Fungal Spore Germination and Pre-symbiotic Mycelial Growth – Physiological and Genetic Aspects

  • Manuela Giovannetti
  • Luciano Avio
  • Cristiana Sbrana
Chapter

Abstract

Arbuscular mycorrhizal fungi (AMF) are obligate biotrophs, living symbiotically in the roots of most land plants. They form spores in the soil, which are able to germinate and grow, but are unable to complete their life cycle without establishing a functional symbiosis with a host plant. In this chapter, results of recent studies providing new insights into the main developmental switches occurring in the fungal organism, from the relief of spore dormancy to the development of germlings and growth arrest in the absence of the host, are reviewed. The knowledge of environmental, cytological, biochemical and molecular events involved in early stages of AMF life cycle may reveal how these obligate symbionts com­pensate for the lack of host-regulated spore germination, possibly representing a strong selective disadvantage. Diverse scientific approaches showed multiple survival strategies, active during pre-symbiotic mycelial growth, contributing to the survival of AM fungal individuals and populations.

Keywords

Arbuscular mycorrhizal fungi Spore dormancy AMF life cycle Spore germination Pre-symbiotic growth Germling growth arrest Host signals Survival strategies Ancient asexuals Gene expression 

References

  1. Abbott LK, Robson AD (1977) The distribution and abundance of vesicular-arbuscular endophytes in some Western Australian soils. Aust J Bot 25:515–522CrossRefGoogle Scholar
  2. Ames RN, Mihara KL, Bayne HG (1989) Chitin-decomposing actynomycetes associated with a vesicular-arbuscular mycorrhizal fungus from a calcareous soil. New Phytol 111:67–71CrossRefGoogle Scholar
  3. Artursson V, Jansson JK (2003) Use of bromodeoxyuridine immunocapture to identify active bacteria associated with arbuscular mycorrhizal hyphae. Appl Environ Microbiol 69:6208–6215CrossRefPubMedGoogle Scholar
  4. Astrom H, Giovannetti M, Raudaskoski M (1994) Cytoskeletal components in the arbuscular mycorrhizal fungus Glomus mosseae. Mol Plant Microbe Interact 7:309–312CrossRefGoogle Scholar
  5. Avio L, Giovannetti M (1998) The protein pattern of spores of arbuscular mycorrhizal fungi: comparison of species, isolates and physiological stages. Mycol Res 102:985–990CrossRefGoogle Scholar
  6. Avio L, Cristani C, Strani P, Giovannetti M (2009) Genetic and phenotypic diversity of geographically different isolates of Glomus mosseae. Can J Microbiol 55:242–253CrossRefPubMedGoogle Scholar
  7. Ayling SM, Smith SE, Smith FA (2000) Transmembrane electric potential difference of germ tubes of arbuscular mycorrhizal fungi responds to external stimuli. New Phytol 147:631–639CrossRefGoogle Scholar
  8. Azcón R (1987) Germination and hyphal growth of Glomus mosseae in vitro. Effect of rhizosphere bacteria and cell-free culture media. Soil Biol Biochem 19:417–419CrossRefGoogle Scholar
  9. Azcón R (1989) Selective interaction between free-living rhizosphere bacteria and vesicular-arbuscular mycorrhizal fungi. Soil Biol Biochem 21:639–644CrossRefGoogle Scholar
  10. Azcón R, Ocampo JA (1984) Effect of root exudation on VA mycorrhizal infection at early stages of plant growth. Plant Soil 82:133–138CrossRefGoogle Scholar
  11. Azcón-Aguilar C, Diaz-Rodriguez RM, Barea JM (1986) Effect of soil micro-organisms on spore germination and growth of the vesicular-arbuscular mycorrhizal fungus Glomus mosseae. Trans Br Mycol Soc 86:337–340CrossRefGoogle Scholar
  12. Bago B, Zipfel W, Williams RM, Chamberland H, Lafontaine JG, Webb WW, Piche Y (1998) In vivo studies on the nuclear behavior of the arbuscular mycorrhizal fungus Gigaspora rosea grown under axenic conditions. Protoplasma 203:1–15CrossRefGoogle Scholar
  13. Bago B, Pfeffer PE, Douds DD, Brouillette J, Becard G, Shachar-Hill Y (1999a) Carbon metabolism in spores of the arbuscular mycorrhizal fungus Glomus intraradices as revealed by nuclear magnetic resonance spectroscopy. Plant Physiol 121:263–271CrossRefPubMedGoogle Scholar
  14. Bago B, Zipfel W, Williams RM, Piche Y (1999b) Nuclei of symbiotic arbuscular mycorrhizal fungi as revealed by in vivo two-photon microscopy. Protoplasma 209:77–89CrossRefPubMedGoogle Scholar
  15. Bago B, Pfeffer PE, Zipfel W, Lammers P, Shachar-Hill Y (2002a) Tracking metabolism and imaging transport in arbuscular mycorrhizal fungi. Metabolism and transport in AM fungi. Plant Soil 244:189–197CrossRefGoogle Scholar
  16. Bago B, Zipfel W, Williams RM, Jun J, Arreola R, Lammers PJ, Pfeffer PE, Shachar-Hill Y (2002b) Translocation and utilization of fungal storage lipid in the arbuscular mycorrhizal symbiosis. Plant Physiol 128:108–124CrossRefPubMedGoogle Scholar
  17. Bago B, Pfeffer PE, Abubaker J, Jun J, Allen JW, Brouillette J, Douds DD, Lammers PJ, Shachar-Hill Y (2003) Carbon export from arbuscular mycorrhizal roots involves the translocation of carbohydrate as well as lipid. Plant Physiol 131:1496–1507CrossRefPubMedGoogle Scholar
  18. Bainard LD, Brown PD, Upadhyaya MK (2009) Inhibitory effect of tall hedge mustard (Sisymbrium loeselii) allelochemicals on rangeland plants and arbuscular mycorrhizal fungi. Weed Sci 57:386–393CrossRefGoogle Scholar
  19. Bartolome-Esteban H, Schenck NC (1994) Spore germination and hyphal growth of arbuscular mycorrhizal fungi in relation to soil aluminum saturation. Mycologia 86:217–226CrossRefGoogle Scholar
  20. Becker WN, Hall IR (1976) Gigaspora margarita, a new species in the Endogonaceae. Mycotaxon 4:155–160Google Scholar
  21. Beilby JP (1983) Effects of inhibitors on early protein, RNA, and lipid synthesis in germinating vesicular-arbuscular mycorrhizal fungal spores of Glomus caledonium. Can J Microbiol 29:596–601CrossRefPubMedGoogle Scholar
  22. Beilby JP, Kidby DK (1980) Biochemistry of ungerminated and germinated spores of the vesicular-arbuscular mycorrhizal fungus, Glomus caledonium: changes in neutral and polar lipids. J Lipid Res 21:739–750PubMedGoogle Scholar
  23. Beilby JP, Kidby DK (1982) The early synthesis of RNA, protein, and some associated metabolic events in germinating vesicular-arbuscular mycorrhizal fungal spores of Glomus caledonium. Can J Microbiol 28:623–628CrossRefGoogle Scholar
  24. Bendavid-Val R, Rabinowitch HD, Katan J, Kapulnik Y (1997) Viability of VA-mycorrhizal fungi following soil solarization and fumigation. Plant Soil 195:185–193CrossRefGoogle Scholar
  25. Berbara RLL, Morris BM, Fonseca HMAC, Reid B, Gow NAR, Daft MJ (1995) Electrical ­currents associated with arbuscular mycorrhizal interactions. New Phytol 129:433–438CrossRefGoogle Scholar
  26. Besserer A, Puech-Pages V, Kiefer P, Gomez-Roldan V, Jauneau A, Roy S, Portais JC, Roux C, Becard G, Sejalon-Delmas N (2006) Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria. PLoS Biol 4:e226CrossRefPubMedGoogle Scholar
  27. Besserer A, Becard G, Jauneau A, Roux C, Sejalon-Delmas N (2008) GR24, a synthetic analog of strigolactones, stimulates the mitosis and growth of the arbuscular mycorrhizal fungus Gigaspora rosea by boosting its energy metabolism. Plant Physiol 148:402–413CrossRefPubMedGoogle Scholar
  28. Bécard G, Piché Y (1989) Fungal growth stimulation by CO2 and root exudates in vesicular-arbuscular mycorrhizal symbiosis. Appl Environ Microbiol 55:2320–2325PubMedGoogle Scholar
  29. Bécard G, Doner LW, Rolin DB, Douds DD, Pfeffer PE (1991) Identification and quantification of trehalose in vesicular-arbuscular mycorrhizal fungi by in vivo C-13 NMR and HPLC analyses. New Phytol 118:547–552CrossRefGoogle Scholar
  30. Bécard G, Pfeffer PE (1993) Status of nuclear division in arbuscular mycorrhizal fungi during in vitro development. Protoplasma 174:62–68CrossRefGoogle Scholar
  31. Bianciotto V, Bonfante P (1993) Evidence of DNA replication in an arbuscular mycorrhizal fungus in the absence of the host plant. Protoplasma 176:100–105CrossRefGoogle Scholar
  32. Bianciotto V, Barbiero G, Bonfante P (1995) Analysis of the cell cycle in an arbuscular mycorrhizal fungus by flow cytometry and bromodeoxyuridine labelling. Protoplasma 188:161–169CrossRefGoogle Scholar
  33. Bianciotto V, Lumini E, Lanfranco L, Minerdi D, Bonfante P, Perotto S (2000) Detection and identification of bacterial endosymbionts in arbuscular mycorrhizal fungi belonging to the family Gigasporaceae. Appl Environ Microbiol 66:4503–4509CrossRefPubMedGoogle Scholar
  34. Bianciotto V, Lumini E, Bonfante P, Vandamme P (2003) ‘Candidatus Glomeribacter gigasporarum’ gen. nov., sp nov., an endosymbiont of arbuscular mycorrhizal fungi. Int J Syst Evol Microbiol 53:121–124CrossRefPubMedGoogle Scholar
  35. Bonanomi A, Wiemken A, Boller T, Salzer P (2001) Local induction of a mycorrhiza-specific class III chitinase gene in cortical root cells of Medicago truncatula containing developing or mature arbuscules. Plant Biol 3:194–199CrossRefGoogle Scholar
  36. Bonfante P, Balestrini R, Mendgen K (1994) Storage and secretion processes in the spore of Gigaspora margarita Becker & Hall as revealed by high-pressure freezing and freeze substitution. New Phytol 128:93–101CrossRefGoogle Scholar
  37. Braunberger PG, Abbott LK, Robson AD (1996) Infectivity of arbuscular mycorrhizal fungi after wetting and drying. New Phytol 134:673–684CrossRefGoogle Scholar
  38. Breuninger M, Trujillo CG, Serrano E, Fischer R, Requena N (2004) Different nitrogen sources modulate activity but not expression of glutamine synthetase in arbuscular mycorrhizal fungi. Fungal Genet Biol 41:542–552CrossRefPubMedGoogle Scholar
  39. Bücking H, Abubaker J, Govindarajulu M, Tala M, Pfeffer PE, Nagahashi G, Lammers P, Shachar-Hill Y (2008) Root exudates stimulate the uptake and metabolism of organic carbon in germinating spores of Glomus intraradices. New Phytol 180:684–695CrossRefPubMedGoogle Scholar
  40. Buée M, Rossignol M, Jauneau A, Ranjeva R, Bécard G (2000) The pre-symbiotic growth of arbuscular mycorrhizal fungi is induced by a branching factor partially purified from plant root exudates. Mol Plant Microbe Interact 13:693–698CrossRefPubMedGoogle Scholar
  41. Burggraaf JP, Beringer JE (1989) Absence of nuclear DNA synthesis in vesicular-arbuscular mycorrhizal fungi during in vitro development. New Phytol 111:25–33CrossRefGoogle Scholar
  42. Butehorn B, Gianinazzi-Pearson V, Franken P (1999) Quantification of beta-tubulin RNA expression during asymbiotic and symbiotic development of the arbuscular mycorrhizal fungus Glomus mosseae. Mycol Res 103:360–364CrossRefGoogle Scholar
  43. Calvet C, Barea JM, Pera J (1992) In vitro interactions between the vesicular-arbuscular mycorrhizal fungus Glomus mosseae and some saprophytic fungi isolated from organic substrates. Soil Biol Biochem 24:775–780CrossRefGoogle Scholar
  44. Carpenter-Boggs L, Loynachan TE, Stahl PD (1995) Spore germination of Gigaspora margarita stimulated by volatiles of soil-isolated actinomycetes. Soil Biol Biochem 27:1445–1451CrossRefGoogle Scholar
  45. Castaldini M, Turrini A, Sbrana C, Benedetti A, Marchionni M, Mocali S, Fabiani A, Landi S, Santomassimo F, Pietrangeli B (2005) Impact of Bt corn on rhizospheric and soil eubacterial communities and on beneficial mycorrhizal symbiosis in experimental microcosms. Appl Environ Microbiol 71:6719–6729CrossRefPubMedGoogle Scholar
  46. Chabaud M, Venard C, Defaux PA, Becard G, Barker DG (2002) Targeted inoculation of Medicago truncatula in vitro root cultures reveals MtENOD11 expression during early stages of infection by arbuscular mycorrhizal fungi. New Phytol 156:265–273CrossRefGoogle Scholar
  47. Clark RB (1997) Arbuscular mycorrhizal adaptation, spore germination, root colonization, and host plant growth and mineral acquisition at low pH. Plant Soil 192:15–22CrossRefGoogle Scholar
  48. Corradi N, Sanders IR (2006) Evolution of the P-type II ATPase gene family in the fungi and presence of structural genomic changes among isolates of Glomus intraradices. BMC Evol Biol 6:21CrossRefPubMedGoogle Scholar
  49. Croll D, Giovannetti M, Koch AM, Sbrana C, Ehinger M, Lammers PJ, Sanders IR (2009) Nonself vegetative fusion and genetic exchange in the arbuscular mycorrhizal fungus Glomus intraradices. New Phytol 181:924–937CrossRefPubMedGoogle Scholar
  50. da Silva DKA, Freitas ND, Cuenca G, Maia LC, Oehl F (2008) Scutellospora pernambucana, a new fungal species in the Glomeromycetes with a diagnostic germination orb. Mycotaxon 106:361–370Google Scholar
  51. Daniels BA, Graham SO (1976) Effects of nutrition and soil extracts on germination of Glomus mosseae spores. Mycologia 68:108–116CrossRefGoogle Scholar
  52. Daniels BA, Trappe JM (1980) Factors affecting spore germination of the vesicular-arbuscular mycorrhizal fungus, Glomus epigaeus. Mycologia 72:457–471CrossRefGoogle Scholar
  53. Schwartz RD, Badani H, Smadar W, Levy AA, Galili G, Kapulnik Y (2001) Identification of a novel genetically controlled step in mycorrhizal colonization: plant resistance to infection by fungal spores but not extra-radical hyphae. Plant J 27:561–569CrossRefGoogle Scholar
  54. David Schwartz R, Gadkar V, Wininger S, Bendov R, Galili G, Levy AA, Kapulnik Y (2003) Isolation of a premycorrhizal infection (pmi2) mutant of tomato, resistant to arbuscular mycorrhizal fungal colonization. Mol Plant Microbe Interact 16:382–388CrossRefPubMedGoogle Scholar
  55. de la Providencia IE, de Souza FA, Fernandez F, Delmas NS, Declerck S (2005) Arbuscular mycorrhizal fungi reveal distinct patterns of anastomosis formation and hyphal healing mechanisms between different phylogenic groups. New Phytol 165:261–271CrossRefPubMedGoogle Scholar
  56. de Miranda JCC, Harris PJ (1994) Effects of soil phosphorus on spore germination and hyphal growth of arbuscular mycorrhizal fungi. New Phytol 128:103–108CrossRefGoogle Scholar
  57. de Souza FA, Declerck S (2003) Mycelium development and architecture, and spore production of Scutellospora reticulata in monoxenic culture with Ri T-DNA transformed carrot roots. Mycologia 95:1004–1012CrossRefPubMedGoogle Scholar
  58. Delano-Frier JP, Tejeda-Sartorius M (2008) Unraveling the network: novel developments in the understanding of signaling and nutrient exchange mechanisms in the arbuscular mycorrhizal symbiosis. Plant Signal Behav 3:936PubMedGoogle Scholar
  59. Douds DD, Schenck NC (1991) Germination and hyphal growth of VAM fungi during and after storage in soil at five matric potentials. Soil Biol Biochem 23:177–183CrossRefGoogle Scholar
  60. Douds DD, Nagahashi G, Abney GD (1996) The differential effects of cell wall associated phenolics, cell walls, and cytosolic phenolics of host and non host roots on the growth of two species of AM fungi. New Phytol 133:289–294CrossRefGoogle Scholar
  61. Douds DD (1997) A procedure for the establishment of Glomus mosseae in dual culture with Ri T-DNA-transformed carrot roots. Mycorrhiza 7:57–61CrossRefGoogle Scholar
  62. El-Atrach F, Vierheilig H, Ocampo JA (1989) Influence of non-host plants on vesicular-arbuscular mycorrhizal infection of host plants and on spore germination. Soil Biol Biochem 21:161–163CrossRefGoogle Scholar
  63. El Gachtouli N, Paynot M, Morandi D, Gianinazzi S (1996) Effect of polyamines on endomycorrhizal infection of Pisum sativum and spore germination of Glomus mosseae. In: Azcón-Aguilar C, Barea JM (eds) Mycorrhizas in integrated Systems: from genes to plant development. European Commission, LuxembourgGoogle Scholar
  64. Elfstrand M, Feddermann N, Ineichen K, Nagaraj VJ, Wiemken A, Boller T, Salzer P (2005) Ectopic expression of the mycorrhiza-specific chitinase gene Mtchit 3-3 in Medicago truncatula root-organ cultures stimulates spore germination of glomalean fungi. New Phytol 167:557–570CrossRefPubMedGoogle Scholar
  65. Estaun V (1989) Effect of sodium chloride and mannitol on germination and hyphal growth of the vesicular-arbuscular mycorrhizal fungus Glomus mosseae. Agric Ecosyst Environ 29:123–129CrossRefGoogle Scholar
  66. Filippi C, Bagnoli G, Citernesi AS, Giovannetti M (1998) Ultrastructural spatial distribution of bacteria associated with sporocarps of Glomus mosseae. Symbiosis 24:1–12Google Scholar
  67. Fontaine J, Grandmougin FA, Hartmann MA, Sancholle M (2001a) Sterol biosynthesis by the arbuscular mycorrhizal fungus Glomus intraradices. Lipids 36:1357–1363CrossRefPubMedGoogle Scholar
  68. Fontaine J, Grandmougin FA, Sancholle M (2001b) Lipid metabolism of the endomycorrhizal fungus Glomus intraradices. CR Acad Sci III-Vie 324:847–853CrossRefGoogle Scholar
  69. Fracchia S, Mujica MT, Garcia Romera I, Garcia Garrido JM, Martin J et al (1998) Interactions between Glomus mosseae and arbuscular mycorrhizal sporocarp-associated saprophytic fungi. Plant Soil 200:131–137CrossRefGoogle Scholar
  70. Franken P, Lapopin L, MeyerGauen G, Gianinazzi-Pearson V (1997) RNA accumulation and genes expressed in spores of the arbuscular mycorrhizal fungus Gigaspora rosea. Mycologia 89:293–297CrossRefGoogle Scholar
  71. Franken P, Requena N, Bütehorn B, Krajinski F, Kuhn G, Lapopin L, Mann P, Rhody D, Stommel M (2000) Molecular analysis of the arbuscular mycorrhiza symbiosis. Arch Agric Soil Sci 45:271–286CrossRefGoogle Scholar
  72. Gachomo E, Allen JW, Pfeffer PE, Govindarajulu M, Douds DD, Jin H, Nagahashi G, Lammers PJ, Shachar-Hill Y, Bücking H (2009) Germinating spores of Glomus intraradices can use internal and exogenous nitrogen sources for de novo biosynthesis of amino acids. New Phytol 184:399-411PubMedGoogle Scholar
  73. Gadkar V, David SR, Nagahashi G, Douds DD, Wininger S, Kapulnik Y (2003) Root exudate of pmi tomato mutant M161 reduces AM fungal proliferation in vitro. FEMS Microbiol Lett 223:193–198CrossRefPubMedGoogle Scholar
  74. Gaspar ML, Pollero RJ, Cabello MN (1994) Triacylglycerol consumption during spore germination of vesicular-arbuscular mycorrhizal fungi. J Am Oil Chem Soc 71:449–452CrossRefGoogle Scholar
  75. Gaspar ML, Pollero R, Cabello M (1997) Partial purification and characterization of a lipolytic enzyme from spores of the arbuscular mycorrhizal fungus Glomus versiforme. Mycologia 89:610–614CrossRefGoogle Scholar
  76. Gazey C, Abbott LK, Robson AD (1993) VA mycorrhizal spores from three species of Acaulospora – Germination, longevity and hyphal growth. Mycol Res 97:785–790CrossRefGoogle Scholar
  77. Gemma JN, Koske RE (1988) Seasonal variation in spore abundance and dormancy of Gigaspora gigantea and in mycorrhizal inoculum-potential of a dune soil. Mycologia 80:211–216CrossRefGoogle Scholar
  78. Gianinazzi-Pearson V, Branzanti B, Gianinazzi S (1989) In vitro enhancement of spore germination and early hyphal growth of a vesicular-arbuscular mycorrhizal fungus by host root exudates and plant flavonoids. Symbiosis 7:243–255Google Scholar
  79. Gildon A, Tinker PB (1981) A heavy metal tolerant strain of a mycorrhizal fungus. Trans Br Mycol Soc 77:648–649CrossRefGoogle Scholar
  80. Giovannetti M (1983) Establishment and growth effects of Glomus mosseae on the legume Hedysarum coronarium L. growing in poor alkaline soils. Soil Biol Biochem 15:385–387CrossRefGoogle Scholar
  81. Giovannetti M (2000) Spore germination and pre-symbiotic mycelia growth. In: Kapulnik Y, Douds DD Jr (eds) Arbuscular mycorrhizas: physiology and function. Kluwer, Dordrecht, The NetherlandsGoogle Scholar
  82. Giovannetti M (2002) Survival strategies in arbuscular mycorrhizal symbionts. In: Sechback J (ed) Symbiosis mechanisms and model systems. Kluwer, Dordrecht, The NetherlandsGoogle Scholar
  83. Giovannetti M, Gianinazzi-Pearson V (1994) Biodiversity in arbuscular mycorrhizal fungi. Mycol Res 98:705–715CrossRefGoogle Scholar
  84. Giovannetti M, Sbrana C (1998) Meeting a nonhost: the behaviour of arbuscular mycorrhizal symbionts. Mycorrhiza 8:123–130CrossRefGoogle Scholar
  85. Giovannetti M, Avio L, Salutini L (1991) Morphological, cytochemical, and ontogenetic ­characteristics of a new species of a vesicular-arbuscular mycorrhizal fungus. Can J Bot 69:161–167CrossRefGoogle Scholar
  86. Giovannetti M, Avio L, Sbrana C, Citernesi AS (1993a) Factors affecting appressorium development in the vesicular- arbuscular mycorrhizal fungus Glomus mosseae (Nicol. & Gerd.)Gerd. & Trappe. New Phytol 123:114–122Google Scholar
  87. Giovannetti M, Sbrana C, Avio L, Citernesi AS, Logi C (1993b) Differential hyphal morphogenesis in arbuscular mycorrhizal fungi during pre-infection stages. New Phytol 125:587–594CrossRefGoogle Scholar
  88. Giovannetti M, Sbrana C, Logi C (1994) Early processes involved in host recognition by arbuscular mycorrhizal fungi. New Phytol 127:703–709CrossRefGoogle Scholar
  89. Giovannetti M, Sbrana C, Citernesi AS, Avio L (1996) Analysis of factors involved in fungal recognition responses to host derived signals by arbuscular mycorrhizal fungi. New Phytol 133:65–71CrossRefGoogle Scholar
  90. Giovannetti M, Azzolini D, Citernesi AS (1999) Anastomosis formation and nuclear and protoplasmic exchange in arbuscular mycorrhizal fungi. Appl Environ Microbiol 65:5571–5575PubMedGoogle Scholar
  91. Giovannetti M, Sbrana C, Logi C (2000) Microchambers and video-enhanced light microscopy for monitoring cellular events in living hyphae of arbuscular mycorrhizal fungi. Plant Soil 226:153–159CrossRefGoogle Scholar
  92. Giovannetti M, Sbrana C, Strani P, Agnolucci M, Rinaudo V, Avio L (2003) Genetic diversity of isolates of Glomus mosseae from different geographic areas detected by vegetative compatibility testing and biochemical and molecular analysis. Appl Environ Microbiol 69:616–624CrossRefPubMedGoogle Scholar
  93. Glenn MG, Chew FS, Williams PH (1985) Hyphal penetration of Brassica (Cruciferae) roots by a vesicular-arbuscular mycorrhizal fungus. New Phytol 99:463–472CrossRefGoogle Scholar
  94. Godfrey RM (1957) Studies on British species of Endogone. III. Germination of spores. Trans Br Mycol Soc 40:203–210CrossRefGoogle Scholar
  95. Gorfer M, Tarkka MT, Hanif M, Pardo AG, Laitiainen ER (2001) Characterization of small GTPases Cdc42 and Rac and the relationship between Cdc42 and actin cytoskeleton in vegetative and ectomycorrhizal hyphae of Suillus bovinus. Mol Plant Microbe Interact 14:135–144CrossRefPubMedGoogle Scholar
  96. Goto BT, Maia LC, Oehl F (2008) Ambispora brasiliensis, a new ornamented species in the arbuscular mycorrhiza-forming Glomeromycetes. Mycotaxon 105:11–18Google Scholar
  97. Graham JH (1982) Effect of citrus exudates on germination of chlamydospores of the vesicular-arbuscular mycorrhizal fungus, Glomus epigaeum. Mycologia 74:831–835CrossRefGoogle Scholar
  98. Green NE, Graham JH, Schenck NC (1976) The influence of pH on the germination of vesicular-arbuscular mycorrhizal spores. Mycologia 68:929–934CrossRefGoogle Scholar
  99. Gryndler M, Hrselova H, Striteska D (2000) Effect of soil bacteria on hyphal growth of the arbuscular mycorrhizal fungus Glomus claroideum. Folia Microbiol 45:545–551CrossRefGoogle Scholar
  100. Gutjahr C, Novero M, Guether M, Montanari O, Udvardi M, Bonfante P (2009) Presymbiotic factors released by the arbuscular mycorrhizal fungus Gigaspora margarita induce starch accumulation in Lotus japonicus roots. New Phytol 183:53–61CrossRefPubMedGoogle Scholar
  101. Hepper CM, Smith GA (1976) Observation on the germination of Endogone spores. Trans Br Mycol Soc 66:189–194CrossRefGoogle Scholar
  102. Hepper CM (1979) Germination and growth of Glomus caledonium spores: the effects of inhibitors and nutrients. Soil Biol Biochem 11:269–277CrossRefGoogle Scholar
  103. Hepper CM (1983) Effect of phosphate on germination and growth of vesicular-arbuscular mycorrhizal fungi. Trans Br Mycol Soc 80:487–490CrossRefGoogle Scholar
  104. Hepper CM (1984a) Inorganic sulphur nutrition of the vesicular-arbuscular mycorrhizal fungus Glomus caledonium. Soil Biol Biochem 16:669–671CrossRefGoogle Scholar
  105. Hepper CM (1984b) Regulation of spore germination of the vesicular-arbuscular mycorrhizal fungus Acaulospora laevis by soil pH. Trans Br Mycol Soc 83:154–156CrossRefGoogle Scholar
  106. Hepper CM, Jakobsen I (1983) Hyphal growth from spores of the mycorrhizal fungus Glomus caledonius: effect of amino acids. Soil Biol Biochem 15:55–58CrossRefGoogle Scholar
  107. Hepper CM, Sen R, Maskall CS (1986) Identification of vesicular-arbuscular mycorrhizal fungi in roots of leek (Allium porrum L.) and maize (Zea mays L.) on the basis of enzyme mobility during polyacrylamide gel electrophoresis. New Phytol 102:529–539CrossRefGoogle Scholar
  108. Hildebrandt U, Janetta K, Bothe H (2002) Towards growth of arbuscular mycorrhizal fungi independent of a plant host. Appl Environ Microbiol 68:1919–1924CrossRefPubMedGoogle Scholar
  109. Hildebrandt U, Ouziad F, Marner FJ, Bothe H (2006) The bacterium Paenibacillus validus stimulates growth of the arbuscular mycorrhizal fungus Glomus intraradices up to the formation of fertile spores. FEMS Microbiol Lett 254:258–267CrossRefPubMedGoogle Scholar
  110. Hirrel MC (1981) The effect of sodium and chloride salts on the germination of Gigaspora margarita. Mycologia 73:610–617CrossRefGoogle Scholar
  111. Juge C, Samson J, Bastien C, Vierheilig H, Coughlan A, Piche Y (2002) Breaking dormancy in spores of the arbuscular mycorrhizal fungus Glomus intraradices: a critical cold-storage period. Mycorrhiza 12:37–42CrossRefPubMedGoogle Scholar
  112. Jun J, Abubaker J, Rehrer C, Pfeffer PE, Shachar-Hill Y, Lammers PJ (2002) Expression in an arbuscular mycorrhizal fungus of genes putatively involved in metabolism, transport, the cytoskeleton and the cell cycle. Plant Soil 244:141–148CrossRefGoogle Scholar
  113. Juniper S, Abbott LK (1993) Vesicular-arbuscular mycorrhizas and soil salinity. Mycorrhiza 4:45–57CrossRefGoogle Scholar
  114. Juniper S, Abbott LK (2006) Soil salinity delays germination and limits growth of hyphae from propagules of arbuscular mycorrhizal fungi. Mycorrhiza 16:371–379CrossRefPubMedGoogle Scholar
  115. Koske R, Bonin C, Kelly J, Martinez C (1996) Effects of sea water on spore germination of a sand-dune-inhabiting arbuscular mycorrhizal fungus. Mycologia 88:947–950CrossRefGoogle Scholar
  116. Koske RE (1981a) Gigaspora gigantea: observations on spore germination of a VA-mycorrhizal fungus. Mycologia 73:288–300CrossRefGoogle Scholar
  117. Koske RE (1981b) Multiple germination by spores of Gigaspora gigantea. Trans Br Mycol Soc 76:328–330CrossRefGoogle Scholar
  118. Kosuta S, Chabaud M, Lougnon G, Gough C, Denarie J, Barker DG, Becard G (2003) A diffusible factor from arbuscular mycorrhizal fungi induces symbiosis-specific MtENOD11 expression in roots of Medicago truncatula. Plant Physiol 131:952–962CrossRefPubMedGoogle Scholar
  119. Kosuta S, Hazledine S, Sun J, Miwa H, Morris RJ, Downie JA, Oldroyd GE (2008) Differential and chaotic calcium signatures in the symbiosis signaling pathway of legumes. Proc Natl Acad Sci USA 105:9823–9828CrossRefPubMedGoogle Scholar
  120. Kuwada K, Kuramoto M, Utamura M, Matsushita I, Ishii T (2006) Isolation and structural elucidation of a growth stimulant for arbuscular mycorrhizal fungus from Laminaria japonica Areschoug. J Appl Phycol 18:795–800CrossRefGoogle Scholar
  121. Lammers PJ, Jun J, Abubaker J, Arreola R, Gopalan A, Bago B, Hernandez Sebastia C, Allen JW, Douds DD, Pfeffer PE, Shachar-Hill Y (2001) The glyoxylate cycle in an arbuscular mycorrhizal fungus. Carbon flux and gene expression. Plant Physiol 127:1287–1298CrossRefPubMedGoogle Scholar
  122. Levy A, Chang BJ, Abbott LK, Kuo J, Harnett G, Inglis TJJ (2003) Invasion of spores of the arbuscular mycorrhizal fungus Gigaspora decipiens by Burkholderia spp. Appl Environ Microbiol 69:6250–6256CrossRefPubMedGoogle Scholar
  123. Logi C, Sbrana C, Giovannetti M (1998) Cellular events involved in survival of individual arbuscular mycorrhizal symbionts growing in the absence of the host. Appl Environ Microbiol 64:3473–3479PubMedGoogle Scholar
  124. Louis I, Lim G (1988) Effect of storage of inoculum on spore germination of a tropical isolate of Glomus clarum. Mycologia 80:157–161CrossRefGoogle Scholar
  125. Lumini E, Bianciotto V, Jargeat P, Novero M, Salvioli A, Faccio A, Becard G, Bonfante P (2007) Presymbiotic growth and sporal morphology are affected in the arbuscular mycorrhizal fungus Gigaspora margarita cured of its endobacteria. Cell Microbiol 9:1716–1729CrossRefPubMedGoogle Scholar
  126. Macdonald RM, Lewis M (1978) Occurrence of some acid-phosphatases and dehydrogenases in vesicular-arbuscular mycorrhizal fungus Glomus mosseae. New Phytol 80:135–141CrossRefGoogle Scholar
  127. Maia LC, Kimbrough JW (1998) Ultrastructural studies of spores and hypha of a Glomus species. Int J Plant Sci 159:581–589CrossRefGoogle Scholar
  128. Mayo K, Davis RE, Motta J (1986) Stimulation of germination of spores of Glomus versiforme by spore-associated bacteria. Mycologia 78:426–431CrossRefGoogle Scholar
  129. McMillen BG, Juniper S, Abbott LK (1998) Inhibition of hyphal growth of a vesicular-arbuscular mycorrhizal fungus in soil containing sodium chloride limits the spread of infection from spores. Soil Biol Biochem 30:1639–1646CrossRefGoogle Scholar
  130. Meier R, Charvat I (1992) Germination of Glomus mosseae spores: procedure and ultrastructural analysis. Int J Plant Sci 153:541–549CrossRefGoogle Scholar
  131. Morton JB, Bentivenga SP, Wheeler WW (1993) Germplasm in the International collection of arbuscular and vesicular-arbuscular mycorrhizal fungi (INVAM) and procedures for culture development, documentation and storage. Mycotaxon 48:491–528Google Scholar
  132. Mosse B (1959) The regular germination of resting spores and some observations on the growth requirements of an Endogone sp. causing vesicular- arbuscular mycorrhiza. Trans Br Mycol Soc 42:273–286CrossRefGoogle Scholar
  133. Mosse B (1970a) Honey-coloured sessile Endogone spores. I. Life history. Arch Microbiol 70:167–175Google Scholar
  134. Mosse B (1970b) Honey-coloured sessile Endogone spores. II. Changes in fine structure during spore development. Arch Microbiol 74:129–145Google Scholar
  135. Mosse B, Hepper CM (1975) Vesicular-arbuscular mycorrhizal infections in root organ cultures. Physiol Plant Pathol 5:215–223CrossRefGoogle Scholar
  136. Msiska Z, Morton JB (2009) Phylogenetic analysis of the Glomeromycota by partial beta-tubulin gene sequences. Mycorrhiza 19:247–254CrossRefPubMedGoogle Scholar
  137. Mugnier J, Mosse B (1987) Spore germination and viability of a vesicular arbuscular mycorrhizal fungus, Glomus mosseae. Trans Br Mycol Soc 88:411–413CrossRefGoogle Scholar
  138. Nagahashi G, Douds DD (2000) Partial separation of root exudate components and their effects upon the growth of germinated spores of AM fungi. Mycol Res 104(Part 12):1453–1464CrossRefGoogle Scholar
  139. Nair MG, Safir GR, Siqueira JO (1991) Isolation and identification of vesicular-arbuscular mycorrhiza- stimulatory compounds from clover (Trifolium repens) roots. Appl Environ Microbiol 57:434–439PubMedGoogle Scholar
  140. Navazio L, Moscatiello R, Genre A, Novero M, Baldan B, Bonfante P, Mariani P (2007) A diffusible signal from arbuscular mycorrhizal fungi elicits a transient cytosolic calcium elevation in host plant cells. Plant Physiol 144:673–681CrossRefPubMedGoogle Scholar
  141. Nemec S (1987) Effect of storage temperature and moisture on Glomus species and their subsequent effect on Citrus rootstock seedling growth and mycorrhiza development. Trans Br Mycol Soc 89:205–212CrossRefGoogle Scholar
  142. Nicolson TH, Schenck NC (1979) Endogonaceous mycorrhizal endophytes in Florida. Mycologia 71:178–198CrossRefGoogle Scholar
  143. Oba H, Tawaraya K, Wagatsuma T (2002) Inhibition of pre-symbiotic hyphal growth of arbuscular mycorrhizal fungus Gigaspora margarita by root exudates of Lupinus spp. Soil Sci Plant Nutr 48:117–120CrossRefGoogle Scholar
  144. Ocampo JA, Martin J, Hayman DS (1980) Influence of plant interactions on vesicular-arbuscular mycorrhizal infection.I.Host and non-host plants grown together. New Phytol 84:23–25CrossRefGoogle Scholar
  145. Oehl F, de Souza FA, Sieverding E (2008) Revision of Scutellospora and description of five new genera and three new families in the arbuscular mycorrhiza-forming Glomeromycetes. Mycotaxon 106:311–360Google Scholar
  146. Olah B, Briere C, Becard G, Denarie J, Gough C (2005) Nod factors and a diffusible factor from arbuscular mycorrhizal fungi stimulate lateral root formation in Medicago truncatula via the DMI1/DMI2 signalling pathway. Plant J 44:195CrossRefPubMedGoogle Scholar
  147. Parra-Garcia MD, Lo Giudice V, Ocampo JA (1992) Absence of VA colonization in Oxalis pes-caprae inoculated with Glomus mosseae. Plant Soil 145:298–300CrossRefGoogle Scholar
  148. Phipps CJ, Taylor TN (1996) Mixed arbuscular mycorrhizae from the Triassic of Antarctica. Mycologia 88:707–714CrossRefGoogle Scholar
  149. Pivato B, Offre P, Marchelli S, Barbonaglia B, Mougel C, Lemanceau P, Berta G (2009) Bacterial effects on arbuscular mycorrhizal fungi and mycorrhiza development as influenced by the bacteria, fungi, and host plant. Mycorrhiza 19:81–90CrossRefPubMedGoogle Scholar
  150. Porcel R, Aroca R, Cano C, Bago A, Ruiz-Lozano JM (2006) Identification of a gene from the arbuscular mycorrhizal fungus Glomus intraradices encoding for a 14-3-3 protein that is up-regulated by drought stress during the AM symbiosis. Microb Ecol 52:575–582CrossRefPubMedGoogle Scholar
  151. Powell CL (1976) Development of mycorrhizal infections from Endogone spores and infected root fragments. Trans Br Mycol Soc 66:439–445CrossRefGoogle Scholar
  152. Ramos AC, Facanha AR, Feijo JA (2008) Proton (H+) flux signature for the presymbiotic development of the arbuscular mycorrhizal fungi. New Phytol 178:177–188CrossRefPubMedGoogle Scholar
  153. Rani K, Zwanenburg B, Sugimoto Y, Yoneyama K, Bouwmeester HJ (2008) Biosynthetic considerations could assist the structure elucidation of host plant produced rhizosphere signalling compounds (strigolactones) for arbuscular mycorrhizal fungi and parasitic plants. Plant Physiol Biochem 46:617–626CrossRefPubMedGoogle Scholar
  154. Redecker D, Kodner R, Graham LE (2000a) Glomalean fungi from the Ordovician. Science 289:1920–1921CrossRefPubMedGoogle Scholar
  155. Redecker D, Morton JB, Bruns TD (2000b) Ancestral lineages of arbuscular mycorrhizal fungi (Glomales). Mol Phylogenet Evol 14:276–284CrossRefPubMedGoogle Scholar
  156. Remy W, Taylor TN, Hass H, Kerp H (1994) Four hundred-million-year-old vesicular arbuscular mycorrhizae. Proc Natl Acad Sci USA 91:11841–11843CrossRefPubMedGoogle Scholar
  157. Requena N, Fuller P, Franken P (1999) Molecular characterization of GmFOX2, an evolutionarily highly conserved gene from the mycorrhizal fungus Glomus mosseae, down-regulated during interaction with rhizobacteria. Mol Plant Microbe Interact 12:934–942CrossRefPubMedGoogle Scholar
  158. Requena N, Mann P, Franken P (2000) A homologue of the cell cycle check point TOR2 from Saccharomyces cerevisiae exists in the arbuscular mycorrrhizal fungus Glomus mosseae. Protoplasma 212:89–98CrossRefGoogle Scholar
  159. Requena N, Mann P, Hampp R, Franken P (2002) Early developmentally regulated genes in the arbuscular mycorrhizal fungus Glomus mosseae: identification of GmGIN1, a novel gene with homology to the C-terminus of metazoan hedgehog proteins. Plant Soil 244:129–139CrossRefGoogle Scholar
  160. Requena N, Breuninger M, Franken P, Ocon A (2003) Symbiotic status, phosphate, and sucrose regulate the expression of two plasma membrane H+-ATPase genes from the mycorrhizal fungus Glomus mosseae. Plant Physiol 132:1540–1549CrossRefPubMedGoogle Scholar
  161. Roberts KJ, Anderson RC (2001) Effect of garlic mustard [Alliaria petiolata (Beib. Cavara and Grande)] extracts on plants and arbuscular mycorrhizal (AM) fungi. Am Midl Nat 146:146–152CrossRefGoogle Scholar
  162. Roesti D, Ineichen K, Braissant O, Redecker D, Wiemken A, Aragno M (2005) Bacteria associated with spores of the arbuscular mycorrhizal fungi Glomus geosporum and Glomus constrictum. Appl Environ Microbiol 71:6673–6679CrossRefPubMedGoogle Scholar
  163. Saito M (1995) Enzyme activities of the internal hyphae and germinated spores of an arbuscular mycorrhizal fungus, Gigaspora margarita Becker & Hall. New Phytol 129:425–431CrossRefGoogle Scholar
  164. Salzer P, Bonanomi A, Beyer K, Vogeli LR, Aeschbacher RA, Lange J, Wiemken A, Kim D, Cook DR, Boller T (2000) Differential expression of eight chitinase genes in Medicago truncatula roots during mycorrhiza formation, nodulation, and pathogen infection. Mol Plant Microbe Interact 13:763–777CrossRefPubMedGoogle Scholar
  165. Samra A, Dumas-Gaudot E, Gianinazzi-Pearson V, Gianinazzi S (1996) Soluble proteins and polypeptide profiles of spores of arbuscular mycorrhizal fungi. Interspecific variability and effects of host (myc(+)) and non-host (myc(−)) – Pisum sativum root exudates. Agronomie 16:709–719CrossRefGoogle Scholar
  166. Sannazzaro AI, Alvarez CL, Menendez AB, Pieckenstain FL, Alberto EO, Ruiz OA (2004) Ornithine and arginine decarboxylase activities and effect of some polyamine biosynthesis inhibitors on Gigaspora rosea germinating spores. FEMS Microbiol Lett 230:115–121CrossRefPubMedGoogle Scholar
  167. Scervino JM, Ponce MA, Erra-Bassells R, Vierheilig H, Ocampo JA, Godeas A (2005a) Flavonoids exclusively present in mycorrhizal roots of white clover exhibit a different effect on arbuscular mycorrhizal fungi than flavonoids exclusively present in non-mycorrhizal roots of white clover. J Plant Interact 1:15–22CrossRefGoogle Scholar
  168. Scervino JM, Ponce MA, Erra-Bassells R, Vierheilig H, Ocampo JA, Godeas A (2005b) Flavonoids exhibit fungal species and genus specific effects on the presymbiotic growth of Gigaspora and Glomus. Mycol Res 109:789–794CrossRefPubMedGoogle Scholar
  169. Scervino JM, Ponce MA, Erra-Bassells R, Bompadre MJ, Vierheilig H, Ocampo JA, Godeas A (2006) Glycosidation of apigenin results in a loss of its activity on different growth parameters of arbuscular mycorrhizal fungi from the genus Glomus and Gigaspora. Soil Biol Biochem 38:2919–2922CrossRefGoogle Scholar
  170. Scervino JM, Sampedro I, Ponce MA, Rodriguez MA, Ocampo JA, Godeas A (2008) Rhodotorulic acid enhances root colonization of tomato plants by arbuscular mycorrhizal (AM) fungi due to its stimulatory effect on the pre-symbiotic stages of the AM fungi. Soil Biol Biochem 40:2474–2476CrossRefGoogle Scholar
  171. Scervino JM, Gottlieb A, Silvani VA, Pergola M, Fernandez L, Godeas AM (2009) Exudates of dark septate endophyte (DSE) modulate the development of the arbuscular mycorrhizal fungus (AMF) Gigaspora rosea. Soil Biol Biochem 41:1753–1756CrossRefGoogle Scholar
  172. Schenck NC, Graham SO, Green NE (1975) Temperature and light effect on contamination and spore germination of vesicular-arbuscular mycorrhizal fungi. Mycologia 67:1189–1192CrossRefPubMedGoogle Scholar
  173. Schreiner RP, Koide RT (1993a) Mustards, mustard oils and mycorrhizas. New Phytol 123:107–113CrossRefGoogle Scholar
  174. Schreiner RP, Koide RT (1993b) Stimulation of vesicular-arbuscular mycorrhizal fungi by mycotrophic and nonmycotrophic plant root systems. Appl Environ Microbiol 59:2750–2752PubMedGoogle Scholar
  175. Sieverding E (1991) Vesicular-arbuscular mycorrhiza management in tropical agrosystems. Deutsche Gesellschaft Technische Zusammenarbeit GmbH, EschbornGoogle Scholar
  176. Simon L, Bousquet J, Levesque RC, Lalonde M (1993) Origin and diversification of endomycorrhizal fungi and coincidence with vascular land plants. Nature 363:67–69CrossRefGoogle Scholar
  177. Siqueira JO, Hubbell DH, Schenck NC (1982) Spore germination and germ tube growth of a vesicular-arbuscular mycorrhizal fungus in vitro. Mycologia 74:952–959CrossRefGoogle Scholar
  178. Siqueira JO, Hubbell DH, Mahmud AW (1984) Effect of liming on spore germination, germ tube growth and root colonization by vesicular-arbuscular mycorrhizal fungi. Plant Soil 76:115–124CrossRefGoogle Scholar
  179. Spain JL (1992) Patency of shields in water mounted spores of 4 species in Acaulosporaceae (Glomales). Mycotaxon 43:331–339Google Scholar
  180. Spain JL (2003) Emendation of Archaeospora and of its type species, Archaeospora trappei. Mycotaxon 87:109–112Google Scholar
  181. Spain JL, Sieverding E, Oehl F (2006) Appendicispora: a new genus in the arbuscular mycorrhiza-forming Glomeromycetes, with a discussion of the genus Archaeospora. Mycotaxon 97:163–182Google Scholar
  182. Stommel M, Mann P, Franken P (2001) EST-library construction using spore RNA of the arbuscular mycorrhizal fungus Gigaspora rosea. Mycorrhiza 10:281–285CrossRefGoogle Scholar
  183. Suriyapperuma SP, Koske RE (1995) Attraction of germ tubes and germination of spores of the arbuscular mycorrhizal fungus gigaspora gigantea in the presence of roots of maize exposed to different concentrations of phosphorus. Mycologia 87:772–778CrossRefGoogle Scholar
  184. Sward RJ (1981a) The structure of the spores of Gigaspora margarita. I. The dormant spore. New Phytol 87:761–768CrossRefGoogle Scholar
  185. Sward RJ (1981b) The structure of the spores of Gigaspora margarita. II. Changes accompanying germination. New Phytol 88:661–666CrossRefGoogle Scholar
  186. Sward RJ (1981c) The structure of the spores of Gigaspora margarita. III. Germ tube emergence and growth. New Phytol 88:667–673CrossRefGoogle Scholar
  187. Sylvia DM, Schenck NC (1983) Germination of chlamidospores of three Glomus species as affected by soil matric potential and fungal contamination. Mycologia 75:30–35CrossRefGoogle Scholar
  188. Sylvia D, Williams SE (1992) Vesicular-arbuscular mycorrhizae and environmental stresses. In: Bethlenfalvay GJ, Linderman RG (eds) Mycorrhizae in sustainable agriculture. Agronomy Society of America, Madison, WIGoogle Scholar
  189. Tamasloukht M, Sejalon DN, Kluever A, Jauneau A, Roux C, Becard G, Franken P (2003) Root factors induce mitochondrial-related gene expression and fungal respiration during the developmental switch from asymbiosis to presymbiosis in the arbuscular mycorrhizal fungus Gigaspora rosea. Plant Physiol 131:1468–1478CrossRefPubMedGoogle Scholar
  190. Tamasloukht M, Waschke A, Franken P (2007) Root exudate-stimulated RNA accumulation in the arbuscular mycorrhizal fungus Gigaspora rosea. Soil Biol Biochem 39:1824–1827CrossRefGoogle Scholar
  191. Tawaraya K, Saito M, Morioka M, Wagatsuma T (1996a) Effect of concentration of phosphate on spore germination and hyphal growth of arbuscular mycorrhizal fungus, Gigaspora margarita Becker & Hall. Soil Sci Plant Nutr 42:667–671CrossRefGoogle Scholar
  192. Tawaraya K, Watanabe S, Yoshida E, Wagatsuma T (1996b) Effect of onion (Allium cepa) root exudates on the hyphal growth of Gigaspora margarita. Mycorrhiza 6:57–59CrossRefGoogle Scholar
  193. Tommerup IC (1983a) Spore dormancy in vesicular-arbuscular mycorrhizal fungi. Trans Br Mycol Soc 81:37–45CrossRefGoogle Scholar
  194. Tommerup IC (1983b) Temperature relations of spore germination and hyphal growth of vesicular-arbuscular mycorrhizal fungi in soil. Trans Br Mycol Soc 81:381–387CrossRefGoogle Scholar
  195. Tommerup IC (1988) The vesicular-arbuscular mycorrhizas. Adv Plant Pathol 6:81–91Google Scholar
  196. Tommerup IC, Kidby DK (1980) Production of aseptic spores of vesicular-arbuscular endophytes and their viability after chemical and physical stress. Appl Environ Microbiol 39:1111–1119PubMedGoogle Scholar
  197. Trépanier M, Bécard G, Moutoglis P, Willemot C, Gagne S, Avis TJ, Rioux JA (2005) Dependence of arbuscular-mycorrhizal fungi on their plant host for palmitic acid synthesis. Appl Environ Microbiol 71:5341–5347CrossRefPubMedGoogle Scholar
  198. Tsai SM, Phillips DA (1991) Flavonoids released naturally from alfalfa promote development of symbiotic Glomus spores in vitro. Appl Environ Microbiol 57:1485–1488PubMedGoogle Scholar
  199. Turrini A, Sbrana C, Nuti MP, Pietrangeli BM, Giovannetti M (2004a) Development of a model system to assess the impact of genetically modified corn and aubergine plants on arbuscular mycorrhizal fungi. Plant Soil 266:69–75CrossRefGoogle Scholar
  200. Turrini A, Sbrana C, Pitto L, Castiglione MR, Giorgetti L, Briganti R, Bracci T, Evangelista M, Nuti MP, Giovannetti M (2004b) The antifungal Dm-AMP1 protein from Dahlia merckii expressed in Solanum melongena is released in root exudates and differentially affects pathogenic fungi and mycorrhizal symbiosis. New Phytol 163:393–403CrossRefGoogle Scholar
  201. Turrini A, Avio L, Bedini S, Giovannetti M (2008) In situ collection of endangered arbuscular mychorrhizal fungi in a Mediterranean UNESCO Biosphere Reserve. Biodivers Conserv 17:643–657CrossRefGoogle Scholar
  202. Tylka GL, Hussey RS, Roncadori RW (1991) Axenic germination of vesicular-arbuscular mycorrhizal fungi: effects of selected Streptomyces species. Phytopathology 81:754–759CrossRefGoogle Scholar
  203. Vierheilig H, Bennett R, Kiddle G, Kaldorf M, Ludwig MJ (2000) Differences in glucosinolate patterns and arbuscular mycorrhizal status of glucosinolate-containing plant species. New Phytol 146:343–352CrossRefGoogle Scholar
  204. Walker C, Sanders FE (1986) Taxonomic concepts in the Endogonaceae: III. The separation of Scutellospora gen. nov. from Gigaspora Gerd. & Trappe. Mycotaxon 27:169–182Google Scholar
  205. Walker C, Giovannetti M, Avio L, Citernesi AS, Nicolson TH (1995) A new fungal species forming arbuscular mycorrhizas: Glomus viscosum. Mycol Res 99:1500–1506CrossRefGoogle Scholar
  206. Walker C, Blaszkowski J, Schwarzott D, Schussler A (2004) Gerdemannia gen. nov., a genus separated from Glomus, and Gerdemanniaceae fam. nov., a new family in the Glomeromycota. Mycol Res 108:707–718CrossRefPubMedGoogle Scholar
  207. Walley FL, Germida JJ (1996) Failure to decontaminate Glomus clarum NT4 spores is due to spore wall-associated bacteria. Mycorrhiza 6:43–49CrossRefGoogle Scholar
  208. Walters DR (1995) Inhibition of polyamine biosynthesis in fungi. Mycol Res 99:129–139CrossRefGoogle Scholar
  209. Watrud LS, Heithaus JJ, Jaworski EG (1978) Evidence for production of inhibitor by vesicular arbuscular mycorrhizal fungus Gigaspora margarita. Mycologia 70:821–828CrossRefGoogle Scholar
  210. Weidmann S, Sanchez L, Descombin J, Chatagnier O, Gianinazzi S, Gianinazzi Pearson V (2004) Fungal elicitation of signal transduction-related plant genes precedes mycorrhiza establishment and requires the dmi3 gene in Medicago truncatula. Mol Plant Microbe Interact 17:1385–1393CrossRefPubMedGoogle Scholar
  211. Weinzierl G, Leveleki L, Hassel A, Kost G, Wanner G, Bolker M (2002) Regulation of cell separation in the dimorphic fungus Ustilago maydis. Mol Microbiol 45:219–231CrossRefPubMedGoogle Scholar
  212. Weissenhorn I, Leyval C, Berthelin J (1993) Cd-tolerant arbuscular mycorrhizal (AM) fungi from heavy- metal polluted soils. Plant Soil 157:247–256CrossRefGoogle Scholar
  213. Will ME, Sylvia DM (1990) Interaction of rhizosphere bacteria, fertilizer, and vesicular-arbuscular mycorrhizal fungi with sea oats. Appl Environ Microbiol 56:2073–2079PubMedGoogle Scholar
  214. Zocco D, Fontaine J, Lozanova E, Renard L, Bivort C et al (2008) Effects of two sterol biosynthesis inhibitor fungicides (fenpropimorph and fenhexamid) on the development of an arbuscular mycorrhizal fungus. Mycol Res 112:592–601CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Manuela Giovannetti
    • 1
  • Luciano Avio
    • 2
  • Cristiana Sbrana
    • 2
  1. 1.Department of Crop Plant BiologyUniversity of PisaPisaItaly
  2. 2.Institute of Agricultural Biology and BiotechnologyUOS Pisa, C.N.R.PisaItaly

Personalised recommendations