Hyperthermia Results and Challenges

  • Andras SzaszEmail author
  • Nora Szasz
  • Oliver Szasz


Hyperthermia is not a widely acknowledged treatment, and there is no consensus even among its users. Its effects are mostly acknowledged, but the clinical studies have many challenging problems. Numerous supporters believe hyperthermia is the future miracle of oncology, and more believe the complete opposite, regarding hyperthermia as ineffective and a dead-end among the methods of oncology. Both approaches are basically wrong. Hyperthermia is one of the tools of oncology, having many problems and requesting detailed research in labs and in clinics. Both believers, positive and negative are annoying: believers must not be the basis of any serious medical approach. The facts are necessary! In this book we try to collect these.


Blood Perfusion Malignant Hyperthermia Capacitive Coupling Hyperthermia Treatment Local Response Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Streffer C, Van Beuningen D, Dietzerl F et al (1978) Cancer therapy by hyperthermia and radiation. Urban and Schwarzenberg, Baltimore, MDGoogle Scholar
  2. 7.
    Urano M, Douple E (eds) (1989) Hyperthermia and oncology, Vol. 2. Biology of thermal potentiation of radiotherapy. VSP BV Utrecht, The NetherlandsGoogle Scholar
  3. 13.
    Matsuda T (ed) (1993) Cancer treatment by hyperthermia, radiation and drugs. Taylor & Francis, Washington, DCGoogle Scholar
  4. 14.
    Urano M, Douple E (eds) (1994) Hyperthermia and oncology, vol. 4. Chemopotentiation by hyperthermia. VSP BV, Utrecht, The NetherlandsGoogle Scholar
  5. 16.
    Seegenschmiedt MH, Fessenden P, Vernon CC (eds) (1996) Thermo-radiotherapy and thermo-chemotherapy, Vol. 2. Clinical applications. Springer, BerlinGoogle Scholar
  6. 17.
    Kosaka M, Sugahara T, Schmidt KL et al (eds) (2001) Thermotherapy for neoplasia, inflammation, and pain. Springer, TokyoGoogle Scholar
  7. 18.
    Ellis LM, Curley SA, Tanabe KK (2004) Radiofrequency ablation of cancer. Springer, BerlinGoogle Scholar
  8. 19.
    Baronzio GF, Hager ED (eds) (2006) Hyperthermia in cancer treatment: a primer. Springer, Berlin; Landes Bioscience, Austin, TXGoogle Scholar
  9. 21.
    Perez CA, Brady LW, Halperin EC et al (2004) Principles and practice of radiation oncology. 4th ed. Lippincott Williams and Wilkins, Philadelphia, PAGoogle Scholar
  10. 22.
    DeVita VT, Hellman S Jr, Rosenberg SA (2004) Cancer: principles and practice of oncology. 7th edition. Lippincott Williams and Wilkins, Philadelphia, PAGoogle Scholar
  11. 57.
    Harima Y, Nagata K, Harima K et al (2001) A randomized clinical trial of radiation therapy versus thermoradiotherapy in stage IIIB cervical carcinoma. Int J Hyperthermia 17(2):97–105PubMedCrossRefGoogle Scholar
  12. 137.
  13. 138.
  14. 139.
  15. 140.
    Oncology Encyclopedia (2008)
  16. 141.
    Free Medical Dictionary (2008)
  17. 142.
    Coley WB (1893) The treatment of malignant tumors by repeated inoculations of erysipelas with a report of ten original cases. Am J Med Sci 105:487–511CrossRefGoogle Scholar
  18. 143.
  19. 144.
    Dewhirst MW, Prosnitz L, Thrall D et al (1997) Hyperthermic Treatment of Malignant Diseases: Current Status and a View Toward the Future. Sem Oncol 24(6):616–625Google Scholar
  20. 145.
    Urano M, Douple E (eds) Hyperthermia and Oncology: Vol. 1. (1988) Thermal effects on cells and tissues. VSP BV Utrecht, The Netherlands. Vol. 2. (1989) Biology of thermal potentiation of radiotherapy, VSP BV Utrecht The Netherlands Vol. 3. (1992) Interstitial Hyperthermia: Physics, biology and clinical aspects, VSP BV Utrecht The Netherlands. (1994) Vol. 4. Chemopotentiation by hyperthermia VSP BV Utrecht The NetherlandsGoogle Scholar
  21. 146.
    Seegenschmiedt MH, Fessenden P, Vernon CC (eds) (1996) Thermo-radiotherapy and Thermo-chemotherapy, Vol. 1. Biology, physiology and physics. Vol. 2. Clinical application. Springer, BerlinGoogle Scholar
  22. 147.
    International Journal of Hyperthermia. (The official Journal of the North American Hyperthermia Society, European Society for Hyperthermic Oncology, Asian Society of Hyperthermic Oncology) Taylor & Francis, ISSN 0265–6736Google Scholar
  23. 148.
    van der Zee J, Gonzalez Gonzalez D, van Rhoon GC et al (2000) Comparison of radiotherapy alone with radiotherapy plus hyperthermia in locally advanced pelvic tumors: a prospective, randomised, multicentre trial. Dutch Deep Hyperthermia Group. Lancet 355(9210):1119–1125PubMedCrossRefGoogle Scholar
  24. 149.
    Wust P, Hildebrandt B, Sreenivasa G et al (2002) Hyperthermia in combined treatment of cancer. Lancet Oncol 3(8):487–497PubMedCrossRefGoogle Scholar
  25. 150.
    Overgaard J, Gonzalez Gonzalez D, Hulshof MC et al (1995) Randomised trial of hyperthermia as adjuvant to radiotherapy for recurrent or metastatic malignant melanoma. European Society for Hyperthermic Oncology. Lancet 345(8949):540–543PubMedCrossRefGoogle Scholar
  26. 151.
    PubMed (2007) search profile: (cancer OR tumor OR oncology OR neoplasm OR malignant) AND (hyperthermia OR heat-therapy OR thermotherapy) NOT (malignant-hyperthermia OR fever); limits: (clinical trial OR randomized controlled trial) Sept 2007
  27. 152.
    Kufe DW, Bast RC, Hait W et al (2006) (eds) Cancer Medicine Holland-Frei – Cancer Medicine 7. American Association for Cancer Research, BC Decker, Philadelphia, PAGoogle Scholar
  28. 153.
    Ara G, Anderson RR, Mandel KG (1989) Irradiation of pigmented melanoma cells with high-intensity pulsed radiation generates acoustic waves and kills the cells. Laser Surg Med 10:52–59CrossRefGoogle Scholar
  29. 154.
    Findlay RP, Dimbylow PJ (2005) Effects of posture on FDTD calculations of specific absorption rate in a voxel model of the human body. Phys Med Biol 50:3825–3835PubMedCrossRefGoogle Scholar
  30. 155.
    Joo E, Szasz A, Szendro P (2005) Metal-framed spectacles and implants and specific absorption rate among adults and children using mobile phones at 900/1800/2100 MHz. Electromagn Biol Med 25(2):103–112CrossRefGoogle Scholar
  31. 156.
    Jianging W, Mukaide N, Fujiwara O (2003) FTDT calculation of organ resonance characteristics in an anatomically based human model for plane-wave exposure. Proc Conf Environ Electromagn 4–7 November 2003, pp 126–129Google Scholar
  32. 157.
    Radiofrequency radiation dosimetry handbook (1997) Armstrong Laboratory, USAF School of Aerospace Medicine, AFSC. Cited 02 October 2007
  33. 158.
    Nielsen OS, Horsman M, Overgard J (2001) A future for hyperthermia in cancer treatment? Eur J Cancer 37(13):1587–1589PubMedCrossRefGoogle Scholar
  34. 159.
    van der Zee J (2002) Heating the patient: a promising approach? Annals of Oncology 13:1173–1184PubMedCrossRefGoogle Scholar
  35. 160.
    Devrient W (1950) Überwärmungsbäder. A. Marcus & E. Weber’s Verlag, BerlinGoogle Scholar
  36. 163.
    Schmidt KL (1987) Hyperthermie und Fieber. Hippokrates, StuttgartGoogle Scholar
  37. 164.
    Heckel M (1990) Ganzkörperhyperthermie und Fiebertherapie – Grundlagen und Praxis. Hippokrates, StuttgartGoogle Scholar
  38. 165.
    Heckel M (1992) Fiebertherapie und Ganzkörper-HT, Bessere Verträglichkeit und Effizienz durch thermoegulatorisch ausgewogene, kombinierte Anwendung beider Verfahren. ThermoMed 14–19Google Scholar
  39. 166.
    Hildebrandt B, Drager J, Kerner T et al (2004) Whole-body hyperthermia in the scope of von Ardenne’s systemic cancer multistep therapy (sCMT) combined with chemotherapy in patients with metastatic colorectal cancer: a phase I/II study. Int J Hyperthermia 20:317–333PubMedCrossRefGoogle Scholar
  40. 168.
    Wust P, Riess H, Hildebrandt B (2000) Feasibility and analysis of thermal parameters for the whole-body hyperthermia system IRATHERM. Int J Hyperthermia 4:325–339Google Scholar
  41. 169.
    Dahl O, Dalene R, Schem BC (1999) Status of clinical hyperthermia. Acta Oncol 38(7):863–873PubMedCrossRefGoogle Scholar
  42. 170.
    Senior K (2001) Hyperthermia and hypoxia for cancer-cell destruction. Lancet Oncology 2:524–525CrossRefGoogle Scholar
  43. 171.
    Szasz A, Szasz O, Szasz N (2001) Electro-hyperthermia: a new paradigm in cancer therapy. Deutsche Zeitschrift fur Onkologie 33:91–99CrossRefGoogle Scholar
  44. 173.
    Abe M, Hiraoka M, Takahashi M et al (1986) Multi-institutional studies on hyperthermia using an 8-MHz radiofrequency capacitive heating device (thermotron RF-8) in combination with radiation for cancer therapy. Cancer 58:1589–1595PubMedCrossRefGoogle Scholar
  45. 174.
    Szasz A, Szasz O, Szasz N (2006) Physical background and technical realization of hyperthermia. In: Baronzio GF, Hager ED (2006) Hyperthermia in cancer treatment: a primer. Springer, Landes Bioscience, Austin, TXGoogle Scholar
  46. 175.
    Seegenschmiedt MH, Vernon CC (1995) A Historical Perspective on Hyperthermia in Oncology. In: Seegenschmiedt MH, Fessenden P, Vernon CC (eds) (1995) Thermoradiotherapy and Thermochemotherapy Vol. 2: Clinical Applications, Springer, Berlin, pp 3–46Google Scholar
  47. 176.
    Holt JAG. 1988, Microwaves are not hyperthermia. Radiograp 35(4):151–162Google Scholar
  48. 177.
    Shinc J (Chairman) (2005). Review of the use of microwave therapy for the treatment of patients with cancer. Final report to the minister for health and ageing,
  49. 178.
    Liboff AR (2003) Ion Cyclotron Resonance in Biological Systems: Experimental Evidence. In: Stavroulakis P (ed) Biological effects of electromagnetic fields. Springer, BerlinGoogle Scholar
  50. 179.
    Szendro P, Vincze G, Szasz A (2001) Pink noise behaviour of the bio-systems. Eur Biophys J 30(3):227–231PubMedCrossRefGoogle Scholar
  51. 180.
    Rosch PJ, Markov MS, (2004) Bioelectromagnetic medicine. Marcel Dekker, New York, NYGoogle Scholar
  52. 181.
    Torchilin VP, (2006) Multifunctional nanocarriers. Adv Drug Deliv Rev 58:1532–1555PubMedCrossRefGoogle Scholar
  53. 182.
    Brannon-Peppas L, Blanchette JO. (2004) Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev 56:1649–1659PubMedCrossRefGoogle Scholar
  54. 183.
    Henderson MA, Pettigrew RT (1971) Induction of controlled hyperthermia in treatment of cancer. The Lancet 1275–1277Google Scholar
  55. 184.
    Gebbers N, Hirt-Burri N, Scaletta C, Hoffmann G, Applegate LA. (2007) Water-filtered infrared-A radiation (wIRA) is not implicated in cellular degeneration of human skin. GMS German Med Sci 5:1–14Google Scholar
  56. 185.
    Heckel M. (1990) Ganzkörperhyperthermie und Fiebertherapie – Grundlagen und Praxis, Hippokrates, StuttgartGoogle Scholar
  57. 186.
    Ardenne von A, Wehner H, (2005) Extreme Whole-Body Hyperthermia with Water-Filtered Infrared-A Radiation NCBI Bookshelf, Landes Bioscience, Madame Curie Bioscience database,
  58. 187.
    Srobl B. (2006) 6 Jahre Ganzkörperhyperthermie kombiniert mit Chemotherapie beim Ovarialkarzinom, Dolphin-0- und -1-Studie, Hyperthermia Symposium, 22–23, SeptemberGoogle Scholar
  59. 188.
    Kelleher DK, Thews O, Rzeznik J, Scherz A, Salomon Y, Vaupel P (1999) Water-filtered infrared-A radiation: a novel technique for localized hyperthermia in combination with bacteriochlorophyll-based photodynamic therapy. In J Hyperthermia 15:467–474CrossRefGoogle Scholar
  60. 189.
    Granmt D, (1904) The Galvano-Cautery in the Treatment of Intra-Laryngeal Growths. J Laryngol Rhinol Ontol 19:294–297Google Scholar
  61. 190.
  62. 191.
    Kratzer GL, Onsanit T. (2007) Fulguration of selected cancers of the rectum. Report of 27 cases. Diseases of Colon and Rectum, 15:431–435CrossRefGoogle Scholar
  63. 192.
    LeVeen HH, Wapnick S, Piccone V et al (1976) Tumor eradication by radiofrequency therapy. JAMA 235(20):2198–2200PubMedCrossRefGoogle Scholar
  64. 193.
    Short JG, Turner PF (1980) Physical Hyperthermia and cancer therapy. Proc IEEE 68:133–142CrossRefGoogle Scholar
  65. 194.
    Storm FK, Morton DL, Kaiser LR (1982) Clinical radiofrequency hyperthermia: a review. Natl Cancer Inst Monogr 61:343–350PubMedGoogle Scholar
  66. 195.
    Jo S, Sugahara T, Yamamoto I (1994) Clinical response of hyperthermia using heating equipment Thermotron-RF8 in Japan. Biomed Eng Appl Basis Commun 6:340–362Google Scholar
  67. 198.
    Lee CK, Song CW, Rhee JG et al (1995) Clinical experience using 8 MHz radiofrequency capacitive hyperthermia in combination with radiotherapy: results of a phase I/II study. Int J Radiat Oncol Biol Phys 32(3):733–745PubMedGoogle Scholar
  68. 199.
    Masunaga SI, Hiraoka M, Akuta K et al (1994) Phase I/II trial of preoperative thermoradiotherapy in the treatment of urinary bladder cancer. Int J Hyperthermia 10(1):31–40PubMedCrossRefGoogle Scholar
  69. 200.
    Weiss TF (1996) Cellular Biophysics. Bradford Book, MIT Press, Cambridge, MAGoogle Scholar
  70. 201.
    Rand RW, Snow HD, Brown WJ (1982) Thermomagnetic Surgery for Cancer. J Surg Res 33:177–183PubMedCrossRefGoogle Scholar
  71. 202.
    Matsuki H, Satoh T, Murakami K (1990) Local hyperthermia based on soft heating method utilizing temperature sensitive ferrite-rod. IEEE Trans Magn 26:1551–1553CrossRefGoogle Scholar
  72. 203.
    Gilchrist RK, Medal R, Shorey WD et al (1957) Selective inductive heating of lymph nodes. Ann Surg 146(4):596–606PubMedCrossRefGoogle Scholar
  73. 204.
    Hoshino T, Sato T, Masai A (1994) Conduction System Ablation using Ferrite rod for cardiac arrhythmia. IEEE Trans Magn 30:4689–4691CrossRefGoogle Scholar
  74. 205.
    Gordon RT, Hines JR, Gordon D (1979) Intracellular hyperthermia: a biophysical approach to cancer treatment via intracellular temperature and biophysical alteration. Med Hypotheses 5(1):83–102PubMedCrossRefGoogle Scholar
  75. 206.
    Rabin Y (2002) Is intracellular hyperthermia superior to extracellular in the thermal sense? Int. J. Hyperthermia 18(3):194–202PubMedCrossRefGoogle Scholar
  76. 207.
    Jordan A, Scholz R, Wust P, Faehling H., Felix R (1999) Magnetic fluid hyperthermia (MFH): Caner treatment with AC magnetic field induced excitation of biocompatible supermagnetic nanoparticles. J Magn Magnetic Materials 201:413–419CrossRefGoogle Scholar
  77. 208.
    Nishide Oleson JR (1985) The role of magnetic induction techniques for producing hyperthermia. In: Anghileri LJ, Robert J (eds) Hyperthermia in Cancer Treatment, Vol. II. CRC Press, Boca Raton, Fl, pp 141–154Google Scholar
  78. 210.
    Jojo M, Murakami A, Sato F et al (2001) Consideration of handy excitation apparatus for the inductive hyperthermia. IEEE Trans Magn 37(1):2944–2946CrossRefGoogle Scholar
  79. 211.
    Taylor LS (1978) Devices for microwave hyperthermia. In: Streffer C, vanBeuningen D, Dietzel F (eds) Cancer Therapy by Hyperthermia and Radiation, Urban & Schwarzenberg, Baltimore, MD, pp 115–121Google Scholar
  80. 212.
    Turner PF (1984) Regional hyperthermia with an annular phase array. IEEE Trans Biomed Eng BME-31:106–111Google Scholar
  81. 213.
    Gonzalez-Gonzalez D, van Dijk JDP, Oldenburger F (1992) Results of combined treatment with radiation and hyperthermia in 111 patients with large of deep-seated tumors. In: Germeg EW (ed) Hyperthermia oncology, Vol. 1, Vol. 2. Tucson, AZ, p 415Google Scholar
  82. 214.
    Myerson RJ, Leybovich L, Emami B et al (1991) Phantom studies and preliminary clinical experience with the BSD2000. Int J Hyperthermia 7(6):937–951PubMedCrossRefGoogle Scholar
  83. 215.
    Wust P, Fahling H, Wlodarczyk W (2001) Antenna arrays in the sigma-eye applicator: Interactions and transforming networks. Med. Phys 28, 1793–1805PubMedCrossRefGoogle Scholar
  84. 216.
    Wust P, Felix R, Deuflhard P (1999) Kunstliches Fieber gegen Krebs. Spektrum der Wissenschaft Dezember 78–84Google Scholar
  85. 217.
    Issels R (1999) Hyperthermia combined with chemotherapy – biological rationale, clinical application, and treatment results. Onkologie 22(5):374–381CrossRefGoogle Scholar
  86. 218.
    Issels RD, Adbel-Rahman S, Wendtner C-M et al (2001) Neoadjuvant chemotherapy combined with regional hyperthermia (RHT) for locally advanced primary or recurrent high-risk adult soft-tissue sarcomas (STS) of adults: long-term results of a phase II study. Eur J Cancer 37:1599–1608PubMedCrossRefGoogle Scholar
  87. 219.
    Head JF, Wang F, Lipari CA et al (2000) The important role of Infrared Imaging in Breast cancer. IEEE Engineering in Medicine and Biology Magazine 19(3):52–57PubMedCrossRefGoogle Scholar
  88. 220.
    Weiss TF (1996) Cellular Biophysics. Transport, Vol. 1. MIT Press, CambridgeGoogle Scholar
  89. 221.
    Matay G, Zombory L (2000) Physiological effects of radiofrequency radiation and their application for medical biology. Muegyetemi Kiado, Budapest, p 80Google Scholar
  90. 222.
    Gautherie M (1982) Temperature and blood-flow patterns in breast cancer during natural evolution and following radiotherapy. Biomedical Thermology, Alan R. Liss, New York, NY, pp 21–24Google Scholar
  91. 223.
    Vaupel P, Kallinowski F, Okunieff P (1989) Blood flow, oxygen and nutrient supply, and microenvironment of human tumors: a review. Cancer Res 49(23):6449–6465PubMedGoogle Scholar
  92. 224.
    Dudar TE, Jain RK (1984) Differential response of normal and tumor microcirculation to hyperthermia. Cancer Res 44(2):605–612PubMedGoogle Scholar
  93. 225.
    Song CW, Lokshina A, Rhee JG et al (1984) Implication of blood-flow in hyperthermic treatment of tumors. IEEE Trans Biomed Eng 31(1):9–16PubMedCrossRefGoogle Scholar
  94. 226.
    Song CW, Choi IB, Nah BS et al (1995) Microvasculature and Perfusion in Normal Tissues and Tumors. In: Seegenschmiedt MH, Fessenden P, Vernon CC (eds) Thermoradiomet Thermochemother 1:139–156Google Scholar
  95. 227.
    Song CW, Park H, Griffin RJ (2001) Theoretical and experimental basis of hyperthermia. In: Kosaka M, Sugahara T, Schmidt KL et al (eds) Thermotherapy for neoplasia, inflammation, and pain, Springer, Tokyo, pp 394–407Google Scholar
  96. 228.
    Takana Y (2001) Thermal responses of microcirculation and modification of tumor blood flow in treating the tumors. In: Kosaka M, Sugahara T, Schmidt KL et al (eds) Theoretical and experimental basis of Hyperthermia. Thermotherapy for neoplasia, inflammation, and pain. Springer, Tokyo, pp 408–419Google Scholar
  97. 229.
    Guy AW, Chou CK (1983) Physical aspects of localized heating by radio-waves and microwaves. In: Storm, K.F. (ed.) Hyperthermia in cancer therapy, GK Hall Medical Publishers, Boston, MAGoogle Scholar
  98. 230.
    Vaupel P (1990) Pathophysiological mechanism of hyperthermia in cancer therapy. In: Gautherie M (ed) Methods of hyperthermia control, clinical thermology, Springer, Berlin, pp 73–134Google Scholar
  99. 231.
    Gottstein U (1969) Störungen des Hirnkreislaufes und zerebralen Stoffwechsels durch Hypoglykämie. In: Quandt J (ed) Die zerebralen Durchblutungsstörungen des Erwachsenenalters, Volk und Gesundheit, Berlin, pp 857–867Google Scholar
  100. 235.
    Song CW, Choi IB, Nah BS et al (1996) Microvasculature and perfusion in Normal tissues and tumors. In: Seegenschmiedt MH, Fessenden P, Vernon CC (eds) Thermo-radiotherapy and thermo-chemotherapy, vol. 1, pp. 139–156. Biology, physiology and physics. Springer, BerlinGoogle Scholar
  101. 236.
    Ardenne M von, Reitnauer PG (1980) Vergleichende photoelektronische Registrierung des Einstromes von Evanslbau in das Blutgefäßsystem von Normalgewebe und von Tumoren mit selektiv ausgelöster Hämostase. Arch Geschwulstforsch. 50:443–462Google Scholar
  102. 237.
    Vaupel PW, Kelleher DK (1996) Metabolic status and reaction to heat of normal and tumor tissue. In: Seegenschmiedt, M-H-, Fessenden, P. Vernon, C.C. (eds) Thermo-radiotherapy and Thermo-chemotherapy. Biology, physiology and physics, Vol. 1. Springer, Berlin, pp 157–176Google Scholar
  103. 238.
    Dewey WC, Hopwood LE, Sapareto SA et al (1977) Cellular response to combination of hyperthermia and radiation. Radiology 123(2):463–474PubMedGoogle Scholar
  104. 239.
    Lindholm C-E (1992) Hyperthermia and radiotherapy. Ph.D. Thesis, Lund University, Malmo, SwedenGoogle Scholar
  105. 240.
    Hafstrom L, Rudenstam CM, Blomquist E et al (1991) Regional hyperthermic perfusion with melphalan after surgery for recurrent malignant melanoma of the extremities. J Clin Oncol 9:2091–2094PubMedGoogle Scholar
  106. 241.
    Pence DM, Song CW (1986) Effect of heat on blood-flow. In: Anghileri LJ, Robert J (eds) Hyperthermia in cancer treatment, Vol. II. CRC Press, Boca Raton, FL, pp 1–17Google Scholar
  107. 242.
    Reinhold HS (1987) Effects of hyperthermia on tumor microcirculation. In: Field SB, Franconi C (eds) Physics and technology of hyperthermia, No. 1270, NATO ASI Series, Series E: Applied Sciences, Martinus Nijhoff Publishers, Dordrecht, pp 458–469Google Scholar
  108. 248.
    Doi O, Kodama K, Higashiyama M et al (1193) Postoperative chemothermotherapy for locally advanced lung cancer with carcinomatous pleuritis. In: Matsuda T (ed) Cancer treatment by hyperthermia, radiation and drugs, Taylor & Francis, London; Washington, Chapter 31, pp.338–352Google Scholar
  109. 249.
    Ardenne M von, Reitnauer PG (1977) Krebs-Mehrschritt-Therapie und Mikrozirkulation. Krebsgeschehen 9:134–149Google Scholar
  110. 250.
    Streffer C (1990) Biological basis of thermotherapy (with special reference to Oncology). In: Gautherie M (ed) Biological basis of oncologic thermotherapy. Springer, Berlin, pp 1–72Google Scholar
  111. 252.
    Prescott DM (1996) Manipulation of physiological parameters during hyperthermia. In: Seegenschmiedt MH, Fessenden P, Vernon CC (eds) Thermo-radiotherapy and Thermo-chemotherapy, Vol. 1. Biology, physiology and physics, Springer, Berlin, pp 177–189Google Scholar
  112. 253.
    Baronzio GF, Gramaglia A, Baronzio A et al (2006) Influence of tumor microenvironment on thermoresponse: biologic and clinical implications. In: Baronzio GF, Hager ED (eds) Hyperthermia in cancer treatment: a primer, Landes Bioscience, Springer, New York, NY, pp 62–86Google Scholar
  113. 255.
    Kelleher DK, Vaupel P (2006) Vascular effects of localized hyperthermia. In: Baronzio GF, Hager ED (eds) Hyperthermia in Cancer treatment: a primer, Landes Bioscience, Springer, New York, NY, pp 94–104Google Scholar
  114. 256.
    Ardenne M von (1975) Gesetzmäßigkeiten der Substratversorgung, der Zellkinetik und der Therapiemechanismen im Interkapillarraum der Krebsgewebe. Z Naturforsch 30c:91–106Google Scholar
  115. 257.
    Overgaard J, Nielsen OS, Lindegaard JC (1987) Biological basis for rational design of clinical treatment with combined hyperthermia and radiation. In: Field, S.B., Franconi, C., (eds) Physics and Technology of Hyperthermia, No. 127. NATO ASI Series, E: Applied Sciences, Martinus Nijhoff Publ. Dordrecht, Boston, pp 54–79Google Scholar
  116. 258.
    Ardenne M von (1986) The present developmental state of cancer multistep therapy (CMT): selective occlusion of cancer tissue capillaries by combining hyperglycemia with two-stage regional or local hyperthermia using the CMT Selectrotherm technique. In: Anghileri LJ, Robert J (eds) Hyperthermia in Cancer Treatment, Vol. III., CRC Press Inc., Boca Raton, FL, pp 1–24Google Scholar
  117. 259.
    Ardenne M von (1990) Oxygen Multistep Therapy, Physiological and Technical Foundations. Georg Thieme Verlag, Thieme Medical Publishers, Stuttgart, NYGoogle Scholar
  118. 260.
    Ardenne M von (1997) Systemische Krebs-Mehrschritt-Therapie, Hyperthermie und Hypergykamie als Therapiebasis, Grundlagen, Konzeption, Technik, Klinik. HippoctaresVerlag, StuttgartGoogle Scholar
  119. 261.
    McGuire BJ, Secomb TW (2003) Estimation of capillary density in human skeletal muscle based on maximal oxygen consumption rates. Am J Physiol Heart Circ Physiol 285:H2382–H2391PubMedGoogle Scholar
  120. 262.
    Heilbrunn LV (1923) The colloid chemistry of protoplasm. Am J Physiol 64:481–498Google Scholar
  121. 263.
    Yatvin MB, Dennis WH (1978) Membrane lipid composition and sensitivity to killing by hyperthermia, Procaine and Radiation. In: Streffer C, vanBeuningen D, Dietzel F et al (eds) Cancer Therapy by Hyperthermia and Radiation, Urban & Schwarzenberg, Baltimore, Munich, pp 157–159Google Scholar
  122. 264.
    Bowler K, Duncan CJ, Gladwell RT et al (1973) Cellular heat injury. Comp Biochem Physiol 45A:441–450CrossRefGoogle Scholar
  123. 265.
    Belehradek J (1957) Physiological aspects of heat and cold. Annu Rev Physiol 19:59–82PubMedCrossRefGoogle Scholar
  124. 266.
    Wallach DFH (1978) Action of Hyperthermia and ionizing radiation on plasma membranes In: Streffer C, vanBeuningen D, Dietzel F et al (eds) Cancer therapy by hyperthermia and radiation. Urban & Schwarzenberg, Baltimore, MD, pp 19–28Google Scholar
  125. 267.
    Nishida T, Akagi K, Tanaka Y (1997) Correlation between cell killing effect and cell-membrane potential after heat treatment: analysis using fluorescent dye and flow cytometry. Int J Hyperthermia 13(2):227–234PubMedCrossRefGoogle Scholar
  126. 268.
    Weiss TF (1996) Cellular Biophysics. Electrical properties, Vol. 2. MIT Press, CambridgeGoogle Scholar
  127. 269.
    Ricardo R, Gonzalez-Mendez R, Hahn GM (1989) Effects of hyperthermia on the intercellular pH and membrane potential of Chinese hamster ovary cells. Int J Hyperthermia 5:69–84CrossRefGoogle Scholar
  128. 270.
    Mikkelsen RB, Verma SP, Wallach DFH (1978) Hyperthermia and the membrane potential of erythrocyte membranes as studied by Raman Spectroscopy. In: Streffer C, vanBeuningen D, Dietzel F et al (eds) Cancer Therapy by Hyperthermia and Radiation. Urban & Schwarzenberg, Baltimore, MD, pp 160–162Google Scholar
  129. 271.
    Hahn GM (1990) The heat-shock response: effects before, during and after gene activation. In: Gautherie M (ed) Biological basis of oncologic thermotherapy. Springer, Berlin, pp 135–159Google Scholar
  130. 272.
    Hodgkin AL, Katz B (1949) The effect of temperature on the electrical activity of the giant axon of the squid. J Physiol 108:37–77PubMedGoogle Scholar
  131. 273.
    Kabakov AE, Gabai VL (1997) Heat shock proteins and cytoprotection: ATP-deprived mammalian cells. (Series: Molecular Biology Intelligence Unit). Springer, HeidelbergGoogle Scholar
  132. 274.
    Keszler G, Csapo Z, Spasokoutskaja T et al (2000) Hyperthermy increase the phosporylation of deoxycytidine in the membrane phospholipid precursors and decrease its incorporation into DNA. Adv Exper Med Biol 486:333–337Google Scholar
  133. 275.
    Dikomey E, Franzke J (1992) Effect of heat on induction and repair of DNA strand breaks in X-irradiated CHO cells. Int J Radiat Biol 61(2):221–233PubMedCrossRefGoogle Scholar
  134. 276.
    Hayashi S, Kano E, Hatashita M et al (2001) Fundamental aspects of hyperthermia on cellular and molecular levels. In: Kosaka M, Sugahara T, Schmidt KL et al (eds) Springer, Tokyo, pp 335–345Google Scholar
  135. 277.
    Okumura Y, Ihara M, Shimasaki T et al (2001) Heat inactivation of DNA-dependent protein kinase: possible mechanism of hyperthermic radio-sensitization. In: Kosaka M, Sugahara T, Schmidt KL et al (eds) Thermotherapy for Neoplasia, Inflammation, and Pain. Springer, Tokyo, pp 420–423Google Scholar
  136. 278.
    Shen RN, Lu L, Young P et al (1994) Influence of elevated temperature on natural killer cell activity, lymphokine-activated killer cell activity and lecitin-dependent cytotoxicity of human umbilical cord blood and adult blood cells. Int J Radiat Oncol Biol Phys 29:821–826PubMedGoogle Scholar
  137. 279.
    Srivastava PK, DeLeo AB, Old LJ (1986) Tumor Rejection Antigens of Chemically Induced Tumors of Inbred Mice. Proc Natl Acad Sci USA 38(10):3407–3411CrossRefGoogle Scholar
  138. 280.
    Csermely P, Schnaider T, Soti C et al (1998) The 90 kDa Molecular Chaperone Family: Structure, Function and Clinical Applications. A comprehensive review. Pharmacol Ther 79(2):129–168PubMedCrossRefGoogle Scholar
  139. 281.
    Pothmann R (1991) TENS Transkutane elektrische Nervenstimulation in der Schmerztherapie. Hippokrates Verlag GmbH, StuttgartGoogle Scholar
  140. 282.
    Gonzalez-Gonzalez, D (1996) Thermo-radiotherapy for tumors of the lower gastro-intestinal tract. In: Seegenschmiedt MH, Fessenden P, Vernon CC (eds) Thermo-radiotherapy and thermo-chemotherapy. Biology, physiology and physics, Vol. 1. Springer, Heidelberg, pp 105–119Google Scholar
  141. 283.
    Latchman DS (1999) Stress proteins. Springer, BerlinGoogle Scholar
  142. 284.
    Soti C, Csermely P (1998) Molecular chaperones in the etiology and therapy of cancer. Pathol Oncol Res 4(4):316–321PubMedCrossRefGoogle Scholar
  143. 285.
    Ferrarini M, Heltai S, Zocchi MR et al (1992) Unusual expression and localization of heat shock proteins in human tumor cells. Int J Cancer 51(4):613–619PubMedCrossRefGoogle Scholar
  144. 287.
    Gress TM, Muller-Pillasch F, Weber C et al (1994) Differential expression of heat shock proteins in pancreatic carcinoma. Cancer Res 54(2):547–551PubMedGoogle Scholar
  145. 288.
    Xu M, Wright WD, Higashikubo R et al (1996) Chronic thermotolerance with continued cell proliferation. Int J Hyperthermia 12(5):645–660PubMedCrossRefGoogle Scholar
  146. 289.
    Pirity M, Hever-Szabo A, Venetianer A (1996) Overexpression of P-glycoprotein in Heta and/or Drug Resistant Hepatoma Variants. Cytotechnology 19(3):207–214PubMedCrossRefGoogle Scholar
  147. 290.
    Santin AD, Hermonat PL, Ravaggi A et al (1998) The Effects of Irradiation on the Expression of a Tumor Rejection Antigen (Heat Shock Protein GP96) in Human Cervical Cancer. Int Radiat Biol 76(6):699–704Google Scholar
  148. 291.
    Morgan J, Whitaker JE, Oseroff AR (1998) GRP78 Induction by Calcium Ionophore Potentiates Photodynamic Therapy Using the Mitochondrial Targeting Dye Victoria Blue BO. Photocem Photobiol 67(1):155–164Google Scholar
  149. 292.
    Punyiczki M, Fesus L (1998) Heat shock and apoptosis: the two defense systems of the organisms may have overlapping molecular elements. Ann NY Acad Sci 951:67–74CrossRefGoogle Scholar
  150. 293.
    Sapozhnikov AM, Ponomarev ED, Tarasenko TN et al (1999) Spontaneous apoptosis and expression of cell-surface heat-shock proteins in cultured EL-4 lymphoma cells. Cell Prolif 32(6):363–378PubMedCrossRefGoogle Scholar
  151. 294.
    Huot J, Roy G, Lambert H, Landry J (1992) Co-induction of HSP27 Phosphorylation and Drug Resistance in Chinese Hamster Cells. Int J Oncol 1:31–36Google Scholar
  152. 295.
    Goodman R, Blank M (1999) The induction of stress proteins for cytoprotection in clinical applications. First International Symposium on Nonthermal Medical/Biological Treatments Using Electromagnetic Fields and Ionized Gases, ElectroMed’99, Norfolk VA, USA, 12–14 April 1999Google Scholar
  153. 296.
    Liu FF, Bezjak A, Levin W et al (1996) Assessment of palliation in women with recurrent breast cancer. Int J Hyperthermia 12(6):825–826PubMedCrossRefGoogle Scholar
  154. 297.
    Hupp TR, Meek DW, Midgley CA et al (1992) Regulation of the specific DNA binding function of p53. Cell 71(5):875–886PubMedCrossRefGoogle Scholar
  155. 298.
    Chen CF, Chen Y, Dai K et al (1996) A New Member of the HSP90 Family of molecular chaperones interacts with the retinoblastoma protein during mitosis and after heat shock. Mol Cell Biol 16(9):4691–4699PubMedGoogle Scholar
  156. 299.
    de Pomarai D, Daniels C, David H et al (2000) Non-thermal heat-shock response to microwaves. Nature 405(6785):417–418CrossRefGoogle Scholar
  157. 300.
    Bukau B, Horwich AL (1998) The HSP70 and HSP60 chaperone machines. Cell 92(3):351–366PubMedCrossRefGoogle Scholar
  158. 301.
    Watanabe M, Suzuki K, Kodama S et al (1995) Normal human cells at confluence get heat resistance by efficient accumulation of hsp72 in nucleus. Carcinogenesis 16(10):2373–2380PubMedCrossRefGoogle Scholar
  159. 302.
    Rosner GL, Clegg ST, Prescott DM (1996) Estimation of cell survival in tumors heated to nonuniform temperature distributions. Int J Hyperthermia 12(82):223–239CrossRefGoogle Scholar
  160. 303.
    Kraybill W, Olenki T (2002) A phase I study of fever-range whole body hyperthermia (FR-WBH) in patients with advanced solid tumors: correlation with mouse models. Int J Hyperthermia 18(3):253–266; Burd R, Dziedzic ST (1998) Tumor Cell Apoptosis, Lymphocyte Recruitment and Tumor Vascular Changes Are Induced by Low Temperature, Long Duration (Fever-Like) Whole Body Hyperthermia. J of Cell physiol 177:137–147Google Scholar
  161. 306.
    Ostberg JR, Repasky EA (2000) Use of mild, whole body hyperthermia in cancer therapy. Immunol Invest 29(2):139–142PubMedCrossRefGoogle Scholar
  162. 307.
    Appenheimer MM, Qing C, Gipard RA et al (2005) Impact of fever-range thermal stress on lymphocyte-endothelial adhesion and lymphocyte trafficking. Immunol Invest 34(3):295–323PubMedCrossRefGoogle Scholar
  163. 310.
    Burd R, Dziedzic TS, Xu Y et al (1998) Tumor cell apoptosis, lymphocyte recruitment and tumor vascular changes are induced by low temperature, long duration (Fever-Like) whole body hyperthermia. J Cell Physiol 177(1):137–147PubMedCrossRefGoogle Scholar
  164. 311.
    Pilling MJ, Seakins PW (1995) Reaction kinetics. Oxford Science, Oxford University Press, OxfordGoogle Scholar
  165. 312.
    Hobbie RK (2001) Intermediate physics for medicine and biology. Biological Physics Series, AIP Press, Woodbury, NY; Springer, BerlinGoogle Scholar
  166. 313.
    Law MP (1978) The relationship between heating time and temperature for hyperthermia alone or combined with radiation. In: Streffer C, vanBeuningen D, Dietzel F et al (eds) Cancer Therapy by hyperthermia and radiation, Urban & Schwarzenberg, Baltimore, MD, pp 222–224Google Scholar
  167. 314.
    Oleson JR (1995) Review Eugene Robertson Special Lecture, Hyperthermia from the clinic to the laboratory: a hypothesis. Int J Hyperthermia 11(3):315–322PubMedCrossRefGoogle Scholar
  168. 315.
    Overgaard J (1989) The current and potential role of hyperthermia in radiotherapy. Int J Rad Oncol Biol Phys 16(3):535–549CrossRefGoogle Scholar
  169. 316.
    van der Zee J, Truemiet-Donker AD, The SK et al (1988) Low-dose reirradiation in combination with hyperthermia: a palliative treatment for patients with breast cancer recurring in previously irradiated areas. Int J Rad Oncol Biol Phys 15(6):1407–1413CrossRefGoogle Scholar
  170. 318.
    icher JI, Al-Bussam N, Wolfstein RS (2006) Thermotherapy with curative intent – breast, head, and neck, and prostate tumors. Deutsche Zeitschrift fur Oncologie 38:116–122CrossRefGoogle Scholar
  171. 319.
    Urano M, Kuroda M, Nishimura Y (1999) For the clinical application of thermochemotherapy given at mild temperatures. Int J Hyperthermia 15(2):79–107PubMedCrossRefGoogle Scholar
  172. 320.
    Wiedermann GJ, Feyerabend T, Mentzel M et al (1994) Thermochemotherapie: grunde fur die kombinationsbehandlung mit hyperthermia und chemotherapie. Focus Mul 11:44–50Google Scholar
  173. 321.
    LeVeen HH, Rajagopalan PR, Vujic I et al (1984) Radiofrequency thermotherapy, local chemotherapy, and arterial occlusion in the treatment of non-resectable cancer. Am Surg 50(2):61–65PubMedGoogle Scholar
  174. 322.
    Okamura K, Nakashima K, Fukushima Y et al Hyperthermia with low dose chemotherapy for advanced non-small-cell lung cancer.
  175. 323.
    Franchi F, Grassi P, Ferro D et al (2007) Antiangiogenic metronomic chemotherapy and hyperthermia in the palliation of advanced cancer. Eur J Cancer Care 16(3):258–262CrossRefGoogle Scholar
  176. 324.
    Molls M (1992) Hyperthermia – the actual role in radiation oncology and future prospects. Strahlentherapie und Oncologie 168:183–190Google Scholar
  177. 327.
    Wust P, Rau B, Gemmler M et al (1995) Radio-thermotherapy in multimodal surgical treatment concepts. Onkologie 18(2):110–121CrossRefGoogle Scholar
  178. 328.
    Urano M, Douple E. (eds) (1992) Hyperthermia and Oncology: Volume .2. Biology of thermal potentiation of radiotherapy. VSP BV, Utrecht, The NetherlandsGoogle Scholar
  179. 329.
    Hehr T, Wust P, Bamberg M et al (2003) Current and potential role of thermoradiotherapy for solid tumors. Onkologie 26(3):295–302PubMedCrossRefGoogle Scholar
  180. 330.
    Roti JL, Laszlo A (1988) The effects of hyperthermia on cellular macromolecules. In: Urano M, Douple E (eds) Hyperthermia and Oncology Vol 1, Thermal effects on cells and tissues, VSP Utrecht, The Netherlands, pp 13–56Google Scholar
  181. 331.
    Ohno T, Sakagami T, Shiomi M et al (1993) Hyperthermia therapy for deep-regional cancer: thermochemotherapy, a combination of hyperthermia with chemotherapy. In: Matsuda T (ed) Cancer treatment by hyperthermia, radiation and drugs, Taylor&Francis, London, pp 303–316Google Scholar
  182. 332.
    Ohtsubo T, Kano E, Hayashi S et al (2001) Enhancement of cytotoxic effects of chemotherapeutic agents with hyperthermia in vitro. In: Kosaka M, Sugahara T, Schmidt KL et al (eds) Thermotherapy for neoplasia, inflammation, and pain. Springer, Tokyo, pp 451–455Google Scholar
  183. 333.
    Kawasaki S, Asaumi J-I, Shibuya K et al (2001) Recent aspects of elucidating the cellular basis of thermochemotherapy. In: Kosaka M, Sugahara T, Schmidt KL et al (eds) Thermotherapy for neoplasia, inflammation, and pain. Springer, Tokyo, pp 424–432Google Scholar
  184. 334.
    Szasz A, Vincze Gy, Szasz O et al (2003) An energy analysis of extracellular hyperthermia. Magneto- and electro-biology 22(2):103–115CrossRefGoogle Scholar
  185. 335.
    Lupis CHP (1983) Chemical thermodynamics of materials. Wiley, North HollandGoogle Scholar
  186. 336.
    Urano M (1994) Thermochemotherapy: from in vitro and in vivo experiments to potential clinical application. In: Urano M, Douple E (eds) Hyperthermia and oncology, VSP Utrecht, Tokyo, 4:169–204Google Scholar
  187. 337.
    Wiederman GJ, Siemens HJ, Mentzel M et al (1993) Effects of Temperature on the Therapeutic Efficacy and Pharmacokinetics of Ifosamide. Cancer Res 53(18):4268–4272Google Scholar
  188. 338.
    Hager D, Dziambor H, Hoehmann D et al (2002) Survival and quality of life of patients with advanced pancreatic cancer. ASCO Annual Meeting, Abstract:2359Google Scholar
  189. 339.
    Feyerabend T, Wioedemann GJ, Jager B et al (2001) Local hyperthermia, radiation and chemotherapy in recurrent breast cancer is feasible and effective except for inflammatory disease. Int J Radia Oncol Biol Phys 49(5):1317–1325CrossRefGoogle Scholar
  190. 340.
    Masunaga S, Hiraoka M, Akuta K et al (1990) Non-Randomized Trials of Thermoradiotherapy versus Radiotherapy for Preoperative Treatment of Invasive Urinary Bladder Cancer. J Jpn Soc Ther Radiol Oncol 2:313–320Google Scholar
  191. 341.
    Rau B, Wust P, Hohenberger P et al (1998) Preoperative Hyperthermia Combined with Radiochemotherapy in Locally Advanced Rectal Cancer – A Phase II Clinical Trial. Ann Surg 227(3):380–389PubMedCrossRefGoogle Scholar
  192. 342.
    Kodama K, Doi O, Higashyama M et al (1993) Long-term results of postoperative intrathoracic chemo-thermotherapy for lung cancer with pleural dissemination. Cancer 72(2):426–431PubMedCrossRefGoogle Scholar
  193. 343.
    Pearson AS, Izzo F, Fleming RYD et al (1999) Intraoperative radiofrequency ablation of cryoablation for hepatic malignancies. Am J Surg 178(6):592–598PubMedCrossRefGoogle Scholar
  194. 344.
    Kouloulias VE, Kouvaris JR, Nikita KS et al (2002) Intraoperative hyperthermia in conjunction with multi-schedule chemotherapy (pre- intra- and post operative), by-pass surgery, and post-operative radiotherapy for the management of unresectable pancreatic adenocarcinoma. Int. J Hyperthermia 18:233–252PubMedCrossRefGoogle Scholar
  195. 345.
    Ohtsuru A, Braiden V, Cao Y (2001) Cancer Gene Therapy in Conjunction with Hyperthermia Under the Control of Heat-Inducible Promoter. In: Kosaka M, Sugahara T, Schmidt KL (eds) Thermotherapy for Neoplasia, Inflammation, and Pain. Springer .Tokyo, pp 464–470Google Scholar
  196. 346.
    Gaber MH, Wu NZ, Hong K et al (1996) Thermosensitive liposomes: extravasation and release of contents in tumor microvascular networks. Int J Radiat Oncol Biol Phys 36(5):1177–1187PubMedCrossRefGoogle Scholar
  197. 347.
    Blackburn LV, Galoforo SS, Corry PM et al (1998) Adenoviral-mediated transfer of heat-inducible double suicide gene into prostate carcinoma cells. Cancer Res 58(7):1358–1362PubMedGoogle Scholar
  198. 348.
    Huang Q, Hu JK, Zhang L et al (2000) Heat-induced gene expression as a novel targeted cancer gene therapy strategy. Cancer Res 60(13):3435–3439PubMedGoogle Scholar
  199. 349.
    Yerushalmi A, Shani A, Fishelovitz Y et al (1986) Local microwave hyperthermia in the treatment of carcinoma of the prostate. Oncology 43(5):299–305PubMedCrossRefGoogle Scholar
  200. 350.
    Piantelli M, Tatone D, Castrilli G et al (2001) Quercetin and tamoxifen sensitize human melanoma cells to hyperthermia. Melanoma Res 11:469–476PubMedCrossRefGoogle Scholar
  201. 351.
    Oleson JR, Calderwood SK, Coughlin CT, Dewhirst MW, Gerweck LE, Gibbs FA, Kapp DS (1988), Biological and Clinical Aspects of Hyperthermia in Cancer Therapy. Am J Clin Oncol 11:368–380PubMedCrossRefGoogle Scholar
  202. 352.
    Henderson BW, Waldow SM, Potter WR, Dougherty TJ (1985) Interaction of photodynamic therapy and hyperthermia: tumor response and cell survival studies after treatment of mice in vivo. Cancer Res 45:6071–6077PubMedGoogle Scholar
  203. 353.
    Lohr F Hu K, Huang Q, Zhang L, Samulski T, Dewhirst M, Li C (2000) Enhancement of radiotherapy by hyperthermia-regulated gene therapy. Int J Radiat Oncol Biol Phys 48:1513–1518CrossRefGoogle Scholar
  204. 354.
    Skitzki JJ, Repasky EA, Evans SS (2009) Hyperthermia as an immunotherapy strategy for cancer. Curr Opini Invest Drugs 10:550–558Google Scholar
  205. 355.
    Vertrees RA, Jordan JM, Zwischenberger JB (2007) Hyperthermia and chemotherapy: the science. In: Hlem CW, Edwards RP (eds) current clinical oncology, intraperitoneal cancer therapy. Humana Press, Totowa NJGoogle Scholar
  206. 356.
    Takahashi M, Hiraoka M, Nishimura Y et al (1993) Clinical results of thermoradiotherapy for deep-seated tumors. In: Matsuda T (ed) Cancer treatment by hyperthermia, radiation and drugs. Taylor & Francis, Oxford, pp 227–239Google Scholar
  207. 357.
    Hiraoka M, Jo S, Akuta K et al (1987) Radiofrequency capacitive hyperthermia for deep-seated tumors – I. Studies on thermometry. Cancer 60:121–127PubMedCrossRefGoogle Scholar
  208. 358.
    Myerson RJ, Scott CB, Emami B et al (1996) A phase I/II study to evaluate radiation therapy and hyperthermia for deep-seated tumors: a report of RTOG 89-08. Int J Hyperthermia 4:449–459CrossRefGoogle Scholar
  209. 359.
    Tsukiyama I, Kajiura Y, Ogino T et al (1993) Clinical results of thermoradiotherapy for superficial and shallow-seated tumors. In: Matsuda T (ed) Cancer treatment by hyperthermia, radiation and drugs, Taylor & Francis, London, pp 216–228Google Scholar
  210. 360.
    Simina P, van der Yee J, Wondergem J et al (1994) Effect of hyperthermia on the central nervous system: review. Int J Hyperthermia 10:1–30CrossRefGoogle Scholar
  211. 362.
    Haveman J, Siminia P, Wondergem J et al (2005) Effects of hyperthermia on the central nervous system: what was learnt from animal studies? Int J Hyperthermia 21:473–487PubMedCrossRefGoogle Scholar
  212. 363.
    Seed PK, Stea B (1996) Thermoradiotherapy for Brain Tumors. In: Seegenschmiedt MH, Fessenden P, Vernon CC (eds) Thermoradiotherapy and thermochemotherapy, Vol. 2. Clinical applications. Springer, BerlinGoogle Scholar
  213. 372.
    Salcman M, Samaras MJ (1983) Interstitial microwave hyperthermia for brain tumors. Results of a phase-1 clinical trial. J Neurooncol 1(3):225–236PubMedCrossRefGoogle Scholar
  214. 373.
    Fan M, Ascher PW, Schrottner O et al (1992) Interstitial 1.06 Nd:YAG laser thermotherapy for brain tumors under real-time monitoring of MRI: experimental study and phase I clinical trial. J Clin Laser Med Surg 10(5):355–361PubMedGoogle Scholar
  215. 374.
    Kahn T, Harth T, Bettag M et al (1997) Preliminary experience with the application of gadolinium-DTPA before MR imaging-guided laser-induced interstitial thermotherapy of brain tumors. J Magn Reson Imaging 7(1):226–229PubMedCrossRefGoogle Scholar
  216. 375.
    Borok TL, Winter A, Laing J et al (1988) Microwave hyperthermia radiosensitized iridium-192 for recurrent brain malignancy. Med Dosim 13(1):29–36PubMedCrossRefGoogle Scholar
  217. 376.
    Moran CJ, Marchosky JA, Wippold FJ et al (1995) Conductive interstitial hyperthermia in the treatment of intracranial metastatic disease. J Neurooncol 26(1):53–63PubMedCrossRefGoogle Scholar
  218. 377.
    Jordan A, Scholz R, Maier-Hauff K et al (2001) Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia. J Magn Magn Materials 225(1–2):118–126CrossRefGoogle Scholar
  219. 378.
    Stahl H, Wust P, Maier-Hauff K et al (1995) The use of an early postoperative interstitial-hyperthermia combination therapy in malignant gliomas. Strahlenther Onkol 171(9):510–524PubMedGoogle Scholar
  220. 379.
    Hulshof MCCM, Raaymakers BW, Lagendijk JJW et al (2004) A feasibility study of interstitial hyperthermia plus external beam radiotherapy in glioblastoma multiforme using the Multi Electrode Current Source (MECS) system. Int J Hyperthermia 20(5):451–463PubMedCrossRefGoogle Scholar
  221. 380.
    Sneed PK, Stauffer PR, McDermott MW et al (1998) Survival benefit of hyperthermia in a prospective randomized trial of brachytherapy boost +/– hyperthermia for glioblastoma multiforme. Int. J. Radiat. Oncol. Biol. Phys. 40(2):287–295PubMedGoogle Scholar
  222. 381.
    Pontiggia P, Duppone Curto F, Rotella G (1995) Hyperthermia in the treatment of brain metastases from lung cancer. Experience on 17 cases. Anticancer Res 15(2):597–601PubMedGoogle Scholar
  223. 383.
    Tanaka R, Kim CH, Yamada N et al (1987) Radiofrequency hyperthermia for malignant brain tumors: preliminary results of clinical trials. Neurosurgery 21(4):478–483PubMedGoogle Scholar
  224. 384.
    Guthkelch AN, Carter LP, Cassady JR et al (1991) Treatment of malignant brain tumors with focused ultrasound hyperthermia and radiation: results of a phase I trial. J Neurooncol 10(3):271–284PubMedCrossRefGoogle Scholar
  225. 385.
    Ley-Valle A (2003) Non invasive intracranial hyperthermia with Electric Capacitive Transference -ECT- Intratumoral and cerebral thermometry results. Neurocirugia (Astur) 14(1):41–45Google Scholar
  226. 386.
    Falk RE, Moffat FL, Lawler M et al (1986) Combination therapy for respectable and unresectable adenocarcinoma of the pancreas. Cancer 57(3):685–688PubMedCrossRefGoogle Scholar
  227. 387.
    Gonzalez-Cao M, Salgado E, Rodriguez J (2001) Docetaxel (D) with gemcitabine (GEM) in metastatic pancreatic cancer. Proc Am Soc Clin Oncol 20:A2274Google Scholar
  228. 389.
    Kindler HL (2002) The Pemetrexed/Gemcitabine Combination in Pancreatic Cancer. CANCER Supplement 95(4):928–932Google Scholar
  229. 390.
    Yamada S, Takai Y, Nemoto K et al (1992) Intraoperative Radiation Therapy Combined with Hyperthermia against Pancreatic Carcinoma. Tohoku J Exp Med 166(3):395–401PubMedCrossRefGoogle Scholar
  230. 391.
    Shibamoto Y, Nishimura U, Abe M (1996) Intraoperative radiotherapy and hyperthermia for unresectable pancreatic cancer. Hepatogastroenterology 43(8):326–332PubMedGoogle Scholar
  231. 392.
    Kouloulias VE, Nikita KS, Kouvaris JR et al (2002) Intraoperative hyperthermia and chemo-radiotherapy for inoperable pancreatic carcinoma. Eur J Cancer Care 11(2):100–107CrossRefGoogle Scholar
  232. 393.
    Matsui Y, Nakagawa A, Kamiyama Y et al (2000) Selective thermocoagulation of unresectable pancreatic cancers by using radiofrequency capacitive heating. Pancreas 20:14–20PubMedCrossRefGoogle Scholar
  233. 394.
    Hyperthermia with chemotherapy for locally advanced or metastatic pancreas cancer (2007) University of Texas, Health Science Center, Houston, NCT001178763, US National Institute of Health,;jsessionid=3B4AB11CCF3D35F792D6D7CF18AC8EE2?order=5 Cited 02 October 2007
  234. 395.
    Peters SO, Stoltz AS, Bakshandeh A (2006) Analysis of preclinical and clinical data on the role of hyperthermia with gemcitabine and carboplatin on pancreatic adenocarcinoma. Journal of Clinical Oncology, ASCO Annual Meeting Proceedings Part I. No. 18S, 24:14123Google Scholar
  235. 396.
    Hiraoka M, Masunaga S, Nishimura Y et al (1992) Regional hyperthermia combined with radiotherapy in the treatment of lung cancer. Int. J. Radiat. Oncol. Biol. Phys. 22(5): 1009–1014PubMedGoogle Scholar
  236. 397.
    Imada H, Nomoto S, Tomimatsu A et al (1999) Local control of nonsmall cell lung cancer by radiotherapy combined with high power hyperthermia using an 8 MHz RF capacitive heating device. Jpn J Hyperthermia Oncol 15(2):19–24Google Scholar
  237. 398.
    Karasawa K, Muta N, Nakagawa K et al (1994) Thermoradiotherapy in the treatment of locally advanced non-small cell lung cancer. Int J Radiat Oncol Biol Phys 30(5):1171–1177PubMedGoogle Scholar
  238. 399.
    Sakurai H, Hayakawa K, Mitsuhashi N et al (2002) Effect of hyperthermia combined with external radiation therapy in primary non-small cell lung cancer with direct bony invasion. Int J Hyperthermia 18(5):472–483PubMedCrossRefGoogle Scholar
  239. 400.
    Sakao S, Takiguchi Y, Nemoto K et al (2002) Thermoradiotherapy for local control of chest wall invasion in patients with advanced non-small cell lung cancer. Int J Clin Oncol 7:343–348PubMedCrossRefGoogle Scholar
  240. 401.
    Shinn KS, Choi IB, Kim IA et al (1996) Thermoradiotherapy in the Treatment of Locally Advanced Nonsmall Cell Lung Cancer. J Korean Soc Ther Radiol Oncol 14(2):115–122Google Scholar
  241. 402.
    Higashiyama M, Doi O, Kodama K et al (1994) Intrathoracic chemothermotherapy following panpleuropneumonectomy for pleural dissemination of invasive thymoma. Chest 105(6):1884–1885PubMedCrossRefGoogle Scholar
  242. 403.
    Mitsumori M, Zeng ZF, Oliynychenko P (2007) Regional hyperthermia combined with radiotherapy for locally advanced non-small cell lung cancers: a multi-institutional prospective randomized trial of the International Atomic Energy Agency. Int J Clin Oncol 12:192–198PubMedCrossRefGoogle Scholar
  243. 404.
    Hettinga JVE, Lemstra W, Meijer C et al (1994) Hyperthermic potentiation of cisplatin toxicity in a human small cell lung carcinoma cell line and a cisplatin resistant subline. Int J Hyperthermia 10:795–805PubMedCrossRefGoogle Scholar
  244. 405.
    Vertrees RA, Das GC, Popov VL et al (2005) Synergestic interaction of hyperthermia and Gemcitabine in lung cancer. Cancer Biol Ther 4:1144–1155PubMedCrossRefGoogle Scholar
  245. 406.
    Yang H, Jiang G, Fu X et al (2005) Radiotherapy and hyperthermia for NSCLC. ASCO Annual Meeting, No. 7289Google Scholar
  246. 407.
    Yokoyama M, Nitta S (1993) Systemic hyperthermia to patients with advanced pulmonary cancer. In: Matsuda T (ed) Cancer Treatment by Hyperthermia, Radiation and Drugs, Taylor & Francis, London, pp 376–381Google Scholar
  247. 408.
    Chhajed PN, Tamm M (2003) Radiofrequency heat ablation for lung tumors: potential applications. Med Sci. Monit 9:ED5–7Google Scholar
  248. 409.
    Okuma T, Matsuoka T, Yamamoto A et al (2007) Factors contributing to cavitation after CT-guided percutaneous radiofrequency ablation for lung tumors. J Vasc Interv Radiol 18(3):399–404PubMedCrossRefGoogle Scholar
  249. 410.
    Weigel C, Kirsch M, Mensel B et al (2004) Precutaneous laser-induced thermotherapy of lung metastases: experience gained during 4 years. Radiologe 44:700–707PubMedGoogle Scholar
  250. 411.
    Matsuzaki Y, Edagawa M, Shimizu T et al (2004) Intrapleural hyperthermic perfusion with chemotherapy increases apoptosis in malignant pleuritis. Ann Thorac Surg 78:1769–1772PubMedCrossRefGoogle Scholar
  251. 412.
    Sekins KM, Leeper DB, Hoffman JK et al (2004) Feasibility of lung cancer hyperthermia using breathable perfluorochemical PFC liquids, Part I: Convective hyperthermia. Int. J. Hyperthermia 20:252–277, Part II: Ultrasound hyperthermia. Int J Hyperthermia 20:278–299Google Scholar
  252. 413.
    Kondo M, Oyamada H, Yoshikawa T (2000) Therapeutic effects of chemoembolization using degradable starch microspheres and regional hyperthermia on unresectable hepatocellular carcinoma. In Selected papers on hyperthermia using Thermotron-RF8, April 2000Google Scholar
  253. 414.
    Kakehi M (1990) Multiinstitutional clinical studies on hyperthermia combined with radiotherapy or chemotherapy in advanced cancer of deep-seated organs. Int J Hyperthermia 6:719–740PubMedCrossRefGoogle Scholar
  254. 415.
    Yoshikawa T, Oyamada H, Ichikawa H, Naito Y, Ueda S, Tainaka K, Itani K, Seto O, Sugino S, Kondo M. (1989) Antitumor effect and indication of chemoembolization using degradable starch microspheres and regional hyperthermia. J Jpn Soc Cancer Ther 24:786–792Google Scholar
  255. 416.
    Nagata Y, Hiraoka M, Nishimura Y et al (1997) Clinical results of radiofrequency hyperthermia for malignant liver tumors. Int J Radiat Oncol Biol Phys 38:359–365PubMedCrossRefGoogle Scholar
  256. 417.
    Alexander HR, Libutti SK, Pingpank JF et al (2003) Hyperthermic isolated hepatic perfusion using melphalan for patients with ocular melanoma metastatic to liver. Clin Cancer Res 9:6343–6349PubMedGoogle Scholar
  257. 418.
    Nagata Y, Hiraoka M, Akuta K et al (1990) Radiofrequency thermotherapy for malignant liver tumors. Cancer 65(8):1730–1736PubMedCrossRefGoogle Scholar
  258. 420.
    Yamamoto K, Tanaka Y. (1997) Radiofrequency capacitive hyperthermia for unresectable hepatic cancers. J Gastroenterol 32:361–366PubMedCrossRefGoogle Scholar
  259. 421.
    Seong J, Lee HS, Han KH et al (1994) Combined Treatment of Radiotherapy and Hyperthermia for Unresectable Hepatocellular Carcinoma. Yonsei Med J 35(3):252–259PubMedGoogle Scholar
  260. 422.
    Pacella CM, Valle D, Bizzarri G et al (2006) Percutaneous laser ablation in patients with isolated unresectable live metastases from colorectal cancer: Results of a phase II study. Acta Oncologica 45:77–83PubMedCrossRefGoogle Scholar
  261. 423.
    Vogl TJ, Mack MG, Blazer JO et al (2003) Liver metastases: Neoadjuvant Downsizing with transarterial chemoembolization before laser-induced thermotherapy. Radiology 229(2):457–464PubMedCrossRefGoogle Scholar
  262. 424.
    Goldberg SN, Gazelle GS, Solbiati L, Livraghi T, Tanabe KK, Hahn PF, Mueller PR (1998) AJR 170:1023–1028PubMedGoogle Scholar
  263. 425.
    Ohguri T, Imada H, Yahara K et al (2004) Effect of 8-MHz radiofrequency-capacitive regional hyperthermia with strong superficial cooling for unresectable or recurrent colorectal cancer. Int J Hyperthermia 20(5):465–475PubMedCrossRefGoogle Scholar
  264. 426.
    Nishimura Y, Hiraoka M, Abe M (1993) Thermoradiotherapy of locally advanced colorectal cancer. In: Matsuda T (ed) Cancer Treatment by Hyperthermia, Radiation and Drugs. Taylor & Francis, London, pp 278–289Google Scholar
  265. 427.
    Nishimura Y, Hiraoka M, Akuta K et al (1992) Hyperthermia combined with radiation therapy for primarily unresectable and recurrent colorectal cancer. Int J Rad Onc Biol 23(4):759–768CrossRefGoogle Scholar
  266. 428.
    Berdov BA, Menteshashvili GZ (1990) Thermoradiotherapy of patients with locally advanced carcinoma of the rectum. Int J Hyperthermia 6(5):881–890PubMedCrossRefGoogle Scholar
  267. 429.
    Hildebrandt B, Wust P, Drager J et al (2004) Regional pelvic hyperthermia as an adjunct to chemotherapy (oxaliplatin, folinic acid, 5-fluorouracil) in pre-irradiated patients with locally recurrent rectal cancer: a pilot study. Int J Hyperthermia 20(4):359–369PubMedCrossRefGoogle Scholar
  268. 430.
    Rau B, Wust P, Tilly W et al (2000) Preoperative radiochemotherapy in locally advanced or recurrent rectal cancer: regional radiofrequency hyperthermia correlates with clinical parameters. Int J Radiat Oncol Biol Phys 48(2): 381–391PubMedCrossRefGoogle Scholar
  269. 432.
    Rau B, Wust P, Gellermann J et al (1998) Phase-II-Studie zur praoperativen Radio-Chemo-Thermo-Therapie beim lokal fortgeschrittenen Rektum-Karzinom. Strahlenther Onkol 174(11):556–565PubMedCrossRefGoogle Scholar
  270. 433.
    Takahashi M, Fujimoto S, Kobyashi K et al (1994) Clinical outcome of intraoperative pelvic hyperthermochemotherapy for patients with Dukes’ C rectal cancer. Int J Hyperthermia 10(6):749–754PubMedCrossRefGoogle Scholar
  271. 434.
    Kitamura K, Kuwano H, Watanabe M et al (1995) Prospective randomized study of hyperthermia combined with chemoradiotherapy for esophageal carcinoma. J Surg Oncol 60(1):55–58PubMedCrossRefGoogle Scholar
  272. 435.
    Kitamura K et al (1996) Thermoradiotherapy combined with chemotherapy for esophageal tumors. In: Seegenschmiedt MH, Fessender P, Vernon CC (eds) Thermo-radiotherapy and thermo-chemotherapy, Vol. 2. Springer, BerlinGoogle Scholar
  273. 436.
    Kitamura K. Sugimachi K. (1996) Thermoradiotherapy combined with chemotherapy for esophageal tumors. In: Seegenschmiedt MH. Fessenden P. Vernon CC. (eds) thermoradiotherapy and thermochemotherapy Vol. 2. Clinical applications, pp 85–94Google Scholar
  274. 438.
    Sakamoto T, Katoh H, Shimizu T, Yamashita I, Takomori S, Tazawa K, Fujimaki M (1997) Chest 112:1487–1493PubMedCrossRefGoogle Scholar
  275. 439.
    Albregts M, Hulshof M, Zum Vörde Sive Vörding PJ et al (2004) A feasibility study in oesophageal carcinoma using deep loco-regional hyperthermia combined with concurrent chemotherapy followed by surgery. Int J Hyperthermia 20(6):647–659PubMedCrossRefGoogle Scholar
  276. 440.
    Yahara K, Imada H, Nomoto S et al (2004) Thermoradiotherapy for recurrent esophageal carcinoma. Jpn J Hyp Oncol 20(1):1–8Google Scholar
  277. 441.
    Matsuda H, Tsutsui S, Morita M et al (1992) Hyperthermo-chemo-radiotherapy as a definitive treatment for patients with early esophageal carcinoma. Am J Clin Oncol (CCT) 15(6):509–514Google Scholar
  278. 445.
    Hou B-S, Xiong Q-B, Li DJ (1989) Thermo-Chemo-Radiotherapy of Esophageal Cancer – A Preliminary Report of 34 Cases. Cancer 64(9):1777–1782PubMedCrossRefGoogle Scholar
  279. 446.
    Onoyama Y et al (1993) Clinical experience in hyperthermic treatment for head and neck tumor. In: Matsuda T (ed) Cancer treatment by hyperthermia, radiation and drugs, chapter 22. Taylor & Francis, London, pp 241–249Google Scholar
  280. 447.
    Kazumoto T, Kato S, Sakura M et al (2002) A case of locally advanced hypopharyngeal cancer treated with curative resection after thermoradiotherapy. Jpn J Hyp Oncol 18(2):99–107Google Scholar
  281. 448.
    Datta NR, Bose AK, Kapoor HK et al (1990) Head and neck cancers: result of thermoradiotherapy versus radiotherapy. Int J Hyperthermia 6(3):479–486PubMedCrossRefGoogle Scholar
  282. 449.
    Valdagni R, Amichetti M, Pani G (1998) Radical radiation alone versus radical radiation plus microwave hyperthermia for N3 (TNM-UICC) neck nodes: a prospective randomized clinical trial. Int J Radiat Oncol Biol Phys 15(1):13–24Google Scholar
  283. 450.
    Valdagni R, Amichetti M (1995) Thermoradiotherapy for head and neck tumors. In: Seegenschmiedt MH, Fessenden P, Vernon CC (eds) Thermoradiotherapy and thermochemotherapy, Vol. 2. Clinical applications. Springer, Berlin, pp 49–67Google Scholar
  284. 451.
    Amichetti M, Graiff C, Fellin G et al (1993) Cisplatin, hyperthermia, and radiation (trimodal therapy) in patients with locally advanced head and neck tumors: a phase I–II study. Int J Radiat Oncol Biol Phys 26:801–807PubMedCrossRefGoogle Scholar
  285. 452.
    Valdagni R, Amichetti M (1993) Report of long-term follow-up in a randomized trial comparing radiation therapy and radiation therapy plus hyperthermia to metastatic lymph nodes in stage IV head and neck patients. Int J Radiat Oncol Biol Phys 28:163–169Google Scholar
  286. 453.
    Nakabayashi T, Mochiki E, Kamiyama Y et al (2003) Efficacy of Intraperitoneal Chemohyperthermia for Gastric Cancer Patients with Peritoneal Carcinomatosis. Jpn J Hyperthermic Oncol 19(4):195–200Google Scholar
  287. 454.
    Nagata Y, Hiraoka M, Nishimura Y et al (1995) Clinical experiences in the thermoradiotherapy for advanced gastric cancer. Int J Hyperthermia 11(4):501–510PubMedCrossRefGoogle Scholar
  288. 455.
    Shchepotin IB, Evans SR, Chorny V et al (1994) Intensive preoperative radiotherapy with local hyperthermia for the treatment of gastric carcinoma. Surg Oncol 3(1):37–44PubMedCrossRefGoogle Scholar
  289. 456.
    Fu QG, Meng FD, Shen XD et al (2002) Efficacy of intraperitoneal thermochemotherapy and immunotherapy in intraperitoneal recurrence after gastrointestinal cancer resection. World J Gastroenterol 8(6):1019–1022PubMedGoogle Scholar
  290. 457.
    Hamazoe R, Maeta M, Koga S (1993) Efficacy of intraperitoneal hyperthermic chemotherapy in preventing peritoneal recurrence of gastric cancer. In: Matsuda T (ed) Cancer Treatment by Hyperthermia, Radiation and Drugs. Taylor & Francis, New York, NY, pp 328–338Google Scholar
  291. 458.
    Mizuguchi N, Mukojima T, Itoh M et al (2002) Two long-term survival cases of gastric carcinoma treated with hyperthermo-chemo-radiotherapy. Jpn J Hyperthermic Oncol 18(2):93–98Google Scholar
  292. 459.
    Bornstein BA, Zouranjian PS, Hansen JL et al (1992) Irradiation alone or combined with hyperthermia in the treatment of recurrent carcinoma of the breast in the chest wall: a nonrandomized comparison. Int J Hyperthermia 2(2):179–187Google Scholar
  293. 461.
    Sherar M, Liu FF, Levin W et al (1997) Relationship between thermal dose and outcome in thermoradiotherapy treatments for superficial recurrences of breast cancer: data from a phase III trial. Int J Radiat Oncol Biol Phys 39(2):371–380PubMedGoogle Scholar
  294. 462.
    Vernon CC, Hand JW, Field SB et al (1996) Radiotherapy with or without hyperthermia in the treatment of superficial localized breast cancer: results from five randomized controlled trials. (International Collaborative Hyperthermia Group) Int J Radiat Oncol Biol Phys 35(4):731–744PubMedGoogle Scholar
  295. 463.
    Fuwa N, Morita K (1993) Combined treatment of radiotherapy and local hyperthermia using 8 MHz RF capacitive heating for advanced carcinoma of the breast. In: Matsuda T (ed) Cancer Treatment by Hyperthermia, Radiation and Drugs, Taylor & Francis, London., pp 252–260Google Scholar
  296. 464.
    Raymond U (2002) Clinical results using 8 MHz radiofrequency capacitive hyperthermia and radiotherapy for recurrent breast carcinoma. Rex Healthcare Cancer Center, Raleigh, N-CarolinaGoogle Scholar
  297. 465.
    Masunaga S, Hiraoka M, Takahashi M et al (1190) Clinical results of thermoradiotherapy for locally advanced and/or recurrent breast cancer – comparison of results with radiotherapy alone. Int J Hyp 6(3):487–497Google Scholar
  298. 466.
    Kouloulias VE, Dardoufas CE, Kouvaris JR et al (2002) Liposomal doxoruicin in conjunction with reirradiation and local hyperthermia treatment in recurrent breast cancer: a Phase I/II Trial. Clin Cancer Res 8:374–382PubMedGoogle Scholar
  299. 467.
    Bornstein BA, Zouranjian PS, Hansen JL et al (1992) Local Hyperthermia, Radiation Therapy, and Chemotherapy in Patients with Local-Regional Recurrence of Breast Carcinoma. Int J Radiat Oncol Biol Phys 25:79–85Google Scholar
  300. 468.
    Vargas HI, Dooley WC, Gardner RA et al (2004) Focused Microwave Phased Array Thermotherapy for Ablation of Early-Stage Breast Cancer: Results of Thermal Dose Escalation. Ann Surg Oncol 11(2):139–146PubMedCrossRefGoogle Scholar
  301. 469.
    Pontiggia P, Curto FC, Sabato A et al (1995) Is metastatic breast cancer refractory to usual therapy curable? Biomed Pharmacother 49:79–82PubMedCrossRefGoogle Scholar
  302. 470.
    Nishimura Y, Hiraoka M, Jo S et al (1989) Radiofrequency (RF) capacitive hyperthermia combined with radiotherapy in the treatment of abdominal and pelvic deepseated tumors. Radiother Oncol 16(2):139–149PubMedCrossRefGoogle Scholar
  303. 471.
    Hiraoka M. et al (1996) Thermoradiotherapy for upper abdominal tumors. In: M.H. Seegenschmiedt et al (eds) Thermoradiotherapy and thermochemotherapy, Vol. 2. Springer, BerlinGoogle Scholar
  304. 472.
    Elias D, Sideris L, Pocard M et al (2004) Efficacy of intraperitoneal chemohyperthermia with oxaliplatin in colorectal peritoneal carcinomatosis. Preliminary results in 24 patients. Ann Oncol 15:781–785PubMedCrossRefGoogle Scholar
  305. 474.
    Elias D, Raynard B, Farkhondeh F et al (2006) Peritoneal carcinomatosis of colorectal origin – Long-term results of intraperitoneal chemohyperthermia with oxaliplatin following complete cytoreductive surgery. Gastroenterol Clin Biol 30:1200–1204PubMedCrossRefGoogle Scholar
  306. 475.
    Elias D, Matsuhisa T, Sideris L et al (2004) Heated intra-operative intraperitoneal oxaliplatin plus irinotecan after complete resection of peritoneal carcinomatosis: pharmacokinetics, tissue distribution and tolerance. Ann Oncol 15:1558–1565PubMedCrossRefGoogle Scholar
  307. 476.
    Overgaard J, Gonzalez DG, Hulshof MCCM et al (1996) Hyperthermia as an adjuvant to radiation therapy of recurrent or metastatic malignant melanoma. A multicentre randomized trial by the European Society for Hyperthermic Oncology. Int J Hyperthermia 12:3–20PubMedCrossRefGoogle Scholar
  308. 484.
    Seegenschmiedt MH, Sauer R (1993) External thermoradiotherapy in superficial tumors: basic considerations and results. J Jpn Soc Ther Radiol Oncol 5:303–326Google Scholar
  309. 485.
    Egawa S et al (1989) A randomized clinical trial of hyperthermia and radiation versus radiation alone for superficially located cancers. J Jpn Soc Ther Radiol Oncol 1:135–140Google Scholar
  310. 486.
    Gibbs FA (1995) Thermoradiotherapy for Genitourinary and Gynecological tumors. In: Seegenschmiedt MH, Fessenden P, Vernon CC (eds) Thermoradiotherapy and thermochemotherapy, Vol. 2. Clinical applications, Springer, Berlin; Telos, New York, NYGoogle Scholar
  311. 487.
    Sekiba K, Hasegawa T, Kobashi Y (1993) Hyperthermic treatment for gynaecological malignancies. In: Matsuda T (ed) Cancer Treatment by Hyperthermia, Radiation and Drugs. Taylor & Francis, London, pp 261–270Google Scholar
  312. 488.
    Rietbroek RC, Schilthuis MS, Bakker PJM et al (1997) Phase II Trial of Weekly Locoregional Hyperthermia and Cisplatin in Patients with a Previously Irradiated Recurrent Carcinoma of the Uterine Cervix. Cancer 79(5):935–943PubMedCrossRefGoogle Scholar
  313. 489.
    Jones EL, Samulski TV, Dewhirst, MV et al (2003) A pilot phase II trial of concurrent radiotherapy, chemotherapy, and hyperthermia for locally advanced cervical carcinoma. Cancer 98(2):277–282PubMedCrossRefGoogle Scholar
  314. 491.
    Westermann AE, Jones EL, Schem BC et al (2005) First results of triple-modality treatment combining radiotherapy, chemotherapy, and hyperthermia for the treatment of patients with stage IIB, III, and IVA cervical carcinoma. Cancer 104:763–770PubMedCrossRefGoogle Scholar
  315. 492.
    van der Zee J, Gonzalez DG (2002) The Dutch Deep Hyperthermia Trial: results in cervical cancer. Int J Hyperthermia 18:1–12PubMedCrossRefGoogle Scholar
  316. 493.
    Prosnitz L, Jones E et al (2002) Counterpoint: Test the value of hyperthermia in patients with carcinoma of the cervix being treated with concurrent chemotherapy and radiation. Int J Hyperthermia 18:13–18PubMedCrossRefGoogle Scholar
  317. 494.
    van der Zee J, Koper PCM, Lutgens LCHW et al (2002) Point-counterpoint: What is the optimal trial design to test hyperthermia for carcinoma of the cervix? Point: Addition of hyperthermia or cisplatin to radiotherapy for patients with cervical cancer, two promising combinations – no definite conclusions. Int J Hyperthermia 18(1):19–24PubMedCrossRefGoogle Scholar
  318. 495.
    Tilly W, Gellermann J, Graf R et al (2005) Regional hyperthermia in conjunction with definitive radiotherapy against recurrent or locally advanced prostate cancer T3pN0M0. Strahlenther Onkol 181(1):35–41PubMedCrossRefGoogle Scholar
  319. 497.
    Kalapurakal JA, Mittal BB, Sathiaseelan V (2001) Re-irradiation and external hyperthermia in locally advanced, radiation recurrent, hormone refractory prostate cancer: a preliminary report. Br J Radiol 74:745–751PubMedGoogle Scholar
  320. 498.
    Bdesha AS, Bunce CJ, Kelleher JP et al (1993) Transurethral microwave treatment for benign prostatic hypertrophy: a randomized controlled clinical trial. BMJ 306:1293–1296PubMedCrossRefGoogle Scholar
  321. 499.
    Petrovich Z, Pike MC, Boyd SD et al (1996) Transurethral hyperthermia for benign prostatic hyperplasia: long term results. Int J Hyperthermia 12:595–606PubMedCrossRefGoogle Scholar
  322. 500.
    Rosette DeLa, Floratos DL, Severens JL et al (2003) Transurethral resection vs microwave thermotherapy of the prostate: a cost-consequences analysis. BJU International 92:713CrossRefGoogle Scholar
  323. 501.
    Hisazumi H, Nakajima K, Koshida K et al (1993) 8 MHz RF-Hyperthermia for deep-seated urological malignancies. In: Matsuda T (ed) Cancer Treatment by Hyperthermia, Radiation and Drugs, Taylor & Francis, London, pp 270–277Google Scholar
  324. 502.
    Masunaga SI, Hiraoka M, Akuta K et al (1990) Non-randomized trials of thermoradiotherapy versus radiotherapy for preoperative treatment of invasive urinary bladder cancer. J Jpn Soc Ther Radiol Oncol 2:313–320Google Scholar
  325. 503.
    Moskovitz B, Meyer G, Kravtzov A et al (2005) Thermo-chemotherapy for intermediate or high-risk recurrent superficial bladder cancer patients. Ann Oncol 16:585–589PubMedCrossRefGoogle Scholar
  326. 504.
    Hiraoka M, Nishimura Y, Nagata Y et al (1995) Clinical results of thermoradiotherapy for soft tissue tumors. Int J Hyperthermia 11:365–377PubMedCrossRefGoogle Scholar
  327. 505.
    Egawa S, Tsukiyama I, Kajiura Y et al (1993) Clinical results of hyperthermia combined with radiation or chemotherapy for soft-tissue sarcomas. In: Matsuda T (ed) Cancer Treatment by Hyperthermia, Radiation and Drugs. Taylor & Francis, New York, NY, pp 290–299Google Scholar
  328. 506.
    Rossi CR, Foletto M, Filippo FD et al (1999) Soft Tissue Limb Sarcomas. Cancer 86:1742–1749PubMedCrossRefGoogle Scholar
  329. 507.
    Otsukaka T et al (2001) Clinical results of thermoradiotherapy for soft tissue tumors. Int J Clin Oncol 6:253–258CrossRefGoogle Scholar
  330. 508.
    Prosnitz LR, Maguire P, Anderson JM et al (1999) The Treatment of high-grade soft tissue sarcomas with preoperative thermoradiotherapy. Int J Radiat Oncol Biol Phys 45:941–949PubMedCrossRefGoogle Scholar
  331. 509.
    Maguire PD, Samulski TV, Prosnitz LR et al (2001) A phase II trial testing the thermal dose parameter CEM43°T90 as a predictor of response in soft tissue sarcomas treated with pre-operative thermoradiotherapy. Int J Hyperthermia 17:283–290PubMedCrossRefGoogle Scholar
  332. 510.
    Rossi CR, Deraco M, Simone MD et al (2004) Hyperthermic intraperitoneal intraoperative chemotherapy after cytoreductive surgery for the treatment of abdominal sarcomatosis. Cancer 100(9):1943–1950PubMedCrossRefGoogle Scholar
  333. 511.
    Wioedemann GJ, Robins HI, Gutsche S et al (1996) Ifosfamide, carboplatin and etoposide (ICE) combined with 41.8 degrees C whole body hyperthermia in patients with refractory sarcoma. Eur J Cancer 32A:888–892CrossRefGoogle Scholar
  334. 514.
    Issels RD, Prenninger SW, Nagele A et al (1990) Ifosfamide plus etoposide combined with regional hyperthermia in patients with locally advanced sarcomas: a phase II study. J Clin Oncol. 8:1818–1829PubMedGoogle Scholar
  335. 515.
    Leopold K, Issels RD (1995) Thermoradiotherapy and thermochemotherapy for sarcomas. In: Seegenschmiedt MH, Fessenden P, Vernon CC (eds) Thermoradiotherapy and Thermochemotherapy, Vol. 2. Clinical Applications, Springer, Berlin; Telos, New York, NY, pp 147–158Google Scholar
  336. 522.
    Issels RD, Bosse D, Strack M et al (1993) Weichteiltumoren: Indikation und Ergebnisse der Hyperthermie. Chirurg 64:461–467PubMedGoogle Scholar
  337. 523.
    Issels RD, Lindner LH, Wust P et al (2008) A phase III randomized prospective trial of neoadjuvant chemotherapy with or without regional hyperthermia (RHT). EORTC 62961, ESHO RHT95 Intergroup Trial; Eur Jf CancerGoogle Scholar
  338. 524.
    Hornbach NB (1987) Is the community radiation oncologist ready for clinical hyperthermia? RadioGraphics 7:139–141Google Scholar
  339. 525.
    Smythe WR, Mansfield PF (2003) Hyperthermia: has its time come? Ann Surg Oncol 10:210–212PubMedCrossRefGoogle Scholar
  340. 526.
    Szasz A (2006) What is against the acceptance of hyperthermia? Die Naturheilkunde Forum-Medizine 83:3–7Google Scholar
  341. 527.
    Oleson J.R (1991) Progress in hyperthermia? Int J Radiat Oncol Biol Phys 20:1147–1164CrossRefGoogle Scholar
  342. 528.
    Oleson, J.R (1993) Prostate cancer: hot, but hot enough? Int J Radiat Oncol Biol Phys 26:369–370PubMedCrossRefGoogle Scholar
  343. 529.
    Storm FK (1993) What happened to hyperthermia and what is its current status in cancer treatment? J Surg Oncol 53:141–143PubMedCrossRefGoogle Scholar
  344. 530.
    Brizel DM (1998) Where there’s smoke, is there fire? Int J Hyperthermia 14:593–594CrossRefGoogle Scholar
  345. 531.
    Sneed PK, Dewhirst MW, Samulski T et al (1998) Should interstitial thermometry be used for deep hyperthermia? Int J Radiat Oncol Biol Phys 40:1205–1212CrossRefGoogle Scholar
  346. 532.
    Oleson JR (1989) If we can’t define the quality, can we assure it? Int J Radiat Oncol Biol Phys 16:879PubMedCrossRefGoogle Scholar
  347. 533.
    Vasanthan A, Mitsumori M, Part JH et al (2005) Regional hyperthermia combined with radiotherapy for uterine cervical cancers: a multiinstitutional prospective randomized trial of the international atomic energy agency. Int J Rad Oncol Biol Phys 61, 145–153CrossRefGoogle Scholar
  348. 534.
    Fatehi D, van der Zee J, van der Wal E et al (2006) Temperature data analysis for 22 patients with advanced cervical carcinoma treated in Rotterdam using radiotherapy, hyperthermia and chemotherapy: a reference point is needed. Int J Hyperthermia 22:353–363PubMedCrossRefGoogle Scholar
  349. 535.
    Walker A, McCallum HM, Wheldon TE et al (1978) Promotion of metastasis of C3H mouse mammary carcinoma by local hyperthermia. Br J Cancer 38(4):561–563PubMedCrossRefGoogle Scholar
  350. 536.
    Dickson JA, Ellis HA (1976) The influence of tumor volume and the degree of heating on the response of the solid Yoshida sarcoma to hyperthermia. Cancer Res 36(3):1188–1195PubMedGoogle Scholar
  351. 537.
    Hahn EW, Alfiery AA, Kim JH (1979) The significance of local tumor hyperthermia/radiation on the production of disseminated disease. Int J Radiat Oncol Biol Phys 5:819–823PubMedGoogle Scholar
  352. 538.
    Ando K, Urano M, Kenton L et al (1987) Effect of thermo-chemotherapy on the development of spontaneous lung metastases. Int J Hyperthermia 3(5):453–458PubMedCrossRefGoogle Scholar
  353. 539.
    McChesney Gillette S, Dewhirst MW et al (1992) Response of canine soft tissue sarcomas to radiation or radiation plus hyperthermia: randomized phase II study. Int J Hyperthermia 8(3):309–320CrossRefGoogle Scholar
  354. 540.
    Lord PF, Kapp DS, Morrow D (1981) Increased skeletal metastases of spontaneous canine osteosarcoma after fractionated systemic hyperthermia and local x-irradiation. Cancer Res 41:4331–4334PubMedGoogle Scholar
  355. 541.
    Sminia P, Jansen W, Haveman J et al (1990) Incidence of tumors in the cervical region of the rat after treatment with radiation and hyperthermia. Int. J Radiat Biol 57(2):425–436PubMedCrossRefGoogle Scholar
  356. 542.
    Hei TK, Hall EJ, Kushner S et al (1986) Hyperthermia chemotherapeutic agents and oncogenic transformation. Int J Hyperthermia 2(3):311–320PubMedCrossRefGoogle Scholar
  357. 543.
    Komatsu K, Miller RC, Hall EJ (1988) The oncogenetic potential of a combination of hyperthermia and chemotherapy. Br J Cancer 57:59–63PubMedCrossRefGoogle Scholar
  358. 544.
    Miller RC, Roizin-Towle L, Komatsu K (1989) Interaction of heat with X-rays and cis-platinum; cell lethality and oncogenetic transformation. Int J Hyperthermia 5:697–705PubMedCrossRefGoogle Scholar
  359. 545.
    Valdagni R, Knapp DS, Valdagni C (1986) N3 (TNM-UICC) metastatic neck nodes managed by combined radiation-therapy and hyperthermia: clinical results and analysis of treatment parameters. Int J Hyperthermia 2(2):189–200PubMedCrossRefGoogle Scholar
  360. 546.
    Howard GCW, Sathiaseelan V, Freedman L et al (1987) Hyperthermia and radiation in the treatment of superficial malignancies: an analysis of treatment parameters response and toxicity. Int J Hyperthermia 3(1):1–8PubMedCrossRefGoogle Scholar
  361. 547.
    Ben-Yosef R, Kapp DS (1992) Persistent and/or late complications of combined radiation therapy and hyperthermia. Int J Hyperthermia 8(6):733–745PubMedCrossRefGoogle Scholar
  362. 548.
    Osinsky S, Ganul V, Protsyk V et al (2004) Local and regional hyperthermia in combined treatment of malignant tumors: 20 years experience in Ukraine. The Kadota Fund International Forum, Awaji, Japan, 15–18 June 2004Google Scholar
  363. 549.
    Seegenschmiedt MH, Klautke G, Seidel R et al (1995) Clinical Practice of interstitial thermoradiotherapy. In: Seegenschmiedt MH, Fessenden P, Vernon CC (eds) Thermoradiotherapy and thermochemotherapy Vol. 2. Springer, Heidelberg, pp 207–262Google Scholar
  364. 550.
    Waterman FM (1995) Invasive thermometry techniques. In: Seegenschmiedt MH, Fessenden P, Vernon CC (eds) Thermoradiotherapy and thermochemotherapy Vol. 1. Springer, Heidelberg, pp 331–360Google Scholar
  365. 551.
    Field SB (1987) Biological Aspects of Hyperthermia, Physics and Technology of Hyperthermia. In: Field SB, Franconi C (eds) NATO ASI Series, E. Applied Sciences, No.127. Martinus Nijhoff Publ. Dordrecht, pp 19–53Google Scholar
  366. 552.
    Jones E, Dewhirst M, Vujaskovic Z (2003) Hyperthermia improves the complete response rate for superficial tumors treated with radiation: results of a prospective randomized trial testing the thermal dose parameter CEM 43°T90. Int J Rad Oncol Biol Phys 57:S253–S254Google Scholar
  367. 553.
    Holt JAG (1977) Increase in X-ray sensitivity of cancer after exposure to 434 MHz electromagnetic radiation. J Bioeng 1:479–485Google Scholar
  368. 554.
    Blank M (1999) Coupling of AC Electric Fields to Cellular Processes. In: Abstracts of First International Symposium on Nonthermal Medical/Biological Treatments Using Electromagnetic Fields and Ionized Gases, ElectroMed’99, Norfolk VA, USA, 12–14 April 1999Google Scholar
  369. 555.
    Young RA (1990) Stress proteins and immunology. Ann Rev Immunol 8:401–420CrossRefGoogle Scholar
  370. 556.
    Fajardo LF, Prionas SD, Kowalsky J et al (1988) Hyperthermia Inhibits angiogenesis. Radiation Research 114(2):297–306PubMedCrossRefGoogle Scholar
  371. 557.
    Hetts SW (1998) To die or not to die. JAMA 279:300–307PubMedCrossRefGoogle Scholar
  372. 558.
    Kopper L, Fesus L (eds) (2002) Apoptosis. Medicina, BudapestGoogle Scholar
  373. 559.
    Walser EM (2005) Percutaneous laser ablation in the treatment of hepatocellular carcinoma with a tumor size of 4 cm or smaller. J Vasc Interv Radiol 16(11):1427–1429PubMedGoogle Scholar
  374. 560.
    Mulcahy RT, Gould MN, Hidvegi E et al (1981) Hyperthermia and surface morphology of P388 ascites tumor cells: Effects on membrane modifications. Int J Radiat Biol 39(1):95–106CrossRefGoogle Scholar
  375. 561.
    Lepock JR, Cheng KW, Al-Qysi H et al (1983) Thermotropic lipid and protein transitions in Chinese hamster lung cell membranes: relationship to hyperthermia killing. Can J Biochem Cell Biol 61(6):421–427PubMedCrossRefGoogle Scholar
  376. 562.
    Richier S, Sabourault C, Courtiade J et al (2006) Oxidative stress and apoptotic events during thermal stress in the symbiotic sea anemone, Anemonia visidis. FEBS J 273(18):4186–4198PubMedCrossRefGoogle Scholar
  377. 563.
    Multhoff G (2002) Activation of natural killer cells by heat shock protein 70. Int J Hyperthermia 18(6):576–585PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of Biotechnics, Faculty of EngineeringSt. Istvan UniversityGodolloHungary
  2. 2.McKinsey & Co.BostonUSA
  3. 3.Oncotherm Inc.PatyHungary

Personalised recommendations