Skip to main content

Mycorrhizal Symbiosis and Plant Reproduction

  • Chapter
  • First Online:
Arbuscular Mycorrhizas: Physiology and Function

Abstract

Reproduction is an essential function of all organisms and, for many crop species, reproductive structures are the principle edible parts. Still, relatively little is known about the effects of the mycorrhizal symbiosis on host plant reproduction. Common limitations to reproduction include nutrient deficiency, herbivory and disease, and mycorrhizal fungi can influence each of these. Several aspects of sexual reproduction may be influenced by colonization of mycorrhizal fungi including the timing of reproductive events, the number of inflorescences per plant, the number of flowers per inflorescence, the amount of pollen per flower, the proportion of flowers producing fruits, and the number of seeds per fruit. Seed quality can also be strongly influenced by colonization of mycorrhizal fungi, resulting in variation in seedling vigor and resultant competitive ability. Because infection by mycorrhizal fungi can influence interactions among plants, it may lead to variation among individuals in their contributions to the next generation and, therefore, may control the genetic structures of populations and communities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott LK, Robson AD (1982) The role of vesicular arbuscular mycorrhizal fungi in agriculture and the selection of fungi for inoculation. Aust J Agric Res 32:389–408

    Google Scholar 

  • Abbott LK, Robson AD (1984) The effect of VA mycorrhizae on plant growth. In: Powell CL, Bagyaraj DJ (eds) VA mycorrhiza. CRC Press, Boca Raton, FL

    Google Scholar 

  • Allen EB, Allen MF (1984) Competition between plants of different successional stages: mycorrhizae as regulators. Can J Bot 62:2625–2629

    Google Scholar 

  • Allsopp N, Stock WD (1992) Density dependent interactions between VA mycorrhizal fungi and even-aged seedlings of two perennial Fabaceae species. Oecologia 91:281–287

    Google Scholar 

  • Austin RB (1966) The influence of the phosphorus and nitrogen nutrition of pea plants on the growth of their progeny. Plant Soil 24:53–58

    Google Scholar 

  • Azcon Aguilar C, Barea JM (1996) Arbuscular mycorrhizas and biological control of soil-borne plant pathogens – An overview of the mechanisms involved. Mycorrhiza 6:457–464

    Google Scholar 

  • Bååth E, Hayman DS (1984) Effect of soil volume and plant density on mycorrhizal infection and growth response. Plant Soil 77:373–376

    Google Scholar 

  • Barry DAJ, Miller MH (1989) Phosphorus nutritional requirement of maize seedlings for maximum yield. Agronom J 81:95–99

    Google Scholar 

  • Bazzaz FA, Chiariello NR, Coley PD, Pitelka LF (1987) Allocating resources to reproduction and defense. BioScience 37:58–67

    Google Scholar 

  • Bethlenfalvay GJ, Schreiner RP, Mihara KL (1997) Mycorrhizal fungi effects on nutrient composition and yield of soybean seeds. J Plant Nutr 20:581–591

    CAS  Google Scholar 

  • Bolan NS (1991) A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants. Plant Soil 134:189–207

    CAS  Google Scholar 

  • Bolland MDA, Paynter BH (1990) Increasing phosphorus concentration in seed of annual pasture legume species increases herbage and seed yields. Plant Soil 125:197–205

    CAS  Google Scholar 

  • Bonfante P, Perotto S (1995) Strategies of arbuscular mycorrhizal fungi when infecting host plants. New Phytol 130:3–21

    Google Scholar 

  • Borowicz VA (1997) A fungal root symbiont modifies plant resistance to an insect herbivore. Oecologia 112:534–542

    Google Scholar 

  • Boswell EP, Koide RT, Shumway DL, Addy HD (1998) Winter wheat cover cropping, VA mycorrhizal fungi and maize growth and yield. Agric Ecosyst Environ 67:55–65

    Google Scholar 

  • Bryla DR, Koide RT (1990) Regulation of reproduction in wild and cultivated Lycopersicon esculentum Mill. by vesicular-arbuscular mycorrhizal infection. Oecologia 84:74–81

    Google Scholar 

  • Busse MD, Ellis JR (1985) Vesicular-arbuscular mycorrhizal (Glomus fasciculatum) influence on soybean drought tolerance in high phosphorus soil. Can J Bot 63:2290–2294

    Google Scholar 

  • Buwalda JG (1980) Growth of a clover-ryegrass association with vesicular-arbuscular mycorrhizas. NZ J Agric Res 23:379–383

    Google Scholar 

  • Carey PD, Fitter AH, Watkinson AR (1982) A field study using the fungicide benomyl to investigate the effect of mycorrhizal fungi on plant fitness. Oecologia 90:550–555

    Google Scholar 

  • Caron M, Fortin JA, Richard C (1986) Effect of phosphorus concentration and Glomus intraradices on Fusarium crown and root rot of tomatoes. Phytopath 76:942–946

    CAS  Google Scholar 

  • Clarke C, Mosse B (1981) Plant growth responses to vesicular-arbuscular mycorrhiza XII. Field inoculation responses of barley at two soil P levels. New Phytol 87:695–703

    CAS  Google Scholar 

  • Cooper KM (1984) Physiology of VA mycorrhizal associations. In: Powell CL, Bagyaraj DJ (eds) VA mycorrhiza. CRC Press, Boca Raton, FL

    Google Scholar 

  • Crush JR (1974) Plant growth responses to vesicular-arbuscular mycorrhiza VII. Growth and nodulation of some herbage legumes. New Phytol 73:743–749

    CAS  Google Scholar 

  • Cuenca G, Lovera M (1992) Vesicular arbuscular mycorrhizae in disturbed and revegetated sites from La Gran Sabana, Venezuela. Can J Bot 70:73–79

    Google Scholar 

  • Daft MJ, Okusanya BO (1973) Effect of Endogone mycorrhiza on plant growth. VI. Influence of infection on the anatomy and reproductive development in four hosts. New Phytol 72:1333–1339

    Google Scholar 

  • Davis RM, Menge JA (1981) Phytophthora parasitica inoculation and intensity of vesicular-arbuscular mycorrhizae in citrus. New Phytol 87:705–715

    Google Scholar 

  • Del Vecchio TA, Gehring CA, Cobb NS, Whitham TG (1993) Negative effects of scale insect herbivory on the ectomycorrhizae of juvenile pinyon pine. Ecology 74:22997–2302

    Google Scholar 

  • Dodd J, Jeffries P (1986) Early development of vesicular-arbuscular mycorrhizas in autumn-sown cereals. Soil Biol Biochem 18:149–154

    Google Scholar 

  • Dodd J, Krikun J, Haas J (1983) Relative effectiveness of indigenous populations of vesicular-arbuscular mycorrhizal fungi from four sites in the Negev. Israel J Bot 32:10–21

    Google Scholar 

  • Douds DD, Nagahashi G, Reider C, Hepperly PR (2007) Inoculation with arbuscular mycorrhizal fungi increases the yield of potatoes in a high P soil. Biol Agric Hort 25:67–78

    Google Scholar 

  • Dunne MJ, Fitter AH (1989) The phosphorus budget of a field-grown strawberry (Fragaria x ananassa cv. Hapil) crop: evidence for a mycorrhizal contribution. Ann Appl Biol 114:185–193

    Google Scholar 

  • Facelli E, Facelli JM (2002) Soil phosphorus heterogeneity and mycorrhizal symbiosis regulate plant intra-specific competition and size distribution. Oecologia 133:54–61

    Google Scholar 

  • Fitter AH (1977) Influence of mycorrhizal infection on competition for phosphorus and potassium by two grasses. New Phytol 79:119–125

    CAS  Google Scholar 

  • Fitter AH (1991) Costs and benefits of mycorrhizas: Implications for functioning under natural conditions. Experientia 47:350–355

    Google Scholar 

  • Francis R and Read DJ (1994) The contributions of mycorrhizal fungi to the determination of plant community structure. In: Robson AD, Abbott LK, Malajczuk (eds) Management of mycorrhizas in agriculture, horticulture and forestry. Kluwer, Dordrecht, Netherlands

    Google Scholar 

  • Gange AC (1998) A potential microbiological method for the reduction of Poa annua L. in golf greens. J Turfgrass Sci 74:9–14

    Google Scholar 

  • Gange AC, Smith AK (2005) Arbuscular mycorrhizal fungi influence visitation rates of pollinating insects. Ecol Entomol 30:600–606

    Google Scholar 

  • Gange AC, West HM (1994) Interactions between arbuscular mycorrhizal fungi and foliar-feeding insects in Plantago lanceolata L. New Phytol 128:79–87

    Google Scholar 

  • Gange AC, Brown VK, Sinclair GS (1993) Vesicular-arbuscular mycorrhizal fungi: a determinant of plant community structure in early succession. Funct Ecol 7:616–622

    Google Scholar 

  • Gehring C, Bennett A (2009) Mycorrhizal fungal-plant-insect interactions: the importance of a community approach. Environ Entomol 38:93–102

    PubMed  Google Scholar 

  • Gehring CA, Whitham TG (1991) Herbivore-driven mycorrhizal mutualism in insect-susceptible pinyon pine. Nature 353:556–557

    Google Scholar 

  • Gehring CA, Whitham TG (1994) Interactions between above-ground herbivores and the mycorrhizal mutualists of plants. TREE 9:251–255

    CAS  PubMed  Google Scholar 

  • Gerdemann JW (1968) Vesicular-arbuscular mycorrhiza and plant growth. Ann Rev Phytopath 6:397–418

    Google Scholar 

  • Gianinazzi-Pearson V, Gianinazzi S (1983) The physiology of vesicular-arbuscular mycorrhizal roots. Plant Soil 71:197–209

    CAS  Google Scholar 

  • Grime JP, Mackey JML, Hillier SH, Read DJ (1987) Floristic diversity in a model system using experimental microcosms. Nature 328:420–422

    Google Scholar 

  • Guo T, Zhang J, Christie P, Li X (2006) Influence of nitrogen and sulfur fertilizers and inoculation with arbuscular mycorrhizal fungi on yield and pungency of spring onion. J Plant Nutr 29:1767–1778

    CAS  Google Scholar 

  • Hall IR (1978) Effects of endomycorrhizas on the competitive ability of white clover. NZ J Agric Res 21:509–515

    Google Scholar 

  • Hall JR, Hodges TK (1966) Phosphorus metabolism of germinating oat seeds. Plant Physiol 41:1459–1464

    CAS  PubMed  Google Scholar 

  • Harrison MJ (1999) Molecular and cellular aspects of the arbuscular mycorrhizal symbiosis. Ann Rev Plant Physiol Plant Molec Biol 50:361–389

    CAS  Google Scholar 

  • Hartnett DC, Hetrick BAD, Wilson GWT, Gibson DJ (1993) Mycorrhizal influence on intra- and interspecific neighbour interactions among co-occurring prairie grasses. J Ecol 81:787–795

    Google Scholar 

  • Hartnett DC, Samenus RJ, Fischer LE, Hetrick BAD (1994) Plant demographic responses to mycorrhizal symbiosis in tallgrass prairie. Oecologia 99:21–26

    Google Scholar 

  • Hayman DS (1983) The physiology of vesicular-arbuscular endomycorrhizal symbiosis. Can J Bot 61:944–963

    Google Scholar 

  • Hendrix SD (1988) Herbivory and its impact on plant reproduction. In: Lovett Doust J, Lovett Doust L (eds) Plant reproductive ecology, patterns and strategies. Oxford University Press, New York

    Google Scholar 

  • Heppell KB, Shumway DL, Koide RT (1998) The effect of mycorrhizal infection of Abutilon theophrasti on competitiveness of offspring. Funct Ecol 12:171–175

    Google Scholar 

  • Hetrick BAD, Wilson GWT, Hartnett DC (1989) Relationship between mycorrhizal dependence and competitive ability of two tallgrass prairie grasses. Can J Bot 67:2608–2615

    Google Scholar 

  • Janos DP (1980) Mycorrhizae influence tropical succession. Biotropica 12(Suppl):56–64

    Google Scholar 

  • Jensen A (1982) Influence of four vesicular-arbuscular mycorrhizal fungi on nutrient uptake and growth in barley (Hordeum vulgare). New Phytol 90:45–50

    CAS  Google Scholar 

  • Jones CG, Last FT (1991) Ectomycorrhizae and trees: implications for aboveground herbivory. In: Barbosa P, Krischik VA, Jones CG (eds) Microbial mediation of plant-herbivore interactions. Wiley, New York

    Google Scholar 

  • Karagiannidis N, Hadjisavva-Zinoviadi S (1998) The mycorrhizal fungus Glomus mosseae enhances growth, yield and chemical composition of a durum wheat variety in 10 different soils. Nutr Cycl Agroecosyst 52:1–7

    Google Scholar 

  • Kaufman JL, Guitard AA (1967) The effect of seed size on early plant development in barley. Can J Plant Sci 47:73–78

    Google Scholar 

  • Khanizadeh S, Hamel C, Kianmehr H et al (1995) Effect of three vesicular-arbuscular mycorrhizae species and phosphorus on reproductive and vegetative growth of three strawberry cultivars. J Plant Nutr 18:1073–1079

    CAS  Google Scholar 

  • Koide RT (1991a) Density-dependent response to mycorrhizal infection in Abutilon theophrasti Medic. Oecologia 85:389–395

    Google Scholar 

  • Koide RT (1991b) Nutrient supply, nutrient demand and plant response to mycorrhizal infection. New Phytol 117:365–386

    CAS  Google Scholar 

  • Koide RT (1998) Ecological considerations of mycorrhizal symbioses. In: Lynch J, Deikman J (eds) Phosphorus in plant biology: regulatory roles in cellular, organismic, and ecosystem processes. American Society of Plant Physiologists, Rockville, MD

    Google Scholar 

  • Koide RT (2000) Functional complementarity in the arbuscular mycorrhizal symbiosis. New Phytol 147:233–235

    Google Scholar 

  • Koide RT, Li M (1991) Mycorrhizal fungi and the nutrient ecology of three oldfield annual plant species. Oecologia 85:403–412

    Google Scholar 

  • Koide RT, Lu X (1992) Mycorrhizal infection of wild oats: maternal effects on offspring growth and reproduction. Oecologia 90:218–226

    Google Scholar 

  • Koide RT, Lu X (1995) On the cause of offspring superiority conferred by mycorrhizal infection of Abutilon theophrasti. New Phytol 131:435–441

    Google Scholar 

  • Koide RT, Huenneke LF, Hamburg SP, Mooney HA (1988a) Effects of applications of fungicide, phosphorus and nitrogen on the structure and productivity of an annual serpentine plant community. Funct Ecol 2:335–344

    Google Scholar 

  • Koide RT, Li M, Lewis J, Irby C (1988b) Role of mycorrhizal infection in the growth and reproduction of wild vs. cultivated plants. I. Wild vs. cultivated oats. Oecologia 77:537–543

    Google Scholar 

  • Koide RT, Shumway DL, Mabon SA (1994) Mycorrhizal fungi and reproduction of field populations of Abutilon theophrasti Medic. (Malvaceae). New Phytol 126:123–130

    Google Scholar 

  • Lau T-C, Koide RT, Stephenson AG (1995) Effects of soil fertility and mycorrhizal infection on pollen production nand pollen grain size of Cucurbita pepo (Cucurbitaceae). Plant Cell Environ 18:169–177

    Google Scholar 

  • Leake JR (1994) The biology of myco-heterotrophic (‘saprophytic’) plants. New Phytol 127:171–216

    Google Scholar 

  • Lee TD (1988) Patterns of fruit and seed production. In: Lovett Doust J, Lovett Doust L (eds) Plant reproductive ecology, patterns and strategies. Oxford University Press, New York

    Google Scholar 

  • Lewis JD, Koide RT (1990) Phosphorus supply, mycorrhizal infection and plant offspring vigour. Funct Ecol 4:695–702

    Google Scholar 

  • Lu X, Koide RT (1991) Avena fatua L. seed and seedling nutrient dynamics as influenced by mycorrhizal infection of the maternal generation. Plant Cell Environ 14:931–939

    CAS  Google Scholar 

  • Lu X, Koide RT (1994) The effects of mycorrhizal infection on components of plant growth and reproduction. New Phytol 128:211–218

    CAS  Google Scholar 

  • Maffia B, Janos DP (1993) Vesicular-arbuscular mycorrhizae influence seedling survival and size disparity in sunflower (Helianthus annuus L.) in dense, monospecific stands. In: Peterson L, Schelke M (eds) Abstracts of the ninth North American conference on Mycorrhizae. University of Guelph, Ontario, Canada

    Google Scholar 

  • Mayer AM (2004) Resistance to herbivores and fungal pathogens: Variations on a common theme? A review comparing the effect of secondary metabolites, induced and constitutive, on herbivores and fungal pathogens. Israel J Plant Sci 52:279–292

    CAS  Google Scholar 

  • McGonigle TP, Fitter AH (1988) Ecological consequences of arthropod grazing on VA mycorrhizal fungi. Proc Roy Soc Edinb 94B:25–32

    Google Scholar 

  • Merryweather M, Fitter A (1996) Phosphorus nutrition of an obligately mycorrhizal plant treated with the fungicide benomyl in the field. New Phytol 132:307–311

    CAS  Google Scholar 

  • Miller RM (1987) Mycorrhizae and succession. In: Jordan WR III, Gilpin ME, Aber JD (eds) Restoration ecology, a synthetic approach to ecological research. Cambridge University Press, Cambridge

    Google Scholar 

  • Miller RM, Jarstfer AG, Pillai JK (1987) Biomass allocation in an Agropyron smithii – Glomus symbiosis. Am J Bot 74:114–122

    Google Scholar 

  • Moora M, Zobel M (1996) Effect of arbuscular mycorrhiza on inter- and intraspecific competition of two grassland species. Oecologia 108:79–84

    Google Scholar 

  • Mullen RB, Schmidt SK (1993) Mycorrhizal infection, phosphorus uptake, and phenology in Ranunculus adoneus: implications for the functioning of mycorrhizae in alpine systems. Oecologia 94:229–234

    Google Scholar 

  • Muthukumar T, Udaiyan K (2002) Growth and yield of cowpea as influenced by changes in arbuscular mycorrhiza in response to organic manuring. J Agronom Crop Sci 188:123–132

    Google Scholar 

  • Nakatsubo T (1997) Effects of arbuscular mycorrhizal infection on the growth and reproduction of the annual legume Kummerowia striata growing in a nutrient-poor alluvial soil. Ecol Res 12:231–237

    Google Scholar 

  • Newsham KK, Fitter AH, Watkinson AR (1994) Root pathogenic and arbuscular mycorrhizal fungi determine fecundity of asymptomatic plants in the field. J Ecol 82:805–814

    Google Scholar 

  • Newsham KK, Fitter AH, Watkinson AR (1995) Multi-functionality and biodiversity in arbuscular mycorrhizas. TREE 10:407–411

    CAS  PubMed  Google Scholar 

  • Nuortila C, Kytöviita M-M, Tuomi J (2004) Mycorrhizal symbiosis has contrasting effects on fitness components in Campanula rotundifolia. New Phytol 164:543–553

    Google Scholar 

  • Parrish JAD, Bazzaz FA (1985) Nutrient content of Abutilon theophrasti seeds and the competitive ability of the resulting plants. Oecologia 65:247–251

    Google Scholar 

  • Patton DC, Ford HA (1983) The influence of plant characters and honeyeater size on levels of pollination in Australian plants. In: Jones CE, Little RJ (eds) Handbook of experimental pollination biology. Van Nostrand Reinhold, New York

    Google Scholar 

  • Pendleton RL (2000) Pre-inoculation by an arbuscular mycorrhizal fungus enhances male reproductive output of Cucurbita foetidissima. Int J Plant Sci 161:683–689

    CAS  Google Scholar 

  • Philip LJ, Posluszny U, Klironomos JN (2001) The influence of mycorrhizal colonization on the vegetative growth and sexual reproductive potential of Lythrum salicaria L. Can J Bot 79:381–388

    Google Scholar 

  • Pickett JA, Smiley DWM, Woodcock CM (1999) Secondary metabolites in plant-insect interactions: Dynamic systems of induced and adaptive responses. Adv Bot Res 30:91–115

    CAS  Google Scholar 

  • Powell CL (1981) Inoculation of barley with efficient mycorrhizal fungi stimulates seed yield. Plant Soil 59:487–489

    CAS  Google Scholar 

  • Powell CL, Bates PM (1981) Ericoid mycorrhizas stimulate fruit yield of blueberry. HortScience 16:655–656

    Google Scholar 

  • Rabin LB, Pacovsky RS (1985) Reduced larva growth of two Lepidoptera (Noctuidae) on excised leaves of soybean infected with a mycorrhizal fungus. J Econ Entomol 78:1358–1363

    Google Scholar 

  • Read DJ (1991) Mycorrhiza in ecosystems. Experientia 47:376–391

    Google Scholar 

  • Read DJ, Perez-Moreno (2003) Mycorrhizas and nutrient cycling in ecosystems - a journey towards relevance? New Phytol 157:475–492

    Google Scholar 

  • Ries SL, Eversen EH (1973) Protein content and seed size relationship with seedling vigor of wheat cultivars. Agron J 65:884–886

    Google Scholar 

  • Sanders IR, Koide RT (1993) Nutrient acquisition and community structure in co-occurring mycotrophic and non-mycotrophic old-field annuals. Funct Ecol 7:77–84

    Google Scholar 

  • Sanders I, Koide RT, Shumway DL (1993) Mycorrhizal stimulation of plant parasitism. Can J Bot 71:1143–1146

    Google Scholar 

  • Sanders I, Koide RT, Shumway D (1999) Diversity and structure in natural communities: the role of the mycorrhizal symbiosis. In: Varma A, Hock B (eds) Mycorrhizae: structure, function, molecular biology and biotechnology, 2nd edn. Springer, Berlin

    Google Scholar 

  • Sattin M, Zanin G, Berti A (1992) Case history for weed competition/population ecology: velvetleaf (Abutilon theophrasti) in corn (Zea mays). Weed Technol 6:213–219

    Google Scholar 

  • Schaffer WH, Schaffer MV (1979) The adaptive significance of variations in reproductive habit in the Agavaceae. II. Pollinator foraging behavior and selection for increased reproductive expenditure. Ecology 60:1051–1069

    Google Scholar 

  • Schemske DW (1980a) Evolution of floral display in the orchid Brassavola nodosa. Evolution 34:489–493

    Google Scholar 

  • Schemske DW (1980b) Floral ecology and hummingbird pollination of Combretum farinosum in Costa Rica. Biotropica 12:169–181

    Google Scholar 

  • Schemske DW, Wilson MF, Melampy MN et al (1978) Flowering ecology of some woodland herbs. Ecology 59:351–366

    Google Scholar 

  • Schenck NC, Smith GS (1982) Responses of six species of vesicular-arbuscular mycorrhizal fungi and their effect on soybean at four soil temperatures. New Phytol 92:193–201

    Google Scholar 

  • Schweizer CJ, Ries SK (1969) Protein content of seed: increase improves growth and yield. Science 165:73–75

    CAS  PubMed  Google Scholar 

  • Shumway DL, Koide RT (1994) Within-season variability in mycorrhizal benefit to reproduction in Abutilon theophrasti Medic. Plant Cell Environ 17:821–827

    Google Scholar 

  • Shumway DL, Koide RT (1995) Size and reproductive inequality in mycorrhizal and nonmycorrhizal populations of Abutilon theophrasti. J Ecol 83:613–620

    Google Scholar 

  • Smith SE, Gianinazzi-Pearson V (1988) Physiological interactions between symbionts in vesicular-arbuscular mycorrhizal plants. Ann Rev Plant Physiol Plant Mol Biol 39:221–244

    CAS  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic, San Diego, CA

    Google Scholar 

  • Smith FA, Grace EJ, Smith SE (2009) More than a carbon economy: nutrient trade and ecological sustainability in facultative arbuscular mycorrhizal symbioses. New Phytol 182:347–358

    CAS  PubMed  Google Scholar 

  • Stanley MR, Koide RT, Shumway DL (1993) Mycorrhizal symbiosis increases growth, reproduction and recruitment of Abutilon theophrasti Medic. in the field. Oecologia 94:30–35

    Google Scholar 

  • Stephenson AG, Poulton JL, Lau TC, Koide RT (1999) Effects of soil phosphorus level and mycorrhizal infection on the male function of plants. In: Lynch J, Deikman J (eds) Phosphorus in plant biology: regulatory roles in molecular, cellular, organismic, and ecosystem processes. American Society of Plant Physiologists, Rockville, MD

    Google Scholar 

  • Stevenson MJ, Perera IY, Heilman I, Person S, Boss WF (2000) Inositol signaling and plant growth. Trends Plant Sci 5:252–258

    CAS  PubMed  Google Scholar 

  • Streitwolf-Engel R, van der Heijden MGA, Wiemken A, Sanders IR (2001) The ecological significance of arbuscular mycorrhizal fungal effects on clonal reproduction in plants. Ecology 82:2846–2859

    Google Scholar 

  • Sudová R, Vosátka M (2008) Effects of inoculation with native arbuscular mycorrhizal fungi on clonal growth of Potentilla reptans and Fragaria moschata (Rosaceae). Plant Soil 308:55–67

    Google Scholar 

  • Sylvia DM (1983) Role of Laccaria laccata in protecting primary roots of Douglas-fir from root rot. Plant Soil 71:299–302

    Google Scholar 

  • Taber RA (1982) Occurrence of Glomus spores in weed seeds in soil. Mycologia 74:515–520

    Google Scholar 

  • Thompson JP, Wildermuth GB (1989) Colonization of crop and pasture species with vesicular-arbuscular mycorrhizal fungi and a negative correlation with root infection by Bipolaris sorokiniana. Can J Bot 69:687–693

    Google Scholar 

  • Vejsadova H, Siblikova D, Gryndler M et al (1993) Influence of inoculation with Bradyrhizobium japonicum and Glomus claroideum on seed yield of soybean under greenhouse and field conditions. J Plant Nutr 16:619–629

    Google Scholar 

  • Venkateswarlu B, Pirat M, Kishore N, Rasul A (2008) Mycorrhizal inoculation in neem (Azadirachta indica) enhances azadirachtin content in seed kernals. World J Microbiol Biotechnol 24:1243–1247

    CAS  Google Scholar 

  • Wallace LL (1981) Growth, morphology and gas exchange of mycorrhizal and nonmycorrhizal Panicum coloratum L., a C4 grass species, under different clipping and fertilization regimes. Oecologia 49:272–278

    Google Scholar 

  • Weiner J (1988) The influence of competition on plant reproduction. In: Lovett Doust J, Lovett Doust L (eds) Plant reproductive ecology, patterns and strategies. Oxford University Press, New York

    Google Scholar 

  • Weiner J (1990) Asymmetric competition in plant populations. Trends Ecol Evol 5:360–364

    CAS  PubMed  Google Scholar 

  • West HM, Fitter AH, Watkinson AR (1993a) The influence of three biocides on the fungal associates of the roots of Vulpia ciliata ssp. ambigua under natural conditions. J Ecol 81:345–350

    Google Scholar 

  • West HM, Fitter AH, Watkinson AR (1993b) Response of Vulpia ciliata ssp. ambigua to removal of mycorrhizal infection and to phosphate application under natural conditions. J Ecol 81:351–358

    Google Scholar 

  • Wilson JB (1988) The effect of initial advantage on the course of plant competition. Oikos 51:19–24

    Google Scholar 

  • Wyatt R (1981) The reproductive biology of Asclepias tuberose. II. Factors determining fruit set. New Phytol 88:375–385

    Google Scholar 

  • Zhang M, Nyborg M, McGill WB (1990) Phosphorus concentration in barley (Hordeum vulgare L.) seed: influence on seedling growth and dry matter production. Plant Soil 122:79–83

    CAS  Google Scholar 

Download references

Acknowledgments

The U.S. National Science Foundation, the U.S. Department of Agriculture and the A.W. Mellon Foundation provided funding for research leading to many of the results discussed herein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger T. Koide .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Koide, R.T. (2010). Mycorrhizal Symbiosis and Plant Reproduction. In: Koltai, H., Kapulnik, Y. (eds) Arbuscular Mycorrhizas: Physiology and Function. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9489-6_14

Download citation

Publish with us

Policies and ethics