Skip to main content

Persistence Models

  • Chapter
  • First Online:
Book cover Climate Time Series Analysis

Part of the book series: Atmospheric and Oceanographic Sciences Library ((ATSL,volume 42))

  • 2659 Accesses

Abstract

Climatic noise often exhibits persistence (Section 1.3). Chapter 3 presents bootstrap methods as resampling techniques aimed at providing realistic confidence intervals or error bars for the various estimation problems treated in the subsequent chapters. The bootstrap works with artificially produced (by means of a random number generator) resamples of the noise process. Accurate bootstrap results need therefore the resamples to preserve the persistence of X noise(i). To achieve this requires a model of the noise process or a quantification of the size of the dependence. Model fits to the noise data inform about the “memory” of the climate fluctuations, the span of the persistence. The fitted models and their estimated parameters can then be directly used for the bootstrap resampling procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abramowitz M, Stegun IA (Eds) (1965) Handbook of Mathematical Functions. Dover, New York, 1046 pp.

    Google Scholar 

  • Ahrens JH, Dieter U (1974) Computer methods for sampling from gamma, beta, Poisson and binomial distributions. Computing 12(3): 223–246.

    Google Scholar 

  • Arnold L (2001) Hasselmann’s program revisited: The analysis of stochasticity in deterministic climate models. In: Imkeller P, von Storch J-S (Eds) Stochastic Climate Models. Birkhäuser, Basel, pp 141–158.

    Google Scholar 

  • Bartlett MS (1946) On the theoretical specification and sampling properties of autocorrelated time-series. Journal of the Royal Statistical Society, Supplement 8(1): 27–41. [Corrigendum: 1948 Vol. 10(1)]

    Google Scholar 

  • Bayley GV, Hammersley JM (1946) The “effective” number of independent observations in an autocorrelated time series. Journal of the Royal Statistical Society, Supplement 8(2): 184–197.

    Google Scholar 

  • Beer J, Tobias S, Weiss N (1998) An active sun throughout the Maunder Minimum. Solar Physics 181(1): 237–249.

    CAS  Google Scholar 

  • Beran J (1994) Statistics for Long-Memory Processes. Chapman and Hall, Boca Raton, FL, 315 pp.

    Google Scholar 

  • Beran J (1997) Long-range dependence. In: Kotz S, Read CB, Banks DL (Eds) Encyclopedia of statistical sciences, volume U1. Wiley, New York, pp 385–390.

    Google Scholar 

  • Beran J (1998) Fractional ARIMA models. In: Kotz S, Read CB, Banks DL (Eds) Encyclopedia of statistical sciences, volume U2. Wiley, New York, pp 269–271.

    Google Scholar 

  • Box GEP, Jenkins GM, Reinsel GC (1994) Time Series Analysis: Forecasting and Control. Third edition. Prentice-Hall, Englewood Cliffs, NJ, 598 pp.

    Google Scholar 

  • Box GEP, Muller ME (1958) A note on the generation of random normal deviates. Annals of Mathematical Statistics 29(2): 610–611.

    Google Scholar 

  • Brockwell PJ, Davis RA (1991) Time Series: Theory and Methods. Second edition. Springer, New York, 577 pp.

    Google Scholar 

  • Brockwell PJ, Davis RA (1996) Introduction to Time Series and Forecasting. Springer, New York, 420 pp.

    Google Scholar 

  • Bunde A, Eichner JF, Havlin S, Koscielny-Bunde E, Schellnhuber HJ, Vyushin D (2004) Comment on “Scaling of atmosphere and ocean temperature correlations in observations and climate models.” Physical Review Letters 92(3): 039801. [doi:10.1103/PhysRevLett.92.039801]

    CAS  Google Scholar 

  • Bunde A, Eichner JF, Kantelhardt JW, Havlin S (2005) Long-term memory: A natural mechanism for the clustering of extreme events and anomalous residual times in climate records. Physical Review Letters 94(4): 048701. [doi:10.1103/PhysRevLett.94.048701]

    Google Scholar 

  • Chan KS, Tong H (1987) A note on embedding a discrete parameter ARMA model in a continuous parameter ARMA model. Journal of Time Series Analysis 8(3): 277–281.

    Google Scholar 

  • Chatfield C (2004) The Analysis of Time Series: An Introduction. Sixth edition. Chapman and Hall, Boca Raton, FL, 333 pp.

    Google Scholar 

  • Comte F, Renault E (1996) Long memory continuous time models. Journal of Econometrics 73(1): 101–149.

    Google Scholar 

  • Divine DV, Polzehl J, Godtliebsen F (2008) A propagation-separation approach to estimate the autocorrelation in a time-series. Nonlinear Processes in Geophysics 15(4): 591–599.

    Google Scholar 

  • Doornik JA, Ooms M (2001) A Package for Estimating, Forecasting and Simulating Arfima Models: Arfima package 1.01 for Ox. Nuffield College, University of Oxford, Oxford, 32 pp.

    Google Scholar 

  • Doornik JA, Ooms M (2003) Computational aspects of maximum likelihood estimation of autoregressive fractionally integrated moving average models. Computational Statistics and Data Analysis 42(3): 333–348.

    Google Scholar 

  • Doukhan P, Oppenheim G, Taqqu MS (Eds) (2003) Theory and Applications of Long-Range Dependence. Birkhäuser, Boston, 719 pp.

    Google Scholar 

  • Fan J, Yao Q (2003) Nonlinear Time Series: Nonparametric and Parametric Methods. Springer, New York, 551 pp.

    Google Scholar 

  • Fisher DA, Reeh N, Clausen HB (1985) Stratigraphic noise in time series derived from ice cores. Annals of Glaciology 7(1): 76–83.

    Google Scholar 

  • Fishman GS (1996) Monte Carlo: Concepts, Algorithms, and Applications. Springer, New York, 698 pp.

    Google Scholar 

  • Fraedrich K, Blender R (2003) Scaling of atmosphere and ocean temperature correlations in observations and climate models. Physical Review Letters 90(10): 108501. [doi:10.1103/PhysRevLett.90.108501]

    Google Scholar 

  • Fraedrich K, Blender R (2004) Fraedrich and Blender reply. Physical Review Letters 92(3): 039802. [doi:10.1103/PhysRevLett.92.039802]

    Google Scholar 

  • Freund RJ, Minton PD (1979) Regression Methods: A Tool for Data Analysis. Marcel Dekker, New York, 261 pp.

    Google Scholar 

  • Fuller WA (1996) Introduction to Statistical Time Series. Second edition. Wiley, New York, 698 pp.

    Google Scholar 

  • Giese H-J, Albeverio S, Stabile G (1999) Stochastic and deterministic methods in the analysis of the δ 18O record in the core V28-239. Chemical Geology 161(1–3): 271–289.

    CAS  Google Scholar 

  • Gilman DL, Fuglister FJ, Mitchell Jr JM (1963) On the power spectrum of “red noise.” Journal of the Atmospheric Sciences 20(2): 182–184.

    Google Scholar 

  • Govindan RB, Vyushin D, Bunde A, Brenner S, Havlin S, Schellnhuber H-J (2002) Global climate models violate scaling of the observed atmospheric variability. Physical Review Letters 89(2): 028501. [doi:10.1103/PhysRevLett.89.028501]

    CAS  Google Scholar 

  • Gradshteyn IS, Ryzhik IM (2000) Tables of Integrals, Series, and Products. Sixth edition. Academic Press, San Diego, 1163 pp.

    Google Scholar 

  • Granger CWJ (1980) Long memory relationships and the aggregation of dynamic models. Journal of Econometrics 14(2): 227–238.

    Google Scholar 

  • Granger CWJ, Joyeux R (1980) An introduction to long-memory time series models and fractional differencing. Journal of Time Series Analysis 1(1): 15–29.

    Google Scholar 

  • Hasselmann K (1976) Stochastic climate models: Part I. Theory. Tellus 28(6): 473–485.

    Google Scholar 

  • Hasselmann K (1999) Linear and nonlinear signatures. Nature 398(6730): 755–756.

    CAS  Google Scholar 

  • Hosking JRM (1981) Fractional differencing. Biometrika 68(1): 165–176.

    Google Scholar 

  • Hosking JRM (1984) Modeling persistence in hydrological time series using fractional differencing. Water Resources Research 20(12): 1898–1908.

    Google Scholar 

  • Houseman EA (2005) A robust regression model for a first-order autoregressive time series with unequal spacing: Application to water monitoring. Applied Statistics 54(4): 769–780.

    Google Scholar 

  • Hoyt DV, Schatten KH (1998) Group sunspot numbers: A new solar activity reconstruction. Solar Physics 179(1): 189–219. [Corrigendum: 1998 Vol. 181(2): 491–512]

    Google Scholar 

  • Hurrell JW (1995) Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation. Science 269(5524): 676–679.

    CAS  Google Scholar 

  • Hurst HE (1951) Long-term storage capacity of reservoirs (with discussion). Transactions of the American Society of Civil Engineers 116: 770–808.

    Google Scholar 

  • Hurvich CM, Tsai C-L (1989) Regression and time series model selection in small samples. Biometrika 76(2): 297–307.

    Google Scholar 

  • Hwang S (2000) The effects of systematic sampling and temporal aggregation on discrete time long memory processes and their finite sample properties. Econometric Theory 16(3): 347–372.

    Google Scholar 

  • Jansson M (1985) A comparison of the detransformed logarithmic regressions and power function regressions. Geografiska Annaler 67A(1–2): 61–70.

    Google Scholar 

  • Johnson NL, Kotz S, Balakrishnan N (1994) Continuous Univariate Distributions, volume 1. Second edition. Wiley, New York, 756 pp.

    Google Scholar 

  • Johnson NL, Kotz S, Balakrishnan N (1995) Continuous Univariate Distributions, volume 2. Second edition. Wiley, New York, 719 pp.

    Google Scholar 

  • Jones RH (1981) Fitting a continuous time autoregression to discrete data. In: Findley DF (Ed) Applied Time Series Analysis II. Academic Press, New York, pp 651–682.

    Google Scholar 

  • Jones RH (1985) Time series analysis with unequally spaced data. In: Hannan EJ, Krishnaiah PR, Rao MM (Eds) Handbook of Statistics, volume 5. Elsevier, Amsterdam, pp 157–177.

    Google Scholar 

  • Jones RH (1986) Time series regression with unequally spaced data. Journal of Applied Probability 23A: 89–98. [Special volume]

    Google Scholar 

  • Jones RH, Tryon PV (1987) Continuous time series models for unequally spaced data applied to modeling atomic clocks. SIAM Journal on Scientific and Statistical Computing 8(1): 71–81.

    Google Scholar 

  • Kallache M, Rust HW, Kropp J (2005) Trend assessment: Applications for hydrology and climate research. Nonlinear Processes in Geophysics 12(2): 201–210.

    Google Scholar 

  • Kärner O (2002) On nonstationarity and antipersistency in global temperature series. Journal of Geophysical Research 107(D20): 4415. [doi:10.1029/2001JD002024]

    Google Scholar 

  • Kendall MG (1954) Note on bias in the estimation of autocorrelation. Biometrika 41(3–4): 403–404.

    Google Scholar 

  • Klemeš V (1974) The Hurst phenomenon: A puzzle? Water Resources Research 10(4): 675–688.

    Google Scholar 

  • Klemeš V (1978) Physically based stochastic hydrologic analysis. Advances in Hydroscience 11: 285–356.

    Google Scholar 

  • Knuth DE (2001) The Art of Computer Programming, volume 2. Third edition. Addison-Wesley, Boston, 762 pp.

    Google Scholar 

  • Koen C, Lombard F (1993) The analysis of indexed astronomical time series –- I. Basic methods. Monthly Notices of the Royal Astronomical Society 263(2): 287–308.

    Google Scholar 

  • Koscielny-Bunde E, Bunde A, Havlin S, Goldreich Y (1996) Analysis of daily temperature fluctuations. Physica A 231(4): 393–396.

    Google Scholar 

  • Koscielny-Bunde E, Bunde A, Havlin S, Roman HE, Goldreich Y, Schellnhuber H-J (1998a) Indication of a universal persistence law governing atmospheric variability. Physical Review Letters 81(3): 729–732.

    CAS  Google Scholar 

  • Koscielny-Bunde E, Kantelhardt JW, Braun P, Bunde A, Havlin S (2006) Long-term persistence and multifractality of river runoff records: Detrended fluctuation studies. Journal of Hydrology 322(1–4): 120–137.

    Google Scholar 

  • Koutsoyiannis D (2002) The Hurst phenomenon and fractional Gaussian noise made easy. Hydrological Sciences Journal 47(4): 573–595.

    Google Scholar 

  • Koutsoyiannis D (2005a) Hydrological persistence and the Hurst phenomenon. In: Lehr JH, Keeley J (Eds) Water Encyclopedia: Surface and Agricultural Water. Wiley, New York, pp 210–220.

    Google Scholar 

  • Lanczos C (1964) A precision approximation of the gamma function. SIAM Journal on Numerical Analysis 1: 86–96.

    Google Scholar 

  • Laurmann JA, Gates WL (1977) Statistical considerations in the evaluation of climatic experiments with Atmospheric General Circulation Models. Journal of the Atmospheric Sciences 34(8): 1187–1199.

    Google Scholar 

  • Leith CE (1973) The standard error of time-average estimates of climatic means. Journal of Applied Meteorology 12(6): 1066–1069.

    Google Scholar 

  • Linden M (1999) Time series properties of aggregated AR(1) processes with uniformly distributed coefficients. Economics Letters 64(1): 31–36.

    Google Scholar 

  • Lovelock JE, Kump LR (1994) Failure of climate regulation in a geophysiological model. Nature 369(6483): 732–734.

    CAS  Google Scholar 

  • Mandelbrot BB (1983) Fractional Brownian motions and fractional Gaussian noises. In: Kotz S, Johnson NL, Read CB (Eds) Encyclopedia of statistical sciences, volume 3. Wiley, New York, pp 186–189.

    Google Scholar 

  • Manley G (1974) Central England temperatures: Monthly means 1659 to 1973. Quarterly Journal of the Royal Meteorological Society 100(425): 389–405.

    Google Scholar 

  • Maraun D, Rust HW, Timmer J (2004) Tempting long-memory–-on the interpretation of DFA results. Nonlinear Processes in Geophysics 11(4): 495–503.

    Google Scholar 

  • Marriott FHC, Pope JA (1954) Bias in the estimation of autocorrelations. Biometrika 41(3–4): 390–402.

    Google Scholar 

  • Matalas NC, Langbein WB (1962) Information content of the mean. Journal of Geophysical Research 67(9): 3441–3448.

    Google Scholar 

  • Matyasovszky I (2001) A nonlinear approach to modeling climatological time series. Theoretical and Applied Climatology 69(3–4): 139–147.

    Google Scholar 

  • Mesa OJ, Poveda G (1993) The Hurst effect: The scale of fluctuation approach. Water Resources Research 29(12): 3995–4002.

    Google Scholar 

  • Miller DM (1984) Reducing transformation bias in curve fitting. The American Statistician 38(2): 124–126.

    Google Scholar 

  • Mills TC (2007) Time series modelling of two millennia of northern hemisphere temperatures: Long memory or shifting trends? Journal of the Royal Statistical Society, Series A 170(1): 83–94.

    Google Scholar 

  • Milly PCD, Wetherald RT (2002) Macroscale water fluxes 3. Effects of land processes on variability of monthly river discharge. Water Resources Research 38(11): 1235. [doi:10.1029/2001WR000761]

    Google Scholar 

  • Montanari A (2003) Long-range dependence in hydrology. In: Doukhan P, Oppenheim G, Taqqu MS (Eds) Theory and Applications of Long-Range Dependence. Birkhäuser, Boston, pp 461–472.

    Google Scholar 

  • Montanari A, Rosso R, Taqqu MS (1997) Fractionally differenced ARIMA models applied to hydrologic time series: Identification, estimation, and simulation. Water Resources Research 33(5): 1035–1044.

    Google Scholar 

  • Mudelsee M (2001a) Note on the bias in the estimation of the serial correlation coefficient of AR(1) processes. Statistical Papers 42(4): 517–527.

    Google Scholar 

  • Mudelsee M (2002) TAUEST: A computer program for estimating persistence in unevenly spaced weather/climate time series. Computers and Geosciences 28(1): 69–72.

    Google Scholar 

  • Mudelsee M (2007) Long memory of rivers from spatial aggregation. Water Resources Research 43(1): W01202. [doi:10.1029/2006WR005721]

    Google Scholar 

  • Mudelsee M, Stattegger K (1994) Plio-/{P}leistocene climate modeling based on oxygen isotope time series from deep-sea sediment cores: The Grassberger–Procaccia algorithm and chaotic climate systems. Mathematical Geology 26(7): 799–815.

    Google Scholar 

  • Newton HJ, North GR, Crowley TJ (1991) Forecasting global ice volume. Journal of Time Series Analysis 12(3): 255–265.

    Google Scholar 

  • Palm FC, Smeekes S, Urbain J-P (2008) Bootstrap unit-root tests: Comparison and extensions. Journal of Time Series Analysis 29(2): 371–401.

    Google Scholar 

  • Park SK, Miller KW (1988) Random number generators: Good ones are hard to find. Communications of the ACM 31(10): 1192–1201.

    Google Scholar 

  • Pelletier JD, Turcotte DL (1997) Long-range persistence in climatological and hydrological time series: Analysis, modeling and application to drought hazard assessment. Journal of Hydrology 203(1–4): 198–208.

    Google Scholar 

  • Peng C-K, Buldyrev SV, Havlin S, Simons M, Stanley HE, Goldberger AL (1994) Mosaic organization of DNA nucleotides. Physical Review E 49(2): 1685–1689.

    CAS  Google Scholar 

  • Peng C-K, Havlin S, Stanley HE, Goldberger AL (1995) Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 5(1): 82–87.

    CAS  Google Scholar 

  • Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical Recipes in Fortran 77: The Art of Scientific Computing. Second edition. Cambridge University Press, Cambridge, 933 pp.

    Google Scholar 

  • Priestley MB (1981) Spectral Analysis and Time Series. Academic Press, London, 890 pp.

    Google Scholar 

  • Priestley MB (1988) Non-linear and Non-stationary Time Series Analysis. Academic Press, London, 237 pp.

    Google Scholar 

  • Ritson D (2004) Comment on “Global climate models violate scaling of the observed atmospheric variability.” Physical Review Letters 92(15): 159803. [doi:10.1103/PhysRevLett.92.159803]

    CAS  Google Scholar 

  • Robinson PM (1977) Estimation of a time series model from unequally spaced data. Stochastic Processes and their Applications 6(1): 9–24.

    Google Scholar 

  • Robinson PM (Ed) (2003) Time Series with Long Memory. Oxford University Press, Oxford, 382 pp.

    Google Scholar 

  • Rodriguez-Iturbe I, Rinaldo A (1997) Fractal River Basins: Chance and Self-Organization. Cambridge University Press, Cambridge, 547 pp.

    Google Scholar 

  • Roe GH, Steig EJ (2004) Characterization of millennial-scale climate variability. Journal of Climate 17(10): 1929–1944.

    Google Scholar 

  • Rützel E (1976) Zur Ausgleichsrechnung: Die Unbrauchbarkeit von Linearisierungsmethoden beim Anpassen von Potenz- und Exponentialfunktionen. Archiv für Psychologie 128(3–4): 316–322.

    Google Scholar 

  • Rybski D, Bunde A, Havlin S, von Storch H (2006) Long-term persistence in climate and the detection problem. Geophysical Research Letters 33(6): L06718. [doi:10.1029/2005GL025591]

    Google Scholar 

  • Schrage L (1979) A more portable Fortran random number generator. ACM Transactions on Mathematical Software 5(2): 132–138.

    Google Scholar 

  • Seleshi Y, Demarée GR, Delleur JW (1994) Sunspot numbers as a possible indicator of annual rainfall at Addis Ababa, Ethiopia. International Journal of Climatology 14(8): 911–923.

    Google Scholar 

  • Shaman P, Stine RA (1988) The bias of autoregressive coefficient estimators. Journal of the American Statistical Association 83(403): 842–848.

    Google Scholar 

  • Shenton LR, Johnson WL (1965) Moments of a serial correlation coefficient. Journal of the Royal Statistical Society, Series B 27(2): 308–320.

    Google Scholar 

  • Stattegger K (1986) Die Beziehungen zwischen Sediment und Hinterland: Mathematisch-statistische Modelle aus Schwermineraldaten rezenter fluviatiler und fossiler Sedimente. Jahrbuch der Geologischen Bundesanstalt 128(3–4): 449–512.

    Google Scholar 

  • Stephenson DB, Pavan V, Bojariu R (2000) Is the North Atlantic Oscillation a random walk? International Journal of Climatology 20(1): 1–18.

    Google Scholar 

  • Stern DI, Kaufmann RK (2000) Detecting a global warming signal in hemispheric temperature series: A structural time series analysis. Climatic Change 47(4): 411–438.

    Google Scholar 

  • Sura P, Newman M, Penland C, Sardeshmukh P (2005) Multiplicative noise and non-Gaussianity: A paradigm for atmospheric regimes? Journal of the Atmospheric Sciences 62(5): 1391–1409.

    Google Scholar 

  • Talkner P, Weber RO (2000) Power spectrum and detrended fluctuation analysis: Application to daily temperatures. Physical Review E 62(1): 150–160.

    CAS  Google Scholar 

  • Thiébaux HJ, Zwiers FW (1984) The interpretation and estimation of effective sample size. Journal of Climate and Applied Meteorology 23(5): 800–811.

    Google Scholar 

  • Tjøstheim D, Paulsen J (1983) Bias of some commonly-used time series estimates. Biometrika 70(2): 389–399.

    Google Scholar 

  • Tong H (1990) Non-linear Time Series. Clarendon Press, Oxford, 564 pp.

    Google Scholar 

  • Tong H (1992) Some comments on a bridge between nonlinear dynamicists and statisticians. Physica D 58(1–4): 299–303.

    Google Scholar 

  • Tong H (1995) A personal overview of non-linear time series analysis from a chaos perspective (with discussion). Scandinavian Journal of Statistics 22(4): 399–445.

    Google Scholar 

  • Tong H, Lim KS (1980) Threshold autoregression, limit cycles and cyclical data (with discussion). Journal of the Royal Statistical Society, Series B 42(3): 245–292.

    Google Scholar 

  • Tong H, Yeung I (1991) Threshold autoregressive modelling in continuous time. Statistica Sinica 1(2): 411–430.

    Google Scholar 

  • Trenberth KE (1984a) Some effects of finite sample size and persistence on meteorological statistics. Part I: Autocorrelations. Monthly Weather Review 112(12): 2359–2368.

    Google Scholar 

  • Tsonis AA, Elsner JB (1995) Testing for scaling in natural forms and observables. Journal of Statistical Physics 81(5–6): 869–880.

    Google Scholar 

  • von Storch H, Zwiers FW (1999) Statistical Analysis in Climate Research. Cambridge University Press, Cambridge, 484 pp.

    Google Scholar 

  • Vyushin D, Bunde A, Brenner S, Havlin S, Govindan RB, Schellnhuber H-J (2004) Vjushin et al. reply. Physical Review Letters 92(15): 159804. [doi:10.1103/PhysRevLett.92.159804]

    Google Scholar 

  • White JS (1961) Asymptotic expansions for the mean and variance of the serial correlation coefficient. Biometrika 48(1–2): 85–94.

    Google Scholar 

  • Willson RC, Hudson HS (1988) Solar luminosity variations in solar cycle 21. Nature 332(6167): 810–812.

    Google Scholar 

  • Wunsch C (2003) The spectral description of climate change including the 100 ky energy. Climate Dynamics 20(4): 353–363.

    Google Scholar 

  • Yule GU (1927) On a method of investigating periodicities in disturbed series, with special reference to Wolfer’s sunspot numbers. Philosophical Transactions of the Royal Society of London, Series A 226: 267–298.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred Mudelsee .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Mudelsee, M. (2010). Persistence Models. In: Climate Time Series Analysis. Atmospheric and Oceanographic Sciences Library, vol 42. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9482-7_2

Download citation

Publish with us

Policies and ethics