshida S, Amano H, Hayashi I, Kitasato H, Kamata M, Inukai M, Yoshimura H, Majima M. COX-2/VEGF-dependent facilitation of tumor-associated angiogenesis and tumor growth in vivo. Lab. Invest. 2003; 83: 1385–1394.

    PubMed  CAS  Google Scholar 

  234. Yu J, Bian D, Mahanivong C, Cheng RK, Zhou W, Huang S. p38 Mitogen-activated protein kinase regulation of endothelial cell migration depends on urokinase plasminogen activator expression. J. Biol. Chem. 2004; 279: 50446–50454.

    PubMed  CAS  Google Scholar 

  235. Zhang Y, Dong C. Regulatory mechanisms of mitogen-activated kinase signaling. Cell Mol. Life Sci. 2007; 64: 2771–2789.

    PubMed  CAS  Google Scholar 

  236. Zhang H, Richter M, Greene MI. Therapeutic monoclonal antibodies for the ErbB family of receptor tyrosine kinases. Cancer Biol. Ther. 2003; 2: S122–S126.

    PubMed  CAS  Google Scholar 

  237. Zhang J, Cao YJ, Li FY, Li J, Yao LB, Duan EK. Effects of fibronectin, VEGF and angiostatin on the expression of MMPs through different signaling pathways in the JEG-3 cells. Am. J. Reprod. Immunol. 2003; 50: 273–285.

    PubMed  Google Scholar 

  238. Zlotnik A, Yoshie O. Chemokines: a new classification system and their role in immunity. Immunity 2000; 12: 121–127.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ugo Moens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Shiryaev, A., Van Ghelue, M., Moens, U. (2010). Mitogen-Activated Protein Kinase-Activated Protein Kinases and Metastasis. In: Wu, WS., Hu, CT. (eds) Signal Transduction in Cancer Metastasis. Cancer Metastasis - Biology and Treatment, vol 15. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9522-0_4

Download citation

Publish with us

Policies and ethics