• Andras SzaszEmail author
  • Nora Szasz
  • Oliver Szasz


There are some basic physiological factors connected to the heating phenomena. Two of them are essential for heating: the metabolic rate, which generates additional heat to the external energy intake, and the heat sinks (mainly the blood flow) cooling effectively the locally heated volume. The absorbed energy from outside energy sources is measured by the specific absorption rate [SAR, W/kg]. The SAR increases the temperature but due to the cooling of the physiologically regulated blood stream this heating mechanism is very complex and the temperature is definitely lower than in a regular phantom without a blood stream, even if the phantom material fits well to the targeted real tissues.


Living System Alternate Current Stochastic Resonance Spontaneous Process Hydrogen Bridge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 689.
    Szasz, A.: An electronically driven instability: the living state. Physiol. Chem. Phys. Med. NMR 23(1), 43–50 (1991)Google Scholar
  2. 1087.
    Sharipov, F.: Onsager-Casimir reciprocal relations based on the Boltzmann equation and gas-surface interaction: Single gas. Phys. Rev. E 73(2), 026110.1–026110.8 (2006)CrossRefGoogle Scholar
  3. 872.
    Levin M (2003) Bioelectromagnetics in Morphogenesis. Bioelectromagnetics 24(5):295–315PubMedCrossRefGoogle Scholar
  4. 776.
    Dubois JM, Rouzaire-Dubois B (2004) The influence of cell-volume changes on tumor cell proliferation. Eur Biophys.J 33(3):227–232PubMedCrossRefGoogle Scholar
  5. 711.
    Moses ME, Hou C, Woodruff WH et al (2008) Revisiting a model of oncogenic growth: estimating model parameters from theory and data. Am Nat 171(5):632–645PubMedCrossRefGoogle Scholar
  6. 593.
    Ward, C.A.: Effect of concentration on the rate of chemical reactions. J. Chem. Phys. 67, 229–235 (1977)CrossRefGoogle Scholar
  7. 569.
    Erdmann B, Lang J, Seebass M (1998) Optimization of temperature distributions for regional hyperthermia based on a nonlinear heat transfer model. Annals of The New York Academy of Sciences 858(11):36–46PubMedCrossRefGoogle Scholar
  8. 580.
    Szasz O, Andocs G, Szasz A (2008) Thermally induced effects in oncothermia treatment. Symposium on Biophysical Aspects of Cancer, Electromagnetic mechanisms (in memoriam H. Froelich), Prague, 1–3 July 2008, submitted to Electrom Bio MedGoogle Scholar
  9. 840.
    Takebe H, Shiga T, Kato M et al (2001) Biological and Health Effects from Exposure to Power-line Frequency Electromagnetic Fields. IOS Press, AmsterdamGoogle Scholar
  10. 300.
    Bukau B, Horwich AL (1998) The HSP70 and HSP60 chaperone machines. Cell 92(3):351–366PubMedCrossRefGoogle Scholar
  11. 624.
    Gillooly JF, Allen AP, Savage VM et al (2006) Response to Clarke and Fraser: effects of temperature on metabolic rate. Functional Ecology 20:400–404CrossRefGoogle Scholar
  12. 740.
    Baker LE (1989) Principle of the Impedance Technique. IEEE Engineering in Medicine and Biology Magazine 8(1):11–15PubMedCrossRefGoogle Scholar
  13. 727.
    Bru, A., Pastor, J.M., Fernaud, I., et. al.: Super-rough dynamics on tumor growth. Phys. Rev. Lett. 81(18), 4008–4011 (1998)CrossRefGoogle Scholar
  14. 765.
    Sha L, Ward ER, Story B (2002) A review of dielectric properties of normal and malignant breast tissue. IEEE Southeast Con 457–462Google Scholar
  15. 906.
    Horvath I, Multhoff G, Sonnleitner A et al (2008) Membrane-associated stress proteins: More than simply chaperones. Biochimica et Biophysica Acta 1778(7–8):1653–1664PubMedCrossRefGoogle Scholar
  16. 915.
    Szasz N, Sen H, Grodzinsky S et al (2003) Electric field regulation of chondrocyte biosynthesis in agarose gel constructs. 49th Annual Meeting of the Orthopaedic Research Society, Poster #0672,
  17. 1038.
    Bawin SM, Kazmarek LK, Adey WR (1975) Effects of modulated VHF fields on central nervous system. Ann N Y Acad Sci 247:74–81PubMedCrossRefGoogle Scholar
  18. 572.
    Hobbie, R.K.: Intermediate physics for medicine and biology, Biological physics series. Springer, AIP Press, New York, Berlin (1997)Google Scholar
  19. 924.
    Nordenstrom BWE (1983) Biologically Closed Electric Circuits: Clinical, experimental and theoretical evidence for an additional circulatory system. Nordic Medical Publications, Stockholm, SwedenGoogle Scholar
  20. 822.
    Sapper A, Wegener J, Janshoff A (2006) Cell motility probed by noise analysis of thickness shear mode resonators. Anal Chem 15;78(14):5184–5191CrossRefGoogle Scholar
  21. 951.
    Zhao M (2009) Electrical fields in wound healing—An overriding signal that directs cell migration. Semin Cell Dev Biol 20(6):674–682PubMedCrossRefGoogle Scholar
  22. 1040.
    Ciortea LI, Morariu VV, Todoran A et al (2001) Life in zero magnetic field. II. Effect on zinc and copper in human blood serum during in vitro aging. Electro- and Magnetobiology 20(2):127–139Google Scholar
  23. 732.
    Schwan, H.P.: Electrical properties of tissue and cell suspensions. Adv. Biol. Med. Phys. 5, 147–209 (1957)PubMedGoogle Scholar
  24. 766.
    Blad B, Wendel P, Jönsson M et al (1999) An electrical impedance index to distinguish between normal and cancerous tissues. Journal of Medical Engineering & Technology 23(2):57–62CrossRefGoogle Scholar
  25. 708.
    Chidanbaram, R., Ramanadham, M.: Hydrogen bonding in biological molecules-an update. Physica B 174(1–4), 300–305 (1991)CrossRefGoogle Scholar
  26. 772.
    Dissado, L.A., Alison, J.M., Hill, R.M., et al.: Dynamic scaling in the dielectric response of excised EMT-6 tumors undergoing hyperthermia. Phys. Med. Biol. 40, 1067–1084 (1995)PubMedCrossRefGoogle Scholar
  27. 955.
    Meng X, Riordan NH (2006) Cancer is a functional repair tissue. Medical Hypotheses 66(3):486–490PubMedCrossRefGoogle Scholar
  28. 597.
    Joshnson WA, Mehl PA (1939) Reaction kinetics in processes of nucleation and growth. Trans Amer Inst Mining (Metal) Engrs 135:416Google Scholar
  29. 757.
  30. 64.
    Okada Y et al (1996) Expression of fos family and jun family proto-oncogenes during corneal epithelial wound healing. Curr Eye Res 15(8):824–832PubMedCrossRefGoogle Scholar
  31. 591.
    Miller WH (1993) Beyond transition-state theory: a rigorous quantum theory of chemical reaction rates. Acc Chem Res 26:174–181CrossRefGoogle Scholar
  32. 714.
    Lane N (2006) Mitochondria: Key to Complexity. In: Martin W (ed) Origins of Mitochondria and Hydrogenosomes,  Chapter 2, Springer, Heidelberg, GermanyGoogle Scholar
  33. 579.
    Jackson MB (2006) Molecular and cellular biophysics. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  34. 609.
    Camazine S, Deneubourg JL, Franks NR et al (2003) Self-organization in biological systems. Princeton Studies in Complexity, Princeton Univ. Press, Princeton, OxfordGoogle Scholar
  35. 574.
    Jeffrey GA (1997) An Introduction to Hydrogen Bonding (Topics in Physical Chemistry). Oxford University Press, USAGoogle Scholar
  36. 1004.
    Weaver JC, Astumian RD (1990) The response of living cells to very week electric fields: The thermal noise limit. Science 247(4941):459–462PubMedCrossRefGoogle Scholar
  37. 977.
    Wentian Li (1989) Spatial 1/f spectra in open dynamical systems. Europhys Lett 10:395–400CrossRefGoogle Scholar
  38. 607.
    Binney JJ, Dowrick NJ, Fisher AJ et al (1992) The theory of critical phenomena. An introduction to the renormalization group. Oxford Science Publications, OxfordGoogle Scholar
  39. 1031.
    Obo M, Konishi S, Otaka Y et al (2002) Effect of magnetic field exposure on calcium channel currents using patch clamp technique, Bioelectromagnetics 23(4):306–314Google Scholar
  40. 759.
    Metherall P (1998) Three-dimensional electrical impedance tomography of the human thorax. PhD Thesis, University of SheffieldGoogle Scholar
  41. 890.
    Caubet R, Pedarros-Caubet F, Chu M et al (2004) A Radio Frequency Electric Current Enhances Antibiotic Efficacy against Bacterial Biofilms. Antimicrobal Agents and Chemotherapy 48(12):4662–4664CrossRefGoogle Scholar
  42. 678.
    Nelson DL, Cox MM (2005) Lehninger Principles of Biochemistry Fourth Edition. W.H. Freeman and Company, New York, p 543Google Scholar
  43. 567.
    Gautherie M (1982) Temperature and blood-flow patterns in breast cancer during natural evolution and following radiotherapy. Prog Clin Biol Res 107:.21–64PubMedGoogle Scholar
  44. 219.
    Head JF, Wang F, Lipari CA et al (2000) The important role of Infrared Imaging in Breast cancer. IEEE Engineering in Medicine and Biology Magazine 19(3):52–57PubMedCrossRefGoogle Scholar
  45. 1086.
    Hegyi G, Vincze Gy, Szasz A (2007) Axial-vector interaction with bio-systems. Electr. Biol Med 26(2):107–118Google Scholar
  46. 1073.
    Cho MR, Thatte HS, Lee RC et al (1994) Induced redistribution of cell surface receptors by alternating current electric fields. FASEB J 8(10):771–776PubMedGoogle Scholar
  47. 568.
    Benzinger, T.H.: On physical heat regulation and the sence of temperature in man. Proc. Natl. Acad. Sci. USA 45(4), 645–659 (1959)PubMedCrossRefGoogle Scholar
  48. 1014.
    Del Giudice E et al (1988) Structures, Correlations and Electromagnetic Interactions in Living Matter. In: Froelich H (ed) Biological Coherence and Response to External Stimuli, Springer Verlag, Berlin, Heidelberg, New York, pp 49–64Google Scholar
  49. 790.
    Siemens Impedance Tomograph TRANS-SCAN (commercially available)Google Scholar
  50. 956.
    Bard AJ, Faulkner LR (2000) Electrochemical Methods, Fundamentals and Applications. John Wiley & Sons Inc., New YorkGoogle Scholar
  51. 576.
    Katchalsky A, Curran PF (1967) Non-equilibrium thermodynamics in biophysics. Harvard University Press, Cambridge, MA, USAGoogle Scholar
  52. 827.
    Gonzalez-Correra CA, Brown BH, Smallwood RH et al (1999) Virtual biopsies in Barrett’s Esophagus using an impedance probe. Ann N Y Acad Sci 873:313–321CrossRefGoogle Scholar
  53. 636.
    Cope, F.W.: Evidence from activation energies for superconductive tunneling in biological systems at physiological temperatures. Physiol Chemistry & Physics 3, 403–410 (1971)Google Scholar
  54. 657.
    Reid B, McCaig CD, Zhao M et al (2005) Wound healing in rat cornea: the role of electric currents. FASEB J 19:379–386PubMedCrossRefGoogle Scholar
  55. 996.
    Porkert M (1974) The Theoretical Foundations of Chinese Medicine. MIT Press, Cambridge, MAGoogle Scholar
  56. 767.
    Brunner G (2007) Elektrohyperthermie von Hautkrebbszellen: Neue Ergebnisse zu potentiellen molekularen Wirkungsmechanismen. Hyperthermie Symposium, Cologne, Germany, 19–20 October 2007Google Scholar
  57. 784.
    Jossinet, J.: The impedivity of freshly excised human breast tissue. Physiol. Meas. 19, 61–75 (1998)PubMedCrossRefGoogle Scholar
  58. 836.
    Rein G, Tiller WA (1996) Anomalous information storage in water: spectroscopic evidence for non-quantum informational transfer. Proc. 3rd Int Symp New Energy, Denver, Colorado, 24–28 April 1996, p 365Google Scholar
  59. 1027.
    Blackman CF, Kinney LS, House DE et al (1989) Multiple Power-Density Windows and Their Possible Origin. Bioelectromagnetics 10(2):115–128PubMedCrossRefGoogle Scholar
  60. 756.
    Kyle UG, Bosaeus I, De Lorenzo AD et al (2004) Bioelectrical impedance analysis – part II: utilization in clinical practice. Clinical Nutrition 23(5):1430–1453PubMedCrossRefGoogle Scholar
  61. 843.
    Blank M, Goodman R (2009) Electromagnetic fields stress living cells. Pathophysiology 16(2–3):71–78PubMedCrossRefGoogle Scholar
  62. 838.
    Tiller WA (1999) Subtle energies. Science & Medicine 6(3)Google Scholar
  63. 950.
    Song B, Zhao M, Forrester JV et al (2002) Electrical cues regulate the orientation and frequency of cell division and the rate of wound healing in vivo. PNAS 99(21):13577–13582PubMedCrossRefGoogle Scholar
  64. 834.
    Oschman LJ (2000) Energy Medicine The Scientific Basis. Churchill Livingstone, Edinburgh London New York, Philadelphia, St Louis, Sydney, TorontoGoogle Scholar
  65. 820.
    Aberg P, Geladi P, Nicancer I et al (2004) Skin bioimpedance – electronic views of malignancies. Proc XII ICEBI, Gdansk, pp 79–82Google Scholar
  66. 828.
    Freeman T (2007) Non-invasive test reduces need for biopsies. SpectRx Company – LightTouch, Medicalphysicsweb, 24 January 2007Google Scholar
  67. 1082.
    Aharonov, Y., Bohm, D.: Significance of electromagnetic potentials in quantum theory. Phys. Rev. 115(3), 485–491 (1959)CrossRefGoogle Scholar
  68. 831.
    Galvas-Medici R, Day-Magdaleno SR (1976) Extremely low frequency, weak electric fields affect schedule-controlled behaviour of monkeys. Nature 261(5557):256–259CrossRefGoogle Scholar
  69. 1051.
    Astumian RD, Chock PB, Tsong TY et al (1987) Can free energy be transduced from electric noise? Proc Natl Acad Sci USA; 84(2):434–438PubMedCrossRefGoogle Scholar
  70. 566.
    Gillooly JF, Brown JH, West GB et al (2001) Effects of size and temperature on metabolic rate. Science 293(5538):2248–2251PubMedCrossRefGoogle Scholar
  71. 895.
    Essex, C.G.: Five-component dielectric dispersion in bovine serum albumin solution. Phys. Med. Biol. 22(6), 1160–1167 (1977)PubMedCrossRefGoogle Scholar
  72. 818.
    Inagaki T, Bhayani SB, Allaf M et al (2004) Tumor capacitance: electrical measurement of renal neoplasia. The Journal of Urology 172(2):454–457PubMedCrossRefGoogle Scholar
  73. 675.
    Turner AM, Zsebo KM, Martin F et al (1992) Nonhematopoietic tumor cell lines express stem cell factor and display c-kit receptors. Blood 80(2):374–381PubMedGoogle Scholar
  74. 867.
    Blank M (2008) Protein and DNA reactions Stimulated by Electromagnetic Fields. Electromagnetic Biology and Medicine 27(1):3–23PubMedCrossRefGoogle Scholar
  75. 824.
    Mentzel HJ, Malich A, Kentouche K et al (2003) Electrical impedance scanning – application of this new technique for lymph node evaluation in children. Rediatr Radiol 33(7):461–466CrossRefGoogle Scholar
  76. 1010.
    Loewenstein WR, Kanno Y (1967) Intercellular Communications and Tissue Growth, I. Cancerous Growth. The Journal of Cell Biology 33: 225–234PubMedCrossRefGoogle Scholar
  77. 584.
    Nelson, P.: Biological Physics. WH Freeman and Company, New York (2004)Google Scholar
  78. 1028.
    Markin VS, Tsong TY (1991) Frequency and concentration windows for the electric activation of a membrane active transport system. Biophysics J 59(6):1308–1316CrossRefGoogle Scholar
  79. 877.
    Walleczek J (1992) Electromagnetic field effects on cells of the immune system: the role of calcium signaling. FASEB J 6:3177–3185PubMedGoogle Scholar
  80. 853.
    Broude N et al (1994) Correlation between the amplitude of plasma membrane fluctuations and the response of cells to electric and magnetic fields. Bioelectrochemistry and Bioenergetics 33:19–23CrossRefGoogle Scholar
  81. 789.
    Glickman YA, Filo O, David M et al (2003) Electrical Impedance Scanning: a new approach to skin cancer diagnosis. Skin Res Technol 9(3):262–268PubMedCrossRefGoogle Scholar
  82. 664.
    Noszczyk BH, Majewski ST (201) p63 expression during normal cutaneous wound healing in humans. Plast Reconstr Surg 108(5):1242–1250PubMedCrossRefGoogle Scholar
  83. 835.
    Rampl I (2008) New biophysical field attacks cancer cells.
  84. 642.
    Walleczek J (ed) (2000) Self-organized biological dynamics & nonlinear control. Cambridge Univ. Press, CambridgeGoogle Scholar
  85. 802.
    Santini MT, Cametti C, Zimatore G et al (1995) A dielectric relaxation study on the effects of the antitumor drugs Lomidamineand Rhein on the membrane electrical properties of Erlich ascites tumor cells. Anticancer Res 15:29–36PubMedGoogle Scholar
  86. 826.
    Emtestam L, Nicander I, Stenström M et al (1998) Electrical impedance of nodular basal cell carcinoma: a pilot study. Dermatology 197(4):313–316PubMedCrossRefGoogle Scholar
  87. 1029.
    Lin JC (1989) Electromagnetic Interaction with Biological Systems. Pergamon Press, New York, LondonGoogle Scholar
  88. 628.
    Levinthal, C.: Are there pathways for protein folding? Extrait du Journal de Chimie Physique 65(1), 44–45 (1968)Google Scholar
  89. 889.
    Plotnikov A, Fishman D, Tichler T et al (204) Low electric field enhanced chemotherapy can cure mice with CT-26 colon carcinoma and induce anti-tumor immunity. Clin Exp Immunol 138(3):410–416PubMedCrossRefGoogle Scholar
  90. 770.
    McRae, D.A., Esrick, M.A.: The dielectric parameters of excised EMT-6 tumors and their change during hyperthermia. Phys. Med. Biol. 37, 2045–2058 (1992)PubMedCrossRefGoogle Scholar
  91. 910.
    Ronchi R, Marano L, Braidotti P et al (2004) Effects of broad band electromagnetic fields on HSP70 expression and ischemia-reperfusion in rat hearts. Life Sciences 75(16):1925–1936PubMedCrossRefGoogle Scholar
  92. 997.
    Jones NS (2007) Brown Noise can make Pink Noise.
  93. 1097.
    Szász A, Vincze Gy, Szasz O et al (2009) Effect of Curl-Free Potentials on Water. Electromagnetic Biology and Medicine 28(2):166–181PubMedCrossRefGoogle Scholar
  94. 1022.
    Caer, G. Le.: Topological models of cellular structures. J. Phys. A. Math. Gen. 24, 1307–1317 (1991)CrossRefGoogle Scholar
  95. 819.
    Nalcioglu O (2006) Magnetic Resonance Electric Impedance Tomography – A novel technique for cancer imaging. Reference section, Business briefing: future directions in imagingGoogle Scholar
  96. 875.
    Cleary SF, Liu L-M, Garber F (1985) Erythrocyte Hemolysis by Radiofrequency Fields. Bioelectromagnetics 6(3):313–322PubMedCrossRefGoogle Scholar
  97. 801.
    Osterman KS, Paulsen KD, Hoopes PJ (1999) Application of linear circuit models to impedance spectra in irradiated muscle. Ann N Acad Sci 873:21–29CrossRefGoogle Scholar
  98. 1062.
    Astumian RD, Weaver JC, Adair RK (1995) Rectification and signal averaging of weak electric fields by biological cells. Proc Natl Acad Sci USA 92(9):3740–3743PubMedCrossRefGoogle Scholar
  99. 817.
    Joines, W.T., Zhang, Y., Li, C., et. al.: The measured electrical properties of normal and malignant human tissues from 50 to 900 MHz. Med. Phys. 21(4), 547–550 (1994)PubMedCrossRefGoogle Scholar
  100. 998.
    Lamsweerde-Gallez van D (1981) Phase transitions induced by coloured voltage noise in nerve membranes. Bioelectrochemistry and Bioenergetics 8:179–187CrossRefGoogle Scholar
  101. 681.
    Szasz, A., van Noort, D., Scheller, A., et. al.: Water states in living systems. I. Structural aspects. Physiol. Chem. Phys. 26(4), 299–322 (1994)Google Scholar
  102. 1078.
    Kotnik T, Miklavcic D (2000) Second-Order Model of Membrane Electric Field Induced by Alternating External Electric Fields. IEEE Transactions on Biomedical Engineering 47(8):1074–1082PubMedCrossRefGoogle Scholar
  103. 1054.
    Markin VS, Liu D, Rosenberg MD et al (1992) Resonance transduction of low level periodic signals by an enzyme: an oscillatory activation barrier model. Biophys J 61(4):1045–1049PubMedCrossRefGoogle Scholar
  104. 586.
    Huang, K.: Lectures on statistical physics and protein folding. World Scientific Publ. Co, New Jersey, London, Singapore (2005)CrossRefGoogle Scholar
  105. 1020.
    Puck TT, Marcus PI, Cieciura SJ (1956) Clonal growth of mammalian cells in vitro: growth characteristics of colonies from single HeLa cells with and without a “feeder” layer. J Exp Med 103(2):273–283PubMedCrossRefGoogle Scholar
  106. 684.
    Maryan M, Szasz A, Szendro P et al (2005) Synergetic model of the formation of non-crystalline structures. Journal of Non-Crystalline Solids 351(2):189–193CrossRefGoogle Scholar
  107. 1030.
    D’Inzeo G, Galli A, Palombo A (1993) Further investigations on non-thermal effects referring to the interaction between ELF fields and transmembrane ionic fluxes. Bioelectrochemistry and Bioenergetics 30(8):93–102CrossRefGoogle Scholar
  108. 729.
    Lv Y-G, Liu J (2003) A theoretical way of distinguishing the thermal and non-thermal effects in biological tissues subject to EM radiation. Forschung im Ingenieurwesen 67(6):242–253CrossRefGoogle Scholar
  109. 936.
    The first international conference on the topic was in Beijing, China, 20–22 October 1992 (200 Chinese and 30 foreign participants, one-hundred-thirty-six papers were presented), from that time in every second year regularly held, special international organization (IABC) organized with the center in USAGoogle Scholar
  110. 1050.
    Savageau MA (1998) Development of fractal kinetic theory for enzyme-catalysed reactions and implications for the design of biochemical pathways. Biosystems 47(1–2):9–36PubMedCrossRefGoogle Scholar
  111. 608.
    Wolfram S (2002) A new kind of Science. Wolfram Media Inc, Champaign, USAGoogle Scholar
  112. 914.
    Mahrour N, Pologea-Moraru R, Moisescu MG et al (2005) In vitro increase of the fluid-phase endocytosis induced by pulsed radiofrequency electromagnetic fields: importance of the electric field component. Biochimica et Biophysica Acta 1668(1):126–137PubMedCrossRefGoogle Scholar
  113. 721.
    Szent-Gyorgyi A (1968) Bioelectronics, A Study on Cellular Regulations, Defense and Cancer. Acad. Press, New York, LondonGoogle Scholar
  114. 813.
    Muftuler TL, Hamamura MJ, Birgul O et al (2006) In vivo MRI electrical impedance tomography (MREIT) of tumors. Technology in Cancer Research and Treatment 5(4):381–387PubMedGoogle Scholar
  115. 617.
    Montgomery C, Reilly JJ, Jackson DM et al (2005) Validation of energy intake by 24-hour multiple pass recall: comparison with total energy expenditure in children aged 5–7 years. British Journal of Nutrition 93:671–676PubMedCrossRefGoogle Scholar
  116. 695.
    Mott NF, Jones H (1958) The theory of the properties of metals and alloys. Dover Publ Inc, New YorkGoogle Scholar
  117. 792.
    Chillcott TC, Coster HG (1999) Electrical impedance tomography study of biological processes in a single cell. Ann. N Y Acad Sci 873:269–286CrossRefGoogle Scholar
  118. 575.
    Szent-Gyorgyi A (1978) The living state and cancer. Marcel Dekker Inc, New YorkGoogle Scholar
  119. 1083.
    Marjan MI, Szasz A (2000) Self-organizing processes in non-crystalline materials: from lifeless to living objects. OncoTherm Kft, BudapestGoogle Scholar
  120. 650.
    Albert R (2005) Scale-free networks in cell biology. Journal of Cell Science 118(Pt 21):4947–4957PubMedCrossRefGoogle Scholar
  121. 988.
    Davydov AS (1978) Solitons bioenergetics and mechanism of muscle contraction. Int J Quantum Chem 16(1):5–17CrossRefGoogle Scholar
  122. 970.
    Szasz A, DasGupta A (1991) Some general remarks on metastability and high-Tc superconductivity. Journal of Superconductivity 4:189–191CrossRefGoogle Scholar
  123. 633.
    Feynman, P.R., Leighton, R.B., Sands, M.: The Feynman Lectures on Physics. Addison-Wesley Publ Co Reading, MA, & Caltech, CA, USA (1963)Google Scholar
  124. 676.
    Oehr P, Biersack HJ, Coleman RE (eds) (2004) PET and PET-CT in Oncology. Springer Verlag, Berlin-HeidelbergGoogle Scholar
  125. 717.
    Kurakin, A.: Scale-free flow of life: on the biology, economics, and physics of the cell. Theor. Biol. Med. Model. 6:6 (2009)PubMedCrossRefGoogle Scholar
  126. 179.
    Szendro P, Vincze G, Szasz A (2001) Pink noise behaviour of the bio-systems. Eur Biophys J 30(3):227–231PubMedCrossRefGoogle Scholar
  127. 1015.
    Cho MR, Thatte HS, Lee RC et al (1996) Reorganization of microfilament structure induced by ac electric fields. FASEB J 10(13):1552–1558PubMedGoogle Scholar
  128. 639.
    Schrodinger E (1967) What is life? Cambridge University Press, Cambridge, United KingdomGoogle Scholar
  129. 821.
    Fukumoto T, Eom GM, Ohba S et al (2007) Temporal resolution of the skin impedance measurement in Frequency-Domain method. IEEE Transactions on Biomedical Engineering 54(1):170–173PubMedCrossRefGoogle Scholar
  130. 803.
    Keese CR, Wegener J, Walker S et al (2004) Electrical wound-healing assay for cells in vitro. Proceedings Nat Acad Sci USA 101(6):1554–1559CrossRefGoogle Scholar
  131. 582.
    Tolman RC (1920) Statistical mechanics applied to chemical kinetics. J Amer Chem Soc 42:2506–2528CrossRefGoogle Scholar
  132. 788.
    Tosso S, Piccoli A, Gusella M et al (2003) Bioimpedance vector pattern in cancer patients without disease versus locally advanced or disseminated disease. Nutrition 19(6):510–514CrossRefGoogle Scholar
  133. 823.
    Sapper A, Reiss B, Janshoff A et al (2006) Adsorption and fluctuations of giant liposomes studied by electrochemical impedance measurements. Langmuir 22(2):676–680PubMedCrossRefGoogle Scholar
  134. 618.
    Nicholls DG, Lindberg O (1973) Brown-adipose-tissue mitochondria. The influence of albumin and nucleotides on passive ion permeabilities. Eur J Biochem 37(3):523–530PubMedCrossRefGoogle Scholar
  135. 1063.
    Silny, J.: Demodulation in tissue, the relevant parameters and the implications for limiting exposure. Health Physics, 92(6), 604–608 (2007)PubMedCrossRefGoogle Scholar
  136. 1089.
    Reno VR, Nutini LG (1963) Effect of Magnetic fields on tissue respiration. Nature 198:204–205CrossRefGoogle Scholar
  137. 679.
    Hsu PP, Sabatini DM (2008) Cancer metabolism: Warburg and Beyond. Cell 134(5):703–707PubMedCrossRefGoogle Scholar
  138. 651.
    Kleiber, M.: Body size and metabolic rate. Physiol. Rev. 27, 511–541 (1947)PubMedGoogle Scholar
  139. 571.
    Glaser R (1999) Biophysics. Springer, Berlin, Heidelberg, New YorkGoogle Scholar
  140. 833.
    Randerson J (2007) Electrosmog in the clear with scientists. The Guardian Cited 18 Jan 2007
  141. 774.
    Häfner H-M, Brauer K, Eichner M et al (2005) Wavelet Analysis of Cutaneous Blood Flow in Melanocytic Skin Lesions. J Vasc Res 42(1):38–46PubMedCrossRefGoogle Scholar
  142. 1041.
    Blackman CF, Benane SG, Rabinowitz JR et al (1985) Role for the magnetic field in the radiation induced efflux of calcium ions from brain tissue in vitro. Bioelectromagnetics 6(4):327–337PubMedCrossRefGoogle Scholar
  143. 989.
    Peierls RE (1955) Quantum theory of solids. Clarendon, OxfordGoogle Scholar
  144. 1009.
    von Neumann J (1959) The Computer and the Brain. Yale University Press, New HavenGoogle Scholar
  145. 646.
    Musha, T., Sawada, Y. (eds.): Physics of the living state. IOS Press, Amsterdam (1994)Google Scholar
  146. 742.
    Scholz B, Anderson R (2000) On Electrical Impedance Scanning – Principles and Simulations. Erectromedica 68:35–44Google Scholar
  147. 741.
    Min M, Parve T, Ronk A et al (2007) Synchronous Sampling and Demodulation in an Instrument for Multifrequency Bioimpedance Measurement. Instrumentation and Measurement, IEEE Transactions, 56(4):1365–1372CrossRefGoogle Scholar
  148. 696.
    Cope FW (1969) Nuclear magnetic resonance evidence using D2O for structured water in muscle and brain. Biophys J 9(3):303–319PubMedCrossRefGoogle Scholar
  149. 710.
    Akerlof GA, Shiller RJ (2009) Animal spirits. Princeton University Press, Princeton and OxfordGoogle Scholar
  150. 1039.
    Morariu VV, Ciorba D, Neamtu S (2000) Life in zero magnetic field. I. In vitro human blood aging. Electro- and Magnetobiology 19:289–302Google Scholar
  151. 921.
    Fernandez MI, Watson PJ, Rowbotham DJ et al (2007) Effect of pulsed magnetic field therapy on pain reported by human volunteers in a laboratory model of acute pain. British Journal of Anaesthesia 99(2):266–269PubMedCrossRefGoogle Scholar
  152. 592.
    Berne BJ, Borkovec M (1998) Classical theories of reaction dynamics: transition-state theory, spatial diffusion controlled reaction, and the energy diffusion limit. J Chem Soc Faraday Trans 94:2717–2723CrossRefGoogle Scholar
  153. 1045.
    Choleris E, Del Seppia C, Thomas AW et al (2002) Shielding, but not zeroing of the magnetic field reduces stress-induced analgesia in mice. Proc Biol Sci 269(1487):193–201PubMedCrossRefGoogle Scholar
  154. 712.
    Pamatmat MM (2005) Measuring aerobic and anaerobic metabolism of benthic infauna under natural conditions. Journal of Experimental Zoology 228(3):405–413CrossRefGoogle Scholar
  155. 907.
    Multhoff G, Botzler C, Wiesnet M et al (1995) A stress-inducible 72-kDa heat-shock protein (HSP72) is expressed on the surface of human tumor cells, but not on normal cells. Int J Cancer 61(2):272–279PubMedCrossRefGoogle Scholar
  156. 809.
    National Institute of Health Technology Assessment Conference Statement (1994) Bioelectric Impedance Analysis in Body Composition Measurement. USA, 12–14 December 1994Google Scholar
  157. 804.
    Kyle AH, Chan CTO, Minchinton AI (1999) Characterization of three-dimensional tissue culture using electrical impedance spectroscopy. Biophysical Society 76(5):2640–2648CrossRefGoogle Scholar
  158. 1026.
    Adey WR (1990) Joint Actions of Environmental Nonionizing Electromagnetic Fields and Chemical Pollution in Cancer Promotion. Environmental Health Perspectives 86:297–305PubMedCrossRefGoogle Scholar
  159. 755.
    Kyle UG, Bosaeus I, De Lorenzo AD et al (2004) Bioelectrical impedance analysis – part I: review of principles and methods. Clinical Nutrition 23(5):1226–1243PubMedCrossRefGoogle Scholar
  160. 743.
    Barnett A (1940) Electrical method for studying water metabolism and translocation in body segments. Proc Soc Exp Biol Med 44:142–147Google Scholar
  161. 1008.
    Schrodinger E (1951) Science and Humanism. Cambridge University Press, CambridgeGoogle Scholar
  162. 829.
    Goff LL, Lecuit T (2009) Phase transition in a cell. Science 324(5935):1654–1655PubMedCrossRefGoogle Scholar
  163. 769.
    Esrick, M.A., McRae, D.A.: The effect of hyperthermia induced tissue conductivity changes on electrical impedance temperature mapping. Phys. Med. Biol. 39, 133–144 (1994)PubMedCrossRefGoogle Scholar
  164. 857.
    dePomerai D, Danniells C, David H et al (2000) Non-thermal heat-shock response to microwaves. Nature 405(6785):417–418CrossRefGoogle Scholar
  165. 630.
    Whittaker RH, Likens GE (1975) The biosphere and man. In: Leith H, Whittaker RH (eds) Primary productivity of the biosphere, Springer, BerlinGoogle Scholar
  166. 1088.
    Konopinsky, E.J.: What the electromagnetic vector potential describes. Am. J. Phys. 46(5), 499–502 (1978)CrossRefGoogle Scholar
  167. 629.
    Schneider SH (1989) The greenhouse effect: science and policy. Science 243(4892):771–781PubMedCrossRefGoogle Scholar
  168. 1005.
    Kaune WT (2002) Thermal Noises Limit on the Sensitivity of Cellular Membranes to Power Frequency Electric and Magnetic Fields. Bioelectromagnetics 23(8):622–628PubMedCrossRefGoogle Scholar
  169. 850.
    Clejan S, Ide C, Walker C et al (1996) Electromagnetic field induced changes in lipid second messengers. J Lipid M Schwan HP (1938) Biophysics of the interaction of electromagnetic energy with cells and membranes. In Grandolfo M, Michaelson SM, Rindi A (eds) Biological Effects and Dosimetry of Nonionizing Radiation. Plenum Press, New York, pp 213–231Google Scholar
  170. 638.
    Liboff AR (2003) Ion Cyclotron Resonance in Biological Systems: Experimental Evidence. In: Stavroulakis P (ed) Biological Effects of Electromagnetic Fields, Springer Verlag, Berlin-Heidelberg, pp 6–113Google Scholar
  171. 692.
    Maryan MI, Kikineshy A, Szendrő P et al (2001) Modeling of the dissipative structure of water. Acta Technologica Agriculturae Slovaca Universitas Agriculturae Nitriae 3:77–80Google Scholar
  172. 931.
    McCaig, C.D., Rajnicek, A.M., Song, B. et. al.: Controlling Cell Behaviour Electrically: Current Views and Future Potential. Physiol. Rev. 85(3):943–978 (2005)PubMedCrossRefGoogle Scholar
  173. 680.
    Szent-Gyorgyi A (1978) How new understandings about the biological function of ascorbic acid may profoundly affect our lives. Executive Health 14(8):1–4Google Scholar
  174. 903.
    Goodman R, Blank M, Lin H et al (1994) Increased levels of Hsp70 transcripts induced when cells are exposed to low-frequency electromagnetic-fields. Bioelectrochemistry and Bioenergetics 33(2):115–120CrossRefGoogle Scholar
  175. 736.
    Schwan, H.P.: Determination of biological impedances. In: Physical Techniques in Biological Research, vol. 6, pp 323–406, Academic Press, New York (1963)Google Scholar
  176. 876.
    Liu D-S, Astumian RD, Tsong TY (1990) Activation of Na+ and K+ Pumping Modes of (Na,K)-ATPase by an Oscillating Electric Field. The Journal of Biological Chemistry 265(13)7260–7267PubMedGoogle Scholar
  177. 849.
    Tsong, T.Y., Chang, C-H.: Ion pump as Brownian motor: theory of electroconformational coupling and proof of ratchet mechanism for Na,K-ATPase action. Physica A. 321(1), 124–138 (2003)CrossRefGoogle Scholar
  178. 985.
    Pnevmatikos, S.N., Tsironis, G.P.: Protonic conductivity: a new application of soliton theory. Journal de Physique Colloque 50, C3-3-C3-10 (1989)Google Scholar
  179. 685.
    Nemethy, G., Scheraga, H.A.: Structure of Water and Hydrophobic Bonding in Proteins. I. A Model for the Thermodynamic Properties of Liquid Water. J. Chem. Phys. 36, 3382–3400 (1962)CrossRefGoogle Scholar
  180. 723.
    Jun J Pepper JW, SAVAGE VM et al (2003) Allometric scaling of ant foraging trail networks. Evolutionary Ecology Research 5(2):297–303Google Scholar
  181. 735.
    Pennock, B.E., Schwan, H.P.: Further observations on the electrical properties of haemoglobin bound water. J. Phys. Chem. 73, 2600–2610 (1969)PubMedCrossRefGoogle Scholar
  182. 595.
    Hou, K.C., Palmer, H.B.: The kinetics of thermal decomposition of diacetylene in a flow system. J. Phys. Chem. 69(3), 858–862 (1965)CrossRefGoogle Scholar
  183. 1094.
    Haken H (1977) Synergetics. Springer Verlag, BerlinGoogle Scholar
  184. 978.
    Schlesinger MS (1987) Fractal time and 1/f noise in complex systems. Ann N Y Acad Sci 504:214–228PubMedCrossRefGoogle Scholar
  185. 1081.
    Tesla N (1905) Art of transmitting electrical energy through the natural medium. United States Patent 787,412 April 1905Google Scholar
  186. 585.
    Wright NT (2003) On a relationship between the Arrhenius parameters from thermal damage studies. J Biol Eng 125(2):300–304Google Scholar
  187. 1011.
    Galeotti T, Borrello S, Minotti G et al (1986) Membrane Alterations in Cancer Cells. Role of Oxi Radicals. Ann N Y Acad Sci 488:468–480.PubMedCrossRefGoogle Scholar
  188. 911.
    Han L, Lin H, Head M et al (1998) Application of magnetic field-induced heat shock protein 70 for presurgical cytoprotection. Journal of Cellular Biochemistry 71(4):577–583PubMedCrossRefGoogle Scholar
  189. 844.
    Schwan HP (1989) Frequency selective propagation of extracellular electrical stimuli to intracellular compartments. In: Adey WR, Lawrence AF (eds) Nonlinear electrodynamics in biological systems, Plenum Press, New York, London, pp 327–338Google Scholar
  190. 652.
    West GB, Brown JH, Enquist BJ (1999) The Fourth Dimension of Life: Fractal Geometry and Allometric Scaling of Organisms. Science 284(5420):1677–1679PubMedCrossRefGoogle Scholar
  191. 733.
    Cole KS (1968) Membranes, ions and impulses. University of California Press, Berkeley, Los AngelesGoogle Scholar
  192. 612.
    Burton RF (1994) Physiology by numbers. Cambridge University Press, CambridgeGoogle Scholar
  193. 590.
    Pollak E, Talkner P (2005) Reaction rate theory: what it was, where is it today, and where is it going? Chaos 15(2):26116–26117PubMedCrossRefGoogle Scholar
  194. 796.
    Shchepotin IB, McRae DA? Shabahang M et al (1997) Hyperthermia and verapamil inhibit the growth of human colon cancer xenografts in vivo through apoptosis. Anticancer Research 17(3C):2213–2216PubMedGoogle Scholar
  195. 610.
    Streater RF (1999) Open Systems and Information Dynamics. Kluwer 6:87–100Google Scholar
  196. 1007.
    Raff MC (1992) Social controls on cell survival and death. Nature 356(6368):397–400PubMedCrossRefGoogle Scholar
  197. 722.
    Brown, M.F., Gratton ,T.P., Stuart, J.A.: Metabolic rate does not scale with body mass in cultured mammalian cells. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292, R2115–R2121 (2007)PubMedGoogle Scholar
  198. 1098.
    Gelinas RC (1984) Apparatus and method for demodulation of a modulated curl-free magnetic vector potential field. United States Patent 4,429,280 31 Jan 1984Google Scholar
  199. 709.
    Szent-Gyorgyi A (1960) Introduction to Submolecular Biology. Academic Press, New York, LondonGoogle Scholar
  200. 771.
    McRae, D.A., Esrick, M.A., Mueller, S.C.: Changes in the non-invasive, in vivo electrical impedance of the xenografts during the necrotic cell-response sequence. Int. J. Radiat. Oncol. Biol. Phys. 43, 849–857 (1999)PubMedGoogle Scholar
  201. 621.
    Mathews CK, van Holde KE (1990) Biochemistry. The Benjamin/Cummings Publ. Co. Inc., Redwood CityGoogle Scholar
  202. 570.
    Morowitz HJ (1992) Beginnings of Cellular Life: Metabolism Recapitulates Biogenesis. Yale University Press, p 69Google Scholar
  203. 791.
    Skourou, C., Hoopes, P.J., Strawbridge, R.R., et. al.: Feasibility studies of electrical impedance spectroscopy for early tumor detection in rats. Physiol. Meas. 25(1), 335–346 (2004)PubMedCrossRefGoogle Scholar
  204. 728.
    Williams JM (2002) Thermal and Nonthermal Mechanisms of the Biological Interaction of Microwaves.
  205. 724.
    Drasdo, D., Höhme, S.: A single-cell-based model of tumor growth in vitro: monolayers and spheroids. Phys. Biol. 2, 133–147 (2005)PubMedCrossRefGoogle Scholar
  206. 908.
    Gehrmann M, Liebisch G, Schmitz G et al (2008) Tumor-Specific Hsp70 Plasma Membrane Localization Is Enabled by the Glycosphingolipid Gb3. PLoS One 2;3(4):e1925–e1933CrossRefGoogle Scholar
  207. 581.
    Truhlar DG, Kohen A (2001) Convex Arrhenius plots and their interpretation. Proc Natl Acad Sci 98(3):848–851PubMedCrossRefGoogle Scholar
  208. 1006.
    Vincze Gy, Szász A, Szasz N (2005) On the thermal noise limit of cellular membranes. Bioelectromagnetics 26(1):28–35PubMedCrossRefGoogle Scholar
  209. 806.
    Overview of ECIS Method (ECIS™ or Electric Cell-substrate Impedance Sensing). In: Giaever I Nobel-laureate (leaded).
  210. 1093.
    Goldberger AL, Amaral LA, Hausdorff JM et al (2002) Fractal dynamics in physiology: Alterations with disease and aging. PNAS Colloquium 99(1):2466–2472CrossRefGoogle Scholar
  211. 899.
    Rodríguez-De la Fuente AO, Alcocer-González JM, Antonio Heredia-Rojas J et al (2009) Effect of 60 HZ electromagnetic fields on the activity of hsp70 promoter: an in vitro study. Cell Biology International 33(3):419–423CrossRefGoogle Scholar
  212. 1023.
    Puck TT, Marcus PI (1955) A rapid method for viable cell titration and clone production with HeLa cells in tissue culture: the use of X-irradiated cells to supply conditioning factors. Proc Natl Acad Sci USA 41(7):432–437PubMedCrossRefGoogle Scholar
  213. 896.
    Oleinikova, A., Sasisanker, P., Weingartner, H.: What Can Really Be Learned from Dielectric Spectroscopy of Protein Solutions? A Case Study of Ribonuclease A. J. Phys. Chem. B. 108(24), 8467–8474 (2004)CrossRefGoogle Scholar
  214. 1021.
    Taylor AF, Tinsley MR, Wang F et al (2009) Dynamical Quorum Sensing and Synchronization in Large Populations of Chemical Oscillators. Science 323(5914):614–617PubMedCrossRefGoogle Scholar
  215. 994.
    Smirnov, B.M.: Icosahedral clusters with pair interaction of atoms. Chemical Physics Letters 232(4), 395–400 (1995)CrossRefGoogle Scholar
  216. 1056.
    Xie TD, Chen Y, Marszalek P et al (1997) Fluctuation-driven directional flow in biochemical cycle: further study of electric activation of Na,K pumps. Biophys J 72(6):2496–2502PubMedCrossRefGoogle Scholar
  217. 1067.
    Seegers JC, Engelbrecht CA, Papendorp van DH (2001) Activation of signal-transduction mechanisms may underlie the therapeutic effects of an applied electric field. Medical Hypotheses 57(2):224–230PubMedCrossRefGoogle Scholar
  218. 852.
    Marszalek P, Liu D-S, Tsong TY (1990) Schwan equation and transmembrane potential induced by alternating electric field. Biophys J 58(4):1053–1058PubMedCrossRefGoogle Scholar
  219. 1055.
    Tinoco I, Sauer K, Wang JC et al (2002) Physical Chemistry. Principles and Applications in Biological Sciences. 4th Ed., Prentice-Hall Inc., New JerseyGoogle Scholar
  220. 718.
    Getling AV, Rayleigh-Benard C (1998) Structures and Dynamics. World Scientific, SingaporeGoogle Scholar
  221. 777.
    Dissado, L.A.: A fractal interpretation of the dielectric response of animal tissues. Phys. Med. Biol. 35, 1487–1503 (1990)PubMedCrossRefGoogle Scholar
  222. 656.
    Rosch PJ, Markov MS (2004) Bioelectromagnetic medicine. Marcell Decker Inc, New YorkGoogle Scholar
  223. 1024.
    Marko M (2005) “Biological windows”: a tribute to WR Adey. The environmentalist 25(2–4):67–74CrossRefGoogle Scholar
  224. 892.
    Andocs G, Vincze Gy, Szasz O et al (2009) Effect of Curl-Free Potentials on Water. Electromagnetic Biology and Medicine 28(2):166–181PubMedCrossRefGoogle Scholar
  225. 1016.
    Zsoldos I, Szendro P, Watson L et al (2001) Topological Correlation in amorphous structures. Comp Mater Sci 20(1):28–36CrossRefGoogle Scholar
  226. 698.
    Cope, F.W.: A review of the applications of solid state physics concepts to biological systems. J. Biol. Phys. 3(1), 1–41 (1975)CrossRefGoogle Scholar
  227. 976.
    Esser AT, Smith KC, Gowrishankar TR et al (2007) Towards Solid Tumor Treatment by Irreversible Electroporation: Intrinsic Redistribution of Fields and Currents in Tissue. Technology in Cancer Research and Treatment 6(4):261–273PubMedGoogle Scholar
  228. 778.
    El-Lakkani A (2001) Dielectric response of some biological tissues. Bioelectromagnetics 22(4):272–279PubMedCrossRefGoogle Scholar
  229. 812.
    Goovaerts HG, Faes Th-JC, de Valk-de Roo GW et al (1999) Estimation of extracellular volume by two frequency measurement. Ann N Y Acad Sci 873(1):99–104PubMedCrossRefGoogle Scholar
  230. 1025.
    Adey WR (1984) Nonlinear, nonequilibrium aspects of electromagnetic field interactions at cell membranes. In: Adey WR, Lawrence AF (eds) Nonlinear Electrodynamics in Biological Systems, Plenum Press, New York, London, pp 3–22Google Scholar
  231. 565.
    Calder WA (1974) Consequences of body-size for avian energetics. In: Paynter RA (ed) Avian energetics, Nuttal Ornithological Club, Cambridge, Massachusetts, pp 41–51Google Scholar
  232. 1068.
    Barbault1A, Costa FP, Bottger B et al (2009) Amplitude-modulated electromagnetic fields for the treatment of cancer: Discovery of tumor-specific frequencies and assessment of a novel therapeutic approach. Journal J Exp Clin Cancer Res 28(1):51–61CrossRefGoogle Scholar
  233. 874.
    Marszalek P, Tsong TY (1995) Cell Fission and Formation of Mini Cell Bodies by High Frequency Alternating Electric Field. Biophysical Journal 68(4):1218–1221PubMedCrossRefGoogle Scholar
  234. 945.
    Barker AT, Jaffe LF, Vanable JW Jr (1982) The glabrous epidermis of cavies contains a powerful battery. Am J Physiol 242(3):R358–R366PubMedGoogle Scholar
  235. 583.
    Vattulainen, I., Merikoski, J., Ala-Nissila, T., et. al.: Non-Arrhenius behaviour of surface diffusion near a phase-transition boundary. Phys. Rev. Lett. 79(2), 257–260 (1997)CrossRefGoogle Scholar
  236. 993.
    Szasz A, Fabian DJ (1988) On electronic structure and metastability. Solid State Communications 65(10):1085–1088CrossRefGoogle Scholar
  237. 793.
    McRae DA, Esrick MA (1996) Deconvolved electrical impedance spectra track distinct cell morphology changes. IEEE Trans Biomed Eng 43(6):607–618PubMedCrossRefGoogle Scholar
  238. 1017.
    Vincze, G., Zsoldos, I., Szasz, A.: On the Aboav-Weaire law. J Geometry and Physics 51(1), 1–12 (2004)CrossRefGoogle Scholar
  239. 662.
    Son Y, Hong H, Kim J (2004) Identification of substance-p as an early inductive cytokine of corneal wound and its possible role in the mobilization of mesenchymal stem cell and corneal wound healing. Invest Ophthalmol Vis Sci 45:1423Google Scholar
  240. 288.
    Xu M, Wright WD, Higashikubo R et al (1996) Chronic Thermotolerance with Continued Cell Proliferation. Int J Hyperthermia 12(5):645–660PubMedCrossRefGoogle Scholar
  241. 29.
    Cairns J (1975) The Cancer Problem. Scientific American 233(5):64–72, 77–78PubMedCrossRefGoogle Scholar
  242. 891.
    Tkalec M, Malaric K, Pavlica M et al (2009) Effects of radiofrequency electromagnetic fields on seed germination and root meristematic cells of Allium cepa. Mutation Research 672(2):76–81PubMedGoogle Scholar
  243. 954.
    Pu J, McCaig CD, Cao L et al (2007) EGF receptor signalling is essential for electric-field-directed migration of breast cancer cells. J Cell Sci 120:3395–403PubMedCrossRefGoogle Scholar
  244. 794.
    Gershing E (1999) Monitoring temperature-induced changes in tissue during hyperthermia by impedance methods. In: Riu PJ, Rosell J, Bragos R et al (eds) Electrical Bioimpedance Methods, Ann New York Acad Sci 873:13–20Google Scholar
  245. 800.
    Sabah NH (200) Rectification in Biological Membranes. IEEE Engineering in Medicine and Biology 19(1):106–113CrossRefGoogle Scholar
  246. 830.
    Milazzo G (1988) Applications of bioelectrochemistry in medicine. Bioelectrochemistry and Bioenergetics 19:191–205CrossRefGoogle Scholar
  247. 758.
    Peirce A (tutor) IAM-CSC-PIMS senior undergraduate math modeling workshop. The Institute of Applied Mathematics (IAM), The University of British ColumbiaGoogle Scholar
  248. 744.
    Nyboer J, Bango S, Barnett A et al (1940) Radiocardiograms – the electrical impedance changes of the heart in relation to electrocardiograms and heart sounds. J Clin Invest 19:963–966Google Scholar
  249. 1037.
    Vincze G, Szasz A, Liboff AR (2008) New theoretical treatment of ion-resonance phenomena. Bioelectromagnetics 29(5):380–386PubMedCrossRefGoogle Scholar
  250. 1064.
    Sultan MF, Cain CA, Tompkins WAF (1983) Immunological Effects of Amplitude-Modulated Radio Frequency Radiation: B Lymphocyte Capping. Bioelectromagnetics 4(2):157–165PubMedCrossRefGoogle Scholar
  251. 564.
    Guyton AC, Hall JE (2000) Textbook of Medical Physiology. W.B. Saunders Co., Philadelphia, LondonGoogle Scholar
  252. 1095.
    Gubarev, F.V., Sodolsky, L., Zakharov, V.I.: On the significance of the vector potential squared. Phys. Rev. Lett. 86(11), 2220–2222 (2001)PubMedCrossRefGoogle Scholar
  253. 878.
    Cho MR, Thatte HS, Silvia MT et al (1999) Transmembrane calcium influx induced by ac electric fields. FASEB J 13:677–683PubMedGoogle Scholar
  254. 848.
    Kamp F, Astumian RD, Wesrethoff HV (1988) Coupling of vectorial proton flow to a biochemical reaction by local electric interactions. Proc Natl Acad Sci USA 85(11):3792–3796PubMedCrossRefGoogle Scholar
  255. 594.
    Moore WJ, Pearson RG (1981) Kinetics and Mechanisms. John Wiley & Sons Inc., New YorkGoogle Scholar
  256. 775.
    Blad, B., Baldetorp, B.: Impedance spectra of tumor tissue in comparison with normal tissue; a possible clinical application for electric impedance tomography. Physiol. Meas. 4A(17), A105–A115 (1996)CrossRefGoogle Scholar
  257. 667.
    Ouahes N, Phillips TJ, Park HY (1998) Expression of c-fos and c-Ha-ras protooncogenes is induced in human chronic wounds. Derrnatol Surg 24(12):1354–1357, Discussion 1358CrossRefGoogle Scholar
  258. 1096.
    Szász A, Vincze G, Andocs G et al (2009) Do Field-Free Electromagnetic Potentials Play a Role in Biology? Electromagnetic Biology and Medicine 28(2):135–147PubMedCrossRefGoogle Scholar
  259. 946.
    Song B, Zhao M, Forrester J et al (2004) Nerve regeneration and wound healing are stimulated and directed by an endogenous electrical field in vivo. Journal of Cell Science 117(Pt 20):4681–4690PubMedCrossRefGoogle Scholar
  260. 1061.
    Workshop on “Proposed mechanisms for the interaction of RF-signals with living matter, – Demodulation in biological systems”, Rostock, Germany, 11–13 September 2006Google Scholar
  261. 734.
    Pethig, R., Kell, D.B.: The passive electrical properties of biological systems: their significance in physiology, biophysics and biotechnology. Phys. Med. Biol. 32, 933–977 (1987)PubMedCrossRefGoogle Scholar
  262. 905.
    Gross CC (2004) Membrane-Bound Hsp70 an Activating Ligand for NK Cells. PhD Theses, Ludwig-Maximilians-University, MunichGoogle Scholar
  263. 1048.
    Gammaitoni, L., Hanggi, P., Jung, P., et. al.: Stochastic resonance. Rev. Mod. Phys. 70, 223–287 (1998)CrossRefGoogle Scholar
  264. 611.
    Data from Swedish National Food Administration.
  265. 768.
    McRae DA, Esrick MA, Mueller SC (1997) Non-invasive, in-vivo electrical impedance of EMT-6 tumors during hyperthermia: correlation with morphology and tumor-growth delay. Int J Hyperthermia 13(1):1–20PubMedCrossRefGoogle Scholar
  266. 832.
    Adey WR (1993) Biological effects of electromagnetic fields. J Cell Biochem 51(4):410–416PubMedGoogle Scholar
  267. 897.
    Gimsa J, Wachner D (1998) A unified resistor-capacitor model for impedance, dielectrophoresis, electrorotation and induced transmembrane potential. Biophysical Journal 75(2):1107–1116PubMedCrossRefGoogle Scholar
  268. 893.
    Liu LM, Cleary SF (1995) Absorbed Energy Distribution From Radio frequency Electromagnetic Radiation in- a Mammalian Cell Model: Effect of Membrane-Bound Water. Bioelectromagnetics 16(3):160–171PubMedCrossRefGoogle Scholar
  269. 631.
    Clarke A (2006) Temperature and the metabolic theory of ecology. Functional Ecology 20(2):405–412CrossRefGoogle Scholar
  270. 1072.
    Schwan HP (1982) Nonthermal cellular effects of electromagnetic fields: ac-field induced ponderomotoric forces. Br J Cancer 45(5):220–224Google Scholar
  271. 873.
    Sowers AE (1984) Characterization of Electric Field-induced Fusion in Erythrocyte Ghost Membranes. The Journal of Cell Biology 99(6):1989–1996PubMedCrossRefGoogle Scholar
  272. 573.
    Markovitch, O., Agmon, N.: Structure and energetics of the hydronium hydration shells. J. Phys. Chem. A. 111(12), 2253–2256 (2007)PubMedCrossRefGoogle Scholar
  273. 221.
    Matay G, Zombory L (2000) Physiological effects of radiofrequency radiation and their application for medical biology. Muegyetemi Kiado, Budapest, p 80Google Scholar
  274. 837.
    Meyl K (2001) Scalar Waves: Theory and Experiments. Journal of Scientific Exploration 15(2):199–205Google Scholar
  275. 969.
    Szasz, A., Kopayev, Y.A., DasGupta, A.: On the electronic structure driven pairing mechanism in high-Tc superconductors. Physics letters 152, 361–366 (1991)CrossRefGoogle Scholar
  276. 773.
    Szendro P, Vincze G, Szasz A (2001) Bio-response on white-noise excitation. Electromagnetic Biology and Medicine 20(2):215–229CrossRefGoogle Scholar
  277. 902.
    Yasui S, Maeda T, Kameda T (1998) Differential responsiveness against mechanical stress between osteoblastic cells and periodontal ligament cells. Odontology 86(1):64–71Google Scholar
  278. 1065.
    Lynes B (2005) Cancer Solutions. Rife, Energy medicine and Medical Politics, Elsmere PrGoogle Scholar
  279. 782.
    Haemmerich, D., Staelin, S.T., Tsai, J.Z., et. al.: In vivo electrical conductivity of hepatic tumors. Physiol. Meas. 24, 251–260 (2003)PubMedCrossRefGoogle Scholar
  280. 596.
    Kolmogorov NN (1937) On the statistical theory of the crystallization of metals. Bull Acad Sci UssR Math Ser 1:355–359Google Scholar
  281. 1066.
    Westerhoff HV, Tsong TY, Chock PB et al (1986) How enzymes can capture and transmit free energy from an oscillating electric field. Proc Natl Acad Sci USA 83(13):4734–4738PubMedCrossRefGoogle Scholar
  282. 845.
    Velizarov S, Raskmark P, Kwee S (1999) The effects of radiofrequency fields on cell proliferation are non-thermal. Bioelectrochemistry and Bioenergetics 48(1):177–180PubMedCrossRefGoogle Scholar
  283. 577.
    Boltzmann L (1872) Weitere studien uber das warmegleihtgewicht unter gas moleculen. Wiener Berichte 66:275–370Google Scholar
  284. 1049.
    Tsong TY, Chang C-H (2007) A Markovian engine for a biological energy transducer: the catalytic wheel. Bio Systems 88(3):323–333PubMedGoogle Scholar
  285. 598.
    Avrami, M.A.: Kinetics of phase change Parts: I. J. Chem. Phys. 7, 1103 (1939); Avrami. M.A.: Kinetics of phase change Parts: II. J. Chem. Phys. 8, 212 (1940); Avrami, M.A.: Kinetics of phase change Parts: III. J. Chem. Phys. 9, 1103 (1941)CrossRefGoogle Scholar
  286. 701.
    Szent-Gyorgyi, A.: The living state and cancer. Physiological Chemistry and Physics 12, 99–110 (1980)PubMedGoogle Scholar
  287. 663.
    Lavon N, Yanuka O, Benvenisty N (2004) Differentiation and isolation of hepatic-like cells from human embryonic stem cells. Differentiation 72(5):230–238PubMedCrossRefGoogle Scholar
  288. 825.
    Gupta D, Lammersfeld CA, Dahlk S et al (2004) Phase angle, determined by bioelectrical impedance, as a prognostic indicator in advanced colorectal cancer. J Clin Oncology 2004 ASCO Annual Meeting Proceedings, 22:(14S):3689Google Scholar
  289. 716.
    Weinberg RA (1998) One renegade cell. Basic Books, A Member of the Perseus Books Group, New YorkGoogle Scholar
  290. 1003.
    Adair, R.K:. Constraints on biological effects of weak extremely-low frequency electromagnetic fields. Phys Rev A 43(2), 1039–1048 (1991)PubMedCrossRefGoogle Scholar
  291. 1092.
    Bak, P., Tang, C., Wiesenfeld. K.: Self-organized criticality: An explanation of 1/f noise. Phys. Rev. Lett. 59(4), 381–384 (1987)PubMedCrossRefGoogle Scholar
  292. 715.
    Szent-Gyorgyi A (1998) Electronic Biology and Cancer. Marcel Dekker, New YorkGoogle Scholar
  293. 697.
    Damadian R (1971) Tumor detection by nuclear magnetic resonance. Science 171(3976):1151–1153PubMedCrossRefGoogle Scholar
  294. 904.
    Repasky E, Issels R (2002) Physiological consequences of hyperthermia: heat, heat shock proteins and the immune response. Int J Hyperthermia 18(6):486–489PubMedCrossRefGoogle Scholar
  295. 688.
    Pauling L (1959) The structure of water. In: Hadzi D, Thompson H (eds) Hydrogen bonding, Pergamon Press Ltd, London, pp 1–6Google Scholar
  296. 898.
    Blank M, Soo L (1987) Surface free energy as the potential in oligomeric equilibria: prediction of hemoglobin disaggregation constant. Bioelectrochem Bioenerg 231(3):349–360CrossRefGoogle Scholar
  297. 858.
    de la Hoz A, Díaz-Ortiz A, Moreno A (2007) Review on non thermal effects of microwave irradiation in organic synthesis. J Microw Power Electromagn Energy 41(1):44–64PubMedGoogle Scholar
  298. 1071.
    Kirson ED, Giladi M, Gurvicz Z et al (2009) Alternating electric fields (TTFields) inhibit metastatic spread of solid tumors to the lungs. Clin Exp Metastasis (in press). DOI 10.1007/s10585-009-9262-yGoogle Scholar
  299. 632.
    Odum EP (1983) Basic ecology. Saunders College Pub, New YorkGoogle Scholar
  300. 795.
    McRae DA, Esrick MA (1993) Changes in electrical impedance of skeletal muscle measured during hyperthermia. Int J Hyperthermia 9(2):247–261PubMedCrossRefGoogle Scholar
  301. 677.
    Larson SM (2004) Positron Emission Tomography-Based Molecular Imaging in Human Cancer: Exploring the Link between Hypoxia and Accelerated Glucose Metabolism. Clin Cancer Res 10(7):2203–2204PubMedCrossRefGoogle Scholar
  302. 707.
    Bonnet S, Archer SL, Allalunis-Turner J et al (2007) A Mitochondria-K+ Channel Axis Is Suppressed in Cancer and Its Normalization Promotes Apoptosis and Inhibits Cancer Growth. Cancer Cell 11(1):37–51PubMedCrossRefGoogle Scholar
  303. 626.
    Starritt, E.C., Angus, D., Hargreaves, M.: Effect of short-term training on mitochondrial ATP production rate in human skeletal muscle. J. Appl. Physiology. 86, 450–454 (1999)Google Scholar
  304. 968.
    Szasz A (1993) Fullerene superconductivity by short-range order instability. Journal of Superconductivity 6(2):99–106CrossRefGoogle Scholar
  305. 780.
    Loewenstein WR (1999) The touchstone of life, Molecular information, cell communication and the foundations of life. Oxford University Press, Oxford, New York, pp 298–304Google Scholar
  306. 992.
    Bistolfi F (1991) Biostructures and Radiation Order Disorder. Edizioni Minerva Medica, TorinoGoogle Scholar
  307. 894.
    Grant EH (1982) The Dielectric Method of Investigating Bound Water in Biological Material: an Appraisal of the Technique. Bioelectromagnetics 3(1):17–24PubMedCrossRefGoogle Scholar
  308. 293.
    Sapozhnikov AM, Ponomarev ED, Tarasenko TN et al (1999) Spontaneous apoptosis and expression of cell-surface heat-shock proteins in cultured EL-4 lymphoma cells. Cell Proliferation 32(6):363–378PubMedCrossRefGoogle Scholar
  309. 999.
    Bersani F (1999) Electricity and Magnetism in Biology and Medicine. Kluwer Academic, Plenum Publishers, New York, BostonGoogle Scholar
  310. 625.
    Blier PU, Guderley HE (1993) Mitochondrial activity in rainbow trout red muscle: the effect of temperature on the ADP-dependence of ATP synthesis. J Exp Biol 176(1):145–158Google Scholar
  311. 979.
    Bak. P., Tang. C., Wieserfeld. K.: Self-organized criticality. Phys. Rev. A. 38, 364–373 (1988)PubMedCrossRefGoogle Scholar
  312. 783.
    Smith SR, Foster KR, Wolf GL (1986) Dielectric properties of VX-2 carcinoma versus normal liver tissue. IEEE Trans Biomed Eng 33(5):522–524PubMedCrossRefGoogle Scholar
  313. 781.
    Soler AP, Miller RD, Laughlin KV et al (1999) Increased tight junctional permeability is associated with the development of colon cancer. Carcinogenesis 20(8):1425–1431PubMedCrossRefGoogle Scholar
  314. 760.
    Babaeizadeh S, Brooks DH, Isaacson D (2007) 3-D Electrical impedance tomography for piecewise constant domains with known internal boundaries. IEEE Transactions on Biomedical Engineering, 54(1):2–10PubMedCrossRefGoogle Scholar
  315. 805.
    De Blasio BF, Laane M. Walkmann T et al (2004) Combining optical and electrical impedance techniques for quantitative measurement of confluence in MDCK-I cell cultures. BioTechniques 36(4):650–662PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of Biotechnics, Faculty of EngineeringSt. Istvan UniversityGodolloHungary
  2. 2.McKinsey & Co.BostonUSA
  3. 3.Oncotherm Inc.PatyHungary

Personalised recommendations