Skip to main content

Biofuels, the Role of Biotechnology to Improve Their Sustainability and Profitability

  • Chapter
  • First Online:

Part of the book series: Sustainable Agriculture Reviews ((SARV,volume 5))

Abstract

Energy supply and environmental change are the challenges facing humanity today. The need to develop new, carbon neutral forms of energy is now urgent. Bio-energy is a promising option that offers both energy sustainability and greenhouse gas emissions mitigation. In 2005 biomass provided 13.4% of current world energy needs, mainly as a heating and cooking fuel in rural communities, However, even with the increasing contribution from industrially produced biomass fired heat and power, the use of bio-diesel from oil crops and ethanol derived from maize and sugar-cane, the overall percentage contribution of bio-energy to world energy needs diminishes with time. Increasing bio-energy use to supplement the world’s energy needs will require the growing of energy crops on a large scale, entailing changes to agricultural and forestry production techniques and the identification of new bio-energy feed-stocks. The use of ethanol from maize and sugar cane to replace petrol has more than tripled in 6 years and biodiesel from the esters of oil from crops such as palm, soya and oil seed rape now contributes 4% of Europe’s diesel needs. However these first generation biofuels use valuable arable land and food crops in competition with human food needs and are not efficient energy producers per hectare of land nor do they effectively mitigate greenhouse gas emissions. Ligno-cellulosic ethanol, bio-butanol, bio-gas and biodiesel from gas to liquid bio-refineries using native grasses, Miscanthus, wood processing waste and short rotation coppice willow and non-food oil seed plants such as Jatropha enable non arable land and non food crops to be used for second generation biofuels. In addition, autotrophic algae have been shown to exceed productivity of many oil crops in using sunlight and carbon dioxide for oil accumulation.Microbial oils can also be used as feedstock for biodiesel productions with ­advantages like short life cycle, less labour intensive, less seasonal, geographical and climatic variability and easy scale up. This paper reviews first and second generation bio-energy systems for producing biofuels and investigates the potential of biotechnology to improve the sustainability and profitability of existing and future biofuels bio-energy systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alexander W, Trond EE, Hans KK, Sergey BZ, Mimmi TH (2007) Bacterial metabolism of long chain n-alkanes. Appl Microbiol Biotechnol 76:1209–1221

    Article  Google Scholar 

  • Antoni D, Zverlov VV, Schwarz WH (2007) Biofuels from microbes. Appl Microbiol Biotech 77:23–35

    Article  CAS  Google Scholar 

  • Belarbi EH, Molina GE, Chisti YA (2000) Process for high yield and scaleable recovery of high purity eichosapentaenoic acid esters form microalga and fish oilEnzyme Microbio. Enzyme Microbio Technol 26:516–529

    Article  CAS  Google Scholar 

  • Bevan MV, Franssen MCR (2006) Investing in green and white biotech. Nat Biotechnol 24:765–767

    Article  PubMed  CAS  Google Scholar 

  • Blades T, Rudloff M, Schulze O (2006) Sustainable SunFuel from CHOREN’s Carbo-V® Process. Presented at ISAF XV, San Diego – September 2005. www.choren.com/

  • Bohlmann GM (2006) Process economic consideration for production of ethanol from biomass feedstocks. Industrial Biotechnol 2(1(Spring)):14–20

    Article  Google Scholar 

  • Bricka RM (2007) Energy crop gasification. In: Eaglesham A, Hardy RWF (eds) Agriculture biofuels: technology, sustainability and profitability, pp 127–135

    Google Scholar 

  • Chang HM, Liao HF, Lee CC, Sheih CJ (2005) Optimized synthesis of lipase catalyzed biodiesel by Novozym 435. J Chem Technol Biotechnol 80:307–312

    Article  CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from Microalgae. Biotechnol Advances 25:294–306

    Article  CAS  Google Scholar 

  • Chisti Y (2008) Biodiesel from Microalgae beats bioethanol. Trends Biotechnol 26:126–131. doi:10.1016/j.tibtech:2007.12.002

    Article  PubMed  CAS  Google Scholar 

  • Claaswn PAM, De Vrije T, Budde MAW (2004) Biological hydrogen production from sweet sorghum by thermophilic bacteria. Proceeding of 2nd world conference on biomass of energy, Rome, pp 1522–1525

    Google Scholar 

  • Clifton-Brown JC, Chiang YC, Hodkinson TR (2008) Miscanthus: genetic resources and breeding potential to enhance bioenergy production. In: Vermerris W (ed) Genetic improvement of bioenergy crops. Springer Science, New York, 273–294

    Google Scholar 

  • Davenport R (2008) Chemicals and polymers from biomass. Industrial Biotechnol 4(1):59–94

    Article  Google Scholar 

  • De Vrije T, De Haas GG, Tan GB, Keijsers ERP, Cleaasen PAM (2002) Pretreatment of Miscanthus for hydrogen production by Thermotoga elfii. Int J Hydrogen Energy 27:1381–1390

    Article  Google Scholar 

  • Demain AL, New comb M, Wu JHD (2005) Cellulase, Clostridia and ethanol. Microbiol Mol Biol Rev 69:124–154

    Article  PubMed  CAS  Google Scholar 

  • Desai S, Narayanaih Kumar CH, Reddy M, Gnenamianickam S, Rao G, Venkateshwarlu B (2007) Seed inoculation with Bacillus spp. Improves seedling vigour in oil seed plant Jatropha curcas L. Biol Fertil soils 44(1):229–234

    Google Scholar 

  • Du J, Wang HX, Jin HL, Yang KL, Zhang XY (2007) Fatty acids production by fungi growing in sweeet potato starch processing waste water. Chin J Bioprocess Eng 5(1):33–36

    CAS  Google Scholar 

  • EIA (2006) International energy: outlook, Energy Information administration office of integrated analysis and forecasting US Department of energy, Washington, DOE/EIA-0484

    Google Scholar 

  • Fairless D (2007) The little shrub that could-may be. Nature 449(Oct.):652–655

    Article  PubMed  Google Scholar 

  • Fischer F, Tropsch H (1930) Fischer-Tropsch synthesis. US Patent 1(246):464

    Google Scholar 

  • Fischer JR (2007) Building a prosperous future in which agriculture uses and produces energy efficiently. In: Eaglesham A, Hardy WER (eds) NABC report IS agricultural biofuels, pp 27–40

    Google Scholar 

  • Gapes JR (2000) The economics of acetone butanol fermentation: theoretical and market considerations. J Mol Microbiol Biotechnol 2:27–32

    PubMed  CAS  Google Scholar 

  • Gassen HG (2005) Ein Beitragzur ummelt freundlichen evergiehersorgung: Biogasanlagen. Biol in Unserer Zeif 6:384–392

    Article  Google Scholar 

  • Gibbons WR (2007) Challenges on the road to biofuels. In: Agricultural biofuels: technology, sustainability and profitability. NABC Report, pp 93–103

    Google Scholar 

  • Goldemberg J (2000) World energy assessment preface. United Nations Development Programme, New York

    Google Scholar 

  • Goldemberg J, Coelho ST, Guardabassi P (2008) The sustainability of ethanol production from sugarcane. Energy Pol 36:2086–2097

    Article  Google Scholar 

  • Gouveia L, Oliveira AC (2008) Microalgae as a new material for biofuels production. J Ind Microbiol Biotechnol. doi:10.1007/s 10295-008-0495-6

    PubMed  Google Scholar 

  • Grohelaar JV (2004) Algal nutrition. In: Richmond A (eds) Handbook of microalgal culture: biotechnol. Appl Phycol, pp 97–115. Blackwell

    Google Scholar 

  • Grushcow J, Smith M (2006) Enginering high performance biolubricants in crop plants. Industrial Biotechnol 2(1):48–50

    Article  CAS  Google Scholar 

  • Hahn HB, Karhumaa K, Fonseca C, Spencer MI, Gorwa Grauslund MF (2007) Towards industrial pentose-fermenting yeast strains. Appl Microbiol Biotechnol 74:937–953

    Article  Google Scholar 

  • Hama S, Yamaji H, Kaiea M, Oda M, Kondo A, Fukuda H (2004) Effect of fatty acid membrane composition on whole cell biocatalysts for biodiesel fuel production. Biochem Eng J 21:155–160

    Article  CAS  Google Scholar 

  • Han X, Miao XL, Wu QY (2006) High quality biodiesel production from heterotropic growth of Chlorella protothecoides in fermenters using starch hydrolysate as organic carbon. J Biotechnol 124(4):499–507

    Google Scholar 

  • Hastings AFStJ, Clifton-Brown JC, Wattenbach M, Mitchell CP, Smith P (2009a) Development of MISCANFOR a new Miscanthus crop growth model: towards more robust yield predictions under different soil and climatic conditions. Global Change Biology -Bioenergy, 2, early view online

    Google Scholar 

  • Hastings AFStJ, Clifton-Brown JC, Wattenbach M, Stampfl P, Mitchell CP, Smith P (2009b) Future energy potential of Miscanthus in Europe. Global Change Biology- Bioenergy, 2, early view online

    Google Scholar 

  • Henstra AM, Sipma J, Rinzema A, Stams AJM (2007) Microbiology of synthesis gas fermentation for biofuel production. Curr Opin Biotechnol 18:1–7

    Article  Google Scholar 

  • Hilal N, Kochkodan V, Nigmatullin R, Goncharuk V, Alklatib L (2004) Lipase immobilized biocatalytic membranes for enzymatic esterification. J Memb Sci 268:196–207

    Google Scholar 

  • Hoffert MI, Calderia K, Benford G, Criswell DR, Green C, Herzog H, Jain AK, Kheshgi HS, Lackner KS, Lewis JS, Lightfoot HD, Manheimer W, Mankins JC, Manel ME, Perkins LJ, Schlesinger ME, Volk T, Wigley TML (2002) Advanced technology paths to global climate stability: energy for a greenhouse planet. Science 298(5595):981–987

    Google Scholar 

  • Hossain ABMS, Salleh A, Boyce AN, Chowdhury P, Naqiuddin M (2008) Biodiesel fuel production from algae as renewable energy. Am J Biochem Biotechnol 4(3):250–254

    Article  CAS  Google Scholar 

  • Hsu AF, Jones K, Martner WN, Foglia TA (2001) Production of alkyl esters from fallow and grease using lipase immobilized in a phyllosilicate sol-gel. J Am Oil Chem Soc 78(6):585–588

    Article  CAS  Google Scholar 

  • Huang JZ, Shi QQ, Zhai XL, Lin YX, Xie BF, Wu SG (1998) Studies on the breeding of Mortierella isabellina mutant high producing lipid and its fermentation conditions. Microbiol 25(4):187–191

    CAS  Google Scholar 

  • Illman AM, Scragg AH, Shales SW (2000) Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme Microbe Technol 27:631–635

    Article  CAS  Google Scholar 

  • IPCC (2007) Fourth Assessment Report (AR4) of Working Group 1: Chapter 2. The Physical science basis. http://www.ipcc.ch/pub/reports.htm

  • Iso M, Chen B, Eguchi M, Kudo T, Shrestha S (2001) Production of biodiesel fuel from triglycerides and alcohol using immobilized lipase. J Mol Catal B Enzymatic 16:53–58

    Article  CAS  Google Scholar 

  • Kalschener R, Stolting T, Steinbuschel A (2006) Microdiesel: Escherichia coli engineered for fuel production. Microbiology 152:2529–2536

    Article  Google Scholar 

  • Kapdan IK, Kargi F (2006) Biohydrogen production from waste materials. Enzyme Microbe Technol 38:569–582

    Article  CAS  Google Scholar 

  • Kaur S, Gogoi HK, Srivastava RB, Kalita MC (2009) Algal diversity as a renewable feedstock for biodiesel. Curr Sci 96(2):182

    Google Scholar 

  • Klass LD (1998) Biomass for renewable energy fuels and chemicals. Academic Press, New York, pp 1–2

    Book  Google Scholar 

  • Kong XL, Lin B, Zhao ZB, Fen GB (2007) Microbiol production of lipids by co-fermentation of glucose and xylose with Lipomyces starkeyiz. Chin J Bioprocess Eng 5(2):36–41

    CAS  Google Scholar 

  • Koutinas AA, Wang RH, Webb C (2007) The biochemurgist- bioconversion of agricultural raw materials for chemical production. Biofuel Bioprod Biorefine 1(1):24–38

    Article  CAS  Google Scholar 

  • Kumar GP, Yadav SK, Thawale PR, Singh SK, Jawarkar AA (2008) Growth of Jatropha curcas on heavy metal contaminated soil amended with industrial waste and Azotobacter: a green house study. Bioresour Technol 99(6):2078–2082

    Article  PubMed  CAS  Google Scholar 

  • Kyoto Protocol (1998) unfccc.int/essential_background/kyoto_protocol/background/items/1351.php -

    Google Scholar 

  • Lai CC, Zullaikah S, Vali SR, Ju YH (2005) Lipase catalyze production of biodiesel from rice bran oil. J Chem Technol Biotechnol 80:331–337

    Article  CAS  Google Scholar 

  • Lange JP (2007) Lignocellulosic conversion: an introduction to chemistry process and economics. Biofpr 1(1(Sept.)):39–48

    CAS  Google Scholar 

  • Li Q, Wang MY (1997) Use food industry waste to produce microbial oil. Sci Technol FJood Indus 6:65–69

    Google Scholar 

  • Li Q, Wei DU, Liu D (2008) Perspectives of microbial oils for biodiesel production. Appl Microbiol Biotechnol 80:749–756

    Article  PubMed  CAS  Google Scholar 

  • Li W, Du W, Liu DH, Zhao ZB (2007) Enzymatic transesterification of yeast oil for biodiesel fuel production, Chin J. Process Eng 7(1):137–140

    CAS  Google Scholar 

  • Liang XA, Dong WB, Miao XJ, Dai CJ (2006) Production technology and influencing factors of microorganism grease. Food Res Dev 27(3):46–47

    CAS  Google Scholar 

  • Ma YL (2006) Microbial oils and its research advance. Chin J Bioprocess 4(4):7–11

    CAS  Google Scholar 

  • Minaul H, Philippe JB, Louis MG, Alain P (1996) Influence of nitrogen and iron limitations on lipid production by Cryptococcus curvaters growth in batch and fedbatch culture. Process Biochem 31(4):355–361

    CAS  Google Scholar 

  • Miao X, Wu Q (2006) Biodiesel production from heterotrophic microalgal oil. Bioresouce Technol 97:841–846. doi:10.1016/jbiotech:2005.04.008

    Article  CAS  Google Scholar 

  • Miao XL, Wu QY (2004) Bio-oil fuel production from Microalgae after heterotrophic growth. Renew Energy Resour 4(116):41–44

    Google Scholar 

  • NABC Report (2007) Agriculture and forestry for energy, chemicals and materials. The Road Forward, 1–5 Feb

    Google Scholar 

  • Nath K, Das D (2006) Amelioration of biohydrogen productions by a two stage fermentation process. Ind Biotechnol 2(1 Spring):44–47

    Google Scholar 

  • Pathayak S, Sree A (2005) Screening of bacterial associates of marine sponges for single cell oil and PVFA. Lett Appl Microbiol 40:358–363

    Article  Google Scholar 

  • Patzek TW (2008) Thermodynamics of the corn-ethanol biofuel cycle. Critical Rev Plant Sci 23.6:519–567

    Google Scholar 

  • Peer M, Skye R, Thomas H, Evan S, Ute C, Jam H, Clemens P, Olaf K, Ben H (2008) Second generation biofuels: high efficiency Microalgae for biodiesel production. Bioener Res 1(1):20–43. doi:10.1007/s12155-006-9008-8

    Article  Google Scholar 

  • Pesta G, Meyer-Pihroff R, Russ W (2006) Utilization of whey. In: Oreopoulou V, Russ W (eds) Utilization of byproducts and treatment of waste in the food industry. Springer, New York, pp 1–11

    Google Scholar 

  • Pimental D, Patzek TW (2005) Ethanol production using corn, switchgrass and wood: biodiesel production using soybean and sunflower. Nat Resour Res 14(1):65–76

    Google Scholar 

  • Quershi N, Blaschek HP (2005) Butanol production from agricultural biomass. In: Shetty K, Pometto A, Paliyath G (eds) Food biotechnology. Taylor and Fracis Group plc., Boca Raton, pp 525–551

    Google Scholar 

  • Quershi N, Saha BC, Cotta MA (2007) Butanol production from wheat straw hydrolysate using Clostridium beijerinckii. Bioprocess Biocyst Eng 30:419–427

    Article  Google Scholar 

  • Ragauskas AJ, Nagy M, Kim DH, Eckert CA, Hallet JP, Liotta CL (2006) From wood to fuels, intergrating biofuels and pulp production. Industrial Biotechnol 2(1):55–65

    Article  CAS  Google Scholar 

  • Roche MVP, Rodrigues THS, Mecedo GR, De Goncalves LRB (2008) Enzymatic hydrolysis and fermentation of pretreated cashew apple bagasse with alkali and diluted sulphuric acid for bioethanol production. Appl Biochem Biotechnol. doi:10.1.807/s12010-008-8432-8, Published online 25 Nov 2008

    Google Scholar 

  • Rosentrater KA (2007) Ethanol processing co-products: economics, impacts, sustainability, in: agricultural biofuels technology, sustainability and profitability. NABC 19:105–126

    Google Scholar 

  • Sanchez F, Vasud evam PT (2006) Enzyme catalyzed production of biodiesel from olive oil. Appl Biochem Biotechnol 135:1–14

    Article  PubMed  CAS  Google Scholar 

  • Schwarz WH, Gapes HG (2006) Butanol- rediscovering a renewable fuel. Bioworld Euro 01–2006:16–19

    Google Scholar 

  • Searchinger T, Heimlich R, Houghton RA, Dong F, Elobeid A, Fabiosa J, Tokgoz S, Hayes D, Yu T-H (2008) Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land use change. Science Express. www.sciencexpress.org/7 February 2008/Page 4/10.1126/science.1151861

  • Sergeeva YE, Galanina DA, Andrianova DA, Fedofilova EP (2008) Lipids of filamentous fungi as a material for producing biodiesel fuel. Appl Biochem Micobiol 44(5):523–527

    Article  CAS  Google Scholar 

  • Shen JJ, Li FC, Yang QL, Feng DW, Qin S, Zhao ZB (2007) Fermentation of Sportina anglica acid hydrolysate by Trichosporum cutanarm for microbial lipid production. Marine Sci 3(8):38–41

    Google Scholar 

  • Shimmada Y, Watanbe Y, Samukama T (1999) Conversion of vegetable oil to biodiesel using immobilized Candida Antarctica lipase. J Am Oil Chem Soc 76:789–792

    Article  Google Scholar 

  • Smart LB, Camoron KD, Volk TA, Abrahamsm LP (2007) Breeding, selection and testing of shrub willow as a dedicated energy crop. In: Eaglesham A, Hardy RWF (eds) Agriculture biofuels: technology, sustainability and profitability, pp 85–92

    Google Scholar 

  • Spolaore P, Joannis CC, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96

    Article  PubMed  CAS  Google Scholar 

  • Thomsen MH, Nielsen JBH, Popiel PO, Thomsen AB (2008) Pretreatment of whole crop harvested ensiled maize for ethanol production. Appl Biochem Biotechnol 148:23–33

    Article  PubMed  CAS  Google Scholar 

  • Tolan JS (2003) Conversion of cellulosic biomass to ethanol using enzymatic hydrolysis. In: 226th American Chemical Society National Meeting Abstracts, New York

    Google Scholar 

  • Van de loo FJ, Broun P, Turner S, Somerville C (1995) An oleate 12- hydroxylase from castor (Ricinus comminis) a fatty acyl desaturase homologue. Proc Natl Acad Sci USA 92:6743–6747

    Article  PubMed  CAS  Google Scholar 

  • Volk TA, Smart LB, Kimberly D, Abrahamson LP (2004) Growing fuel: a sustainability assessment of willow biomass crops frontiers. Ecol Environ 2:411–418

    Google Scholar 

  • Webb C, Koutinas AA, Wang RH (2004) Developing a sustainable bioprocessing strategy based on a generic feedstock from wheat. Biotechnol Bioenergy 85:524–538

    Article  Google Scholar 

  • Wenster BD (1993) Continuous ethanol production by Zymomonas mobilis in a fluidized bed reactor I: Kinetic studies of immobilization in maroporous glass beads. Appl Microbiol Biotechnol 39:679–684

    Article  Google Scholar 

  • Wyse RE (2005) Biofuels are vital energy souces in growing Asian economies. Industrial Biotechnol 1(4):221

    Article  Google Scholar 

  • Yadvika, Santosh S, Sreekrishnan TR, Kolili S, Rana V (2004) Enhancement of biogas production from solid substrates using different techniques. A review. Bioresource Technol 95:1–10

    Article  CAS  Google Scholar 

  • Yan F, Bai F, Tian S, Zhang J, Zhang Z, Yang X (2008) Strain construction for ethanol production form dilute acid lignocellulosic hydrolysate. Appl Biochem Biotechnol. DOI: 10.1007/s 1210-00808343-8

    Google Scholar 

  • Zhang Y, Dube MA, Mc Lean DD, Kates M (2003) Biodiesel production from waste cooking oil: 1. Process design and technological assessment. Bioresource Technol 89:1–16

    Article  CAS  Google Scholar 

  • Zuhair AS (2007) Production of biodiesel: possibilities and challenges. Biofuels Bioproduct Biorefin 1(1):57–66

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meenu Saraf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Saraf, M., Hastings, A. (2010). Biofuels, the Role of Biotechnology to Improve Their Sustainability and Profitability. In: Lichtfouse, E. (eds) Biodiversity, Biofuels, Agroforestry and Conservation Agriculture. Sustainable Agriculture Reviews, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9513-8_4

Download citation

Publish with us

Policies and ethics