Advertisement

Regression II

  • Manfred Mudelsee
Chapter
Part of the Atmospheric and Oceanographic Sciences Library book series (ATSL, volume 42)

Abstract

Regression serves in this chapter to relate two climate variables, X(i) and Y(i). This is a standard tool for formulating a quantitative “climate theory” based on equations. Owing to the complexity of the climate system, such a theory can never be derived alone from the pure laws of physics—it requires to establish empirical relations between observed climate processes.

Keywords

Noise Component Carbon Dioxide Concentration Surrogate Data Slope Estimation Instrumental Period 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Adcock RJ (1878) A problem in least squares. Analyst 5(2): 53–54.CrossRefGoogle Scholar
  2. Allen MR, Stott PA (2003) Estimating signal amplitudes in optimal fingerprinting, Part I: Theory. Climate Dynamics 21(5–6): 477–491.CrossRefGoogle Scholar
  3. Ammann CM, Genton MG, Li B (2009) Technical note: Correcting for signal attenuation from noise: Sharpening the focus on past climate. Climate of the Past Discussions 5(3): 1645–1657.CrossRefGoogle Scholar
  4. Barnola JM, Raynaud D, Korotkevich YS, Lorius C (1987) Vostok ice core provides 160,000-year record of atmospheric CO2. Nature 329(6138): 408–414.CrossRefGoogle Scholar
  5. Bartlett MS (1949) Fitting a straight line when both variables are subject to error. Biometrics 5(3): 207–212.CrossRefGoogle Scholar
  6. Bloomfield P, Royle JA, Steinberg LJ, Yang Q (1996) Accounting for meteorological effects in measuring urban ozone levels and trends. Atmospheric Environment 30(17): 3067–3077.CrossRefGoogle Scholar
  7. Blunier T, Chappellaz J, Schwander J, Dällenbach A, Stauffer B, Stocker TF, Raynaud D, Jouzel J, Clausen HB, Hammer CU, Johnsen SJ (1998) Asynchrony of Antarctic and Greenland climate change during the last glacial period. Nature 394(6695): 739–743.CrossRefGoogle Scholar
  8. Booth JG, Hall P (1993) Bootstrap confidence regions for functional relationships in errors-in-variables models. The Annals of Statistics 21(4): 1780–1791.CrossRefGoogle Scholar
  9. Box GEP (1966) Use and abuse of regression. Technometrics 8(4): 625–629.CrossRefGoogle Scholar
  10. Broecker WS, Henderson GM (1998) The sequence of events surrounding Termination II and their implications for the cause of glacial–interglacial CO2 changes. Paleoceanography 13(4): 352–364.CrossRefGoogle Scholar
  11. Brohan P, Kennedy JJ, Harris I, Tett SFB, Jones PD (2006) Uncertainty estimates in regional and global observed temperature changes: A new data set from 1850. Journal of Geophysical Research 111(D12): D12106. [doi:10.1029/2005JD006548]CrossRefGoogle Scholar
  12. Caillon N, Severinghaus JP, Jouzel J, Barnola J-M, Kang J, Lipenkov VY (2003) Timing of atmospheric CO2 and Antarctic temperature changes across Termination III. Science 299(5613): 1728–1731.CrossRefGoogle Scholar
  13. Carroll RJ, Ruppert D, Stefanski LA, Crainiceanu CM (2006) Measurement Error in Nonlinear Models: A Modern Perspective. Second edition. Chapman and Hall, Boca Raton, FL, 455 pp.CrossRefGoogle Scholar
  14. Cuffey KM, Vimeux F (2001) Covariation of carbon dioxide and temperature from the Vostok ice core after deuterium-excess correction. Nature 412(6846): 523–527.CrossRefGoogle Scholar
  15. Davison AC, Hinkley DV (1997) Bootstrap methods and their application. Cambridge University Press, Cambridge, 582 pp.CrossRefGoogle Scholar
  16. Deming WE (1943) Statistical Adjustment of Data. Wiley, New York, 261 pp.Google Scholar
  17. Dhrymes PJ (1981) Distributed Lags: Problems of Estimation and Formulation. Second edition. North-Holland, Amsterdam, 470 pp.Google Scholar
  18. Doran HE (1983) Lag models, distributed. In: Kotz S, Johnson NL, Read CB (Eds) Encyclopedia of statistical sciences, volume 4. Wiley, New York, pp 440–448.Google Scholar
  19. Draper NR, Smith H (1981) Applied Regression Analysis. Second edition. Wiley, New York, 709 pp.Google Scholar
  20. Draschba S, Pätzold J, Wefer G (2000) North Atlantic climate variability since AD 1350 recorded in δ 18O and skeletal density of Bermuda corals. International Journal of Earth Sciences 88(4): 733–741.CrossRefGoogle Scholar
  21. Efron B, Tibshirani RJ (1993) An Introduction to the Bootstrap. Chapman and Hall, London, 436 pp.Google Scholar
  22. Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, Lean J, Lowe DC, Myhre G, Nganga J, Prinn R, Raga G, Schulz M, Van Dorland R (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon S, Qin D, Manning M, Marquis M, Averyt K, Tignor MMB, Miller Jr HL, Chen Z (Eds) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 129–234.Google Scholar
  23. Foster G, Annan JD, Schmidt GA, Mann ME (2008) Comment on “Heat capacity, time constant, and sensitivity of Earth’s climate system” by S. E. Schwartz. Journal of Geophysical Research 113(D15): D15102. [doi:10.1029/2007JD009373]CrossRefGoogle Scholar
  24. Foutz RV (1980) Estimation of a common group delay between two multiple time series. Journal of the American Statistical Association 75(372): 779–788.CrossRefGoogle Scholar
  25. Freedman D (1984) On bootstrapping two-stage least-squares estimates in stationary linear models. The Annals of Statistics 12(3): 827–842.CrossRefGoogle Scholar
  26. Freedman DA, Peters SC (1984) Bootstrapping an econometric model: Some empirical results. Journal of Business & Economic Statistics 2(2): 150–158.Google Scholar
  27. Fuller WA (1987) Measurement Error Models. Wiley, New York, 440 pp.CrossRefGoogle Scholar
  28. Fuller WA (1999) Errors in variables. In: Kotz S, Read CB, Banks DL (Eds) Encyclopedia of statistical sciences, volume U3. Wiley, New York, pp 213–216.Google Scholar
  29. Gallant AR (1987) Nonlinear Statistical Models. Wiley, New York, 610 pp.CrossRefGoogle Scholar
  30. Gregory JM, Stouffer RJ, Raper SCB, Stott PA, Rayner NA (2002) An observationally based estimate of the climate sensitivity. Journal of Climate 15(22): 3117–3121.CrossRefGoogle Scholar
  31. Hall P, Ma Y (2007) Testing the suitability of polynomial models in errors-in-variables problems. The Annals of Statistics 35(6): 2620–2638.CrossRefGoogle Scholar
  32. Hamon BV, Hannan EJ (1974) Spectral estimation of time delay for dispersive and non-dispersive systems. Applied Statistics 23(2): 134–142.CrossRefGoogle Scholar
  33. Hannan EJ, Robinson PM (1973) Lagged regression with unknown lags. Journal of the Royal Statistical Society, Series B 35(2): 252–267.Google Scholar
  34. Hannan EJ, Thomson PJ (1974) Estimating echo times. Technometrics 16(1): 77–84.CrossRefGoogle Scholar
  35. Hardin JW, Schmiediche H, Carroll RJ (2003) The regression–calibration method for fitting generalized linear models with additive measurement error. The Stata Journal 3(4): 361–372.Google Scholar
  36. Hegerl GC, Crowley TJ, Allen M, Hyde WT, Pollack HN, Smerdon J, Zorita E (2007a) Detection of human influence on a new, validated 1500-year temperature reconstruction. Journal of Climate 20(4): 650–666.CrossRefGoogle Scholar
  37. Hegerl GC, Crowley TJ, Hyde WT, Frame DJ (2006) Climate sensitivity constrained by temperature reconstructions over the past seven centuries. Nature 440(7087): 1029–1032.CrossRefGoogle Scholar
  38. Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (Eds) (2001) Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, 881 pp.Google Scholar
  39. Huybers P, Denton G (2008) Antarctic temperature at orbital timescales controlled by local summer duration. Nature Geoscience 1(11): 787–792.CrossRefGoogle Scholar
  40. Jefferys WH (1980) On the method of least squares. The Astronomical Journal 85(2): 177–181. [Corrigendum: 1988 Vol. 95(4): 1299]CrossRefGoogle Scholar
  41. Jefferys WH (1981) On the method of least squares. II. The Astronomical Journal 86(1): 149–155. [Corrigendum: 1988 Vol. 95(4): 1300]CrossRefGoogle Scholar
  42. Kawamura K, Parrenin F, Lisiecki L, Uemura R, Vimeux F, Severinghaus JP, Hutterli MA, Nakazawa T, Aoki S, Jouzel J, Raymo ME, Matsumoto K, Nakata H, Motoyama H, Fujita S, Goto-Azuma K, Fujii Y, Watanabe O (2007) Northern Hemisphere forcing of climatic cycles in Antarctica over the past 360,000 years. Nature 448(7156): 912–916.CrossRefGoogle Scholar
  43. Knutti R, Krähenmann S, Frame DJ, Allen MR (2008) Comment on “Heat capacity, time constant, and sensitivity of Earth’s climate system” by S. E. Schwartz. Journal of Geophysical Research 113(D15): D15103. [doi:10.1029/2007JD009473]CrossRefGoogle Scholar
  44. Koyck LM (1954) Distributed Lags and Investment Analysis. North-Holland, Amsterdam, 111 pp.Google Scholar
  45. Kwon J, Min K, Bickel PJ, Renne PR (2002) Statistical methods for jointly estimating the decay constant of 40K and the age of a dating standard. Mathematical Geology 34(4): 457–474.CrossRefGoogle Scholar
  46. Ledolter J (1986) Prediction and forecasting. In: Kotz S, Johnson NL, Read CB (Eds) Encyclopedia of statistical sciences, volume 7. Wiley, New York, pp 148–158.Google Scholar
  47. Linder E, Babu GJ (1994) Bootstrapping the linear functional relationship with known error variance ratio. Scandinavian Journal of Statistics 21(1): 21–39.Google Scholar
  48. Lindley DV (1947) Regression lines and the linear functional relationship. Journal of the Royal Statistical Society, Supplement 9(2): 218–244.CrossRefGoogle Scholar
  49. Lüthi D, Le Floch M, Bereiter B, Blunier T, Barnola J-M, Siegenthaler U, Raynaud D, Jouzel J, Fischer H, Kawamura K, Stocker TF (2008) High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature 453(7193): 379–382.CrossRefGoogle Scholar
  50. Lybanon M (1984) A better least-squares method when both variables have uncertainties. American Journal of Physics 52(1): 22–26.CrossRefGoogle Scholar
  51. Macdonald JR, Thompson WJ (1992) Least-squares fitting when both variables contain errors: Pitfalls and possibilities. American Journal of Physics 60(1): 66–73.CrossRefGoogle Scholar
  52. Mitchell JFB, Wilson CA, Cunnington WM (1987) On CO2 climate sensitivity and model dependence of results. Quarterly Journal of the Royal Meteorological Society 113(475): 293–322.CrossRefGoogle Scholar
  53. Mudelsee M (2001b) The phase relations among atmospheric CO2 content, temperature and global ice volume over the past 420 ka. Quaternary Science Reviews 20(4): 583–589.CrossRefGoogle Scholar
  54. Musekiwa A (2005) Estimating the slope in the simple linear errors-in-variables model. M.Sc. Thesis. University of Johannesburg, Johannesburg, South Africa, 85 pp.Google Scholar
  55. Nievergelt Y (1998) Total least squares. In: Kotz S, Read CB, Banks DL (Eds) Encyclopedia of statistical sciences, volume U2. Wiley, New York, pp 666–670.Google Scholar
  56. Pankratz A (1991) Forecasting with Dynamic Regression Models. Wiley, New York, 386 pp.CrossRefGoogle Scholar
  57. Pearson K (1901) On lines and planes of closest fit to systems of points in space. Philosophical Magazine 2(11): 559–572.CrossRefGoogle Scholar
  58. Petit JR, Jouzel J, Raynaud D, Barkov NI, Barnola J-M, Basile I, Bender M, Chappellaz J, Davis M, Delaygue G, Delmotte M, Kotlyakov VM, Legrand M, Lipenkov VY, Lorius C, Pépin L, Ritz C, Saltzman E, Stievenard M (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399(6735): 429–436.CrossRefGoogle Scholar
  59. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical Recipes in Fortran 77: The Art of Scientific Computing. Second edition. Cambridge University Press, Cambridge, 933 pp.Google Scholar
  60. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2007) Numerical Recipes: The Art of Scientific Computing. Third edition. Cambridge University Press, Cambridge, 1235 pp. [C++ code]Google Scholar
  61. Raynaud D, Jouzel J, Barnola JM, Chappellaz J, Delmas RJ, Lorius C (1993) The ice record of greenhouse gases. Science 259(5097): 926–934.CrossRefGoogle Scholar
  62. Reed BC (1989) Linear least-squares fits with errors in both coordinates. American Journal of Physics 57(7): 642–646. [Corrigendum: 1990 Vol. 58(2): 189]CrossRefGoogle Scholar
  63. Reed BC (1992) Linear least-squares fits with errors in both coordinates. II: Comments on parameter variances. American Journal of Physics 60(1): 59–62.CrossRefGoogle Scholar
  64. Ripley BD, Thompson M (1987) Regression techniques for the detection of analytical bias. Analyst 112(4): 377–383.CrossRefGoogle Scholar
  65. Saltzman B (2002) Dynamical Paleoclimatology: Generalized Theory of Global Climate Change. Academic Press, San Diego, 354 pp.Google Scholar
  66. Scafetta N (2008) Comment on “Heat capacity, time constant, and sensitivity of Earth’s climate system” by S. E. Schwartz. Journal of Geophysical Research 113(D15): D15104. [doi:10.1029/2007JD009586]CrossRefGoogle Scholar
  67. Siegenthaler U, Stocker TF, Monnin E, Lüthi D, Schwander J, Stauffer B, Raynaud D, Barnola J-M, Fischer H, Masson-Delmotte V, Jouzel J (2005) Stable carbon cycle–climate relationship during the late Pleistocene. Science 310(5752): 1313–1317.CrossRefGoogle Scholar
  68. Solomon S, Qin D, Manning M, Marquis M, Averyt K, Tignor MMB, Miller Jr HL, Chen Z (Eds) (2007) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, 996 pp.Google Scholar
  69. Squire PT (1990) Comment on “Linear least-squares fits with errors in both coordinates,” by B. C. Reed [Am. J. Phys. 57, 642–646 (1989)]. American Journal of Physics 58(12): 1209.CrossRefGoogle Scholar
  70. Thompson DWJ, Kennedy JJ, Wallace JM, Jones PD (2008) A large discontinuity in the mid-twentieth century in observed global-mean surface temperature. Nature 453(7195): 646–649.CrossRefGoogle Scholar
  71. Tol RSJ, de Vos AF (1993) Greenhouse statistics–-time series analysis. Theoretical and Applied Climatology 48(2–3): 63–74.CrossRefGoogle Scholar
  72. Wald A (1940) The fitting of straight lines if both variables are subject to error. Annals of Mathematical Statistics 11(3): 284–300.CrossRefGoogle Scholar
  73. Wolff E, Kull C, Chappellaz J, Fischer H, Miller H, Stocker TF, Watson AJ, Flower B, Joos F, Köhler P, Matsumoto K, Monnin E, Mudelsee M, Paillard D, Shackleton N (2005) Modeling past atmospheric CO2: {R}esults of a challenge. Eos, Transactions of the American Geophysical Union 86(38): 341, 345.CrossRefGoogle Scholar
  74. Wolff EW, Fischer H, Röthlisberger R (2009) Glacial terminations as southern warmings without northern control. Nature Geoscience 2(3): 206–209.CrossRefGoogle Scholar
  75. York D (1966) Least-squares fitting of a straight line. Canadian Journal of Physics 44(5): 1079–1086.CrossRefGoogle Scholar
  76. York D (1967) The best isochron. Earth and Planetary Science Letters 2(5): 479–482.CrossRefGoogle Scholar
  77. York D (1969) Least squares fitting of a straight line with correlated errors. Earth and Planetary Science Letters 5(5): 320–324.Google Scholar
  78. Adcock RJ (1877) Note on the method of least squares. Analyst 4(6): 183–184.CrossRefGoogle Scholar
  79. Schwartz SE (2007) Heat capacity, time constant, and sensitivity of Earth’s climate system. Journal of Geophysical Research 112(D24): D24S05. [doi:10.1029/2007JD008746]CrossRefGoogle Scholar
  80. Chylek P, Lohmann U, Dubey M, Mishchenko M, Kahn R, Ohmura A (2007) Limits on climate sensitivity derived from recent satellite and surface observations. Journal of Geophysical Research 112(D24): D24S04. [doi:10.1029/2007JD008740]CrossRefGoogle Scholar
  81. Scafetta N, West BJ (2007) Phenomenological reconstructions of the solar signature in the northern hemisphere surface temperature records since 1600. Journal of Geophysical Research 112(D24): D24S03. [doi:10.1029/2007JD008437]CrossRefGoogle Scholar
  82. Monnin E, Indermühle A, Dällenbach A, Flückiger J, Stauffer B, Stocker TF, Raynaud D, Barnola J-M (2001) Atmospheric CO2 concentrations over the last glacial termination. Science 291(5501): 112–114.CrossRefGoogle Scholar
  83. Berger A, Loutre MF (2002) An exceptionally long interglacial ahead? Science 297(5585): 1287–1288.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Climate Risk AnalysisHannoverGermany
  2. 2.Alfred Wegener Institute for Polar and Marine ResearchBremerhavenGermany

Personalised recommendations