Advertisement

Introduction

  • Manfred Mudelsee
Chapter
Part of the Atmospheric and Oceanographic Sciences Library book series (ATSL, volume 42)

Abstract

“Weather is important but hard to predict”—lay people and scientists alike will agree. The complexity of that system limits the knowledge about it and therefore its predictability even over a few days. It is complex because many variables within the Earth’s atmosphere, such as temperature, barometric pressure, wind velocity, humidity, clouds and precipitation, are interacting, and they do so nonlinearly. Extending the view to longer timescales, that is, the climate 1 system in its original sense (the World Meteorological Organization defines a timescale boundary between weather and climate of 30 years), and also to larger spatial and further processual scales considered to influence climate (Earth’s surface, cryosphere, Sun, etc.), does not reduce complexity. This book loosely adopts the term “climate” to refer to this extended view, which shall also include “paleoclimate” as the climate within the geologic past.

Keywords

Oxygen Isotopic Composition Multivariate Time Series Climate Time Series Lake Sediment Core Time Series Analysis Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abarbanel HDI, Brown R, Sidorowich JJ, Tsimring LS (1993) The analysis of observed chaotic data in physical systems. Reviews of Modern Physics 65(4): 1331–1392.Google Scholar
  2. Agrinier P, Gallet Y, Lewin E (1999) On the age calibration of the geomagnetic polarity timescale. Geophysical Journal International 137(1): 81–90.Google Scholar
  3. Aitchison J, Brown JAC (1957) The Lognormal Distribution. Cambridge University Press, Cambridge, 176 pp.Google Scholar
  4. Allen MR, Smith LA (1994) Investigating the origins and significance of low-frequency modes of climate variability. Geophysical Research Letters 21(10): 883–886.Google Scholar
  5. Anderson TW (1971) The Statistical Analysis of Time Series. Wiley, New York, 704 pp.Google Scholar
  6. Appleby PG, Oldfield F (1992) Application of lead-210 to sedimentation studies. In: Ivanovich M, Harmon RS (Eds) Uranium-series Disequilibrium: Applications to Earth, Marine, and Environmental Sciences, second edition. Clarendon Press, Oxford, pp 731–778.Google Scholar
  7. Baker A, Smart PL, Edwards RL, Richards DA (1993) Annual growth banding in a cave stalagmite. Nature 364(6437): 518–520.Google Scholar
  8. Basseville M, Nikiforov IV (1993) Detection of Abrupt Changes: Theory and Application. Prentice-Hall, Englewood Cliffs, NJ, 447 pp.Google Scholar
  9. Beer J, Baumgartner S, Dittrich-Hannen B, Hauenstein J, Kubik P, Lukasczyk C, Mende W, Stellmacher R, Suter M (1994) Solar variability traced by cosmogenic isotopes. In: Pap JM, Fröhlich C, Hudson HS, Solanki SK (Eds) The Sun as a Variable Star: Solar and Stellar Irradiance Variations. Cambridge University Press, Cambridge, pp 291–300.Google Scholar
  10. Berger A, Loutre MF (1991) Insolation values for the climate of the last 10 million years. Quaternary Science Reviews 10(4): 297–317.Google Scholar
  11. Berggren WA, Hilgen FJ, Langereis CG, Kent DV, Obradovich JD, Raffi I, Raymo ME, Shackleton NJ (1995a) Late Neogene chronology: New perspectives in high-resolution stratigraphy. Geological Society of America Bulletin 107(11): 1272–1287.Google Scholar
  12. Berggren WA, Kent DV, Swisher III CC, Aubry M-P (1995b) A revised Cenozoic geochronology and chronostratigraphy. In: Berggren WA, Kent DV, Aubry M-P, Hardenbol J (Eds) Geochronology, Time Scales and Global Stratigraphic Correlation. Society for Sedimentary Geology, Tulsa, OK, pp 129–212. [SEPM Special Publication No. 54]Google Scholar
  13. Bernardo JM, Bayarri MJ, Berger JO, Dawid AP, Heckerman D, Smith AFM, West M (Eds) (2003) Bayesian Statistics 7: Proceedings of the Seventh Valencia International Meeting. Clarendon Press, Oxford, 750 pp.Google Scholar
  14. Bernardo JM, Smith AFM (1994) Bayesian theory. Wiley, Chichester, 586 pp.Google Scholar
  15. Besonen MR (2006) A 1,000 year high-resolution hurricane history for the Boston area based on the varved sedimentary record from the Lower Mystic Lake (Medford/Arlington, MA)}. Ph.D. Dissertation. University of Massachusetts at Amherst, Amherst, MA, 297 pp.Google Scholar
  16. Besonen MR, Bradley RS, Mudelsee M, Abbott MB, Francus P (2008) A 1,000-year, annually-resolved record of hurricane activity from Boston, Massachusetts. Geophysical Research Letters 35(14): L14705. [doi:10.1029/2008GL033950]Google Scholar
  17. Bigler M, Wagenbach D, Fischer H, Kipfstuhl J, Miller H, Sommer S, Stauffer B (2002) Sulphate record from a northeast Greenland ice core over the last 1200 years based on continuous flow analysis. Annals of Glaciology 35(1): 250–256.Google Scholar
  18. Blaauw M, Christen JA (2005) Radiocarbon peat chronologies and environmental change. Applied Statistics 54(4): 805–816.Google Scholar
  19. Box GEP, Jenkins GM, Reinsel GC (1994) Time Series Analysis: Forecasting and Control. Third edition. Prentice-Hall, Englewood Cliffs, NJ, 598 pp.Google Scholar
  20. Bradley RS (1999) Paleoclimatology: Reconstructing Climates of the Quaternary. Second edition. Academic Press, San Diego, 610 pp.Google Scholar
  21. Brázdil R, Pfister C, Wanner H, von Storch H, Luterbacher J (2005) Historical climatology in Europe–-the state of the art. Climatic Change 70(3): 363–430.Google Scholar
  22. Brockwell PJ, Davis RA (1996) Introduction to Time Series and Forecasting. Springer, New York, 420 pp.Google Scholar
  23. Broecker WS, Peng T-H (1982) Tracers in the Sea. Eldigio Press, New York, 690 pp.Google Scholar
  24. Broomhead DS, King GP (1986) Extracting qualitative dynamics from experimental data. Physica D 20(2–3): 217–236.Google Scholar
  25. Brückner E (1890) Klimaschwankungen seit 1700 nebst Bemerkungen über die Klimaschwankungen der Diluvialzeit. Geographische Abhandlungen 4(2): 153–484.Google Scholar
  26. Burns SJ, Fleitmann D, Mudelsee M, Neff U, Matter A, Mangini A (2002) A 780-year annually resolved record of Indian Ocean monsoon precipitation from a speleothem from south Oman. Journal of Geophysical Research 107(D20): 4434. [doi:10.1029/2001JD001281]Google Scholar
  27. Casella G (Ed) (2003) Silver Anniversary of the Bootstrap, volume 18(2) of Statistical Science. [Special issue]Google Scholar
  28. Chan K-S, Tong H (2001) Chaos: A Statistical Perspective. Springer, New York, 300 pp.Google Scholar
  29. Cini Castagnoli G, Provenzale A (Eds) (1997) Past and Present Variability of the Solar–Terrestrial System: Measurement, Data Analysis and Theoretical Models. Società Italiana di Fisica, Bologna, 491 pp.Google Scholar
  30. Cronin TM (2010) Paleoclimates: Understanding Climate Change Past and Present. Columbia University Press, New York, 441 pp.Google Scholar
  31. Crowley TJ, North GR (1991) Paleoclimatology. Oxford University Press, New York, 339 pp.Google Scholar
  32. Dalfes HN, Schneider SH, Thompson SL (1984) Effects of bioturbation on climatic spectra inferred from deep sea cores. In: Berger A, Imbrie J, Hays J, Kukla G, Saltzman B (Eds) Milankovitch and Climate, volume 1. D. Reidel, Dordrecht, pp 481–492.Google Scholar
  33. Dalrymple GB, Lanphere MA (1969) Potassium–Argon Dating. Freeman, San Francisco, 258 pp.Google Scholar
  34. Dansgaard W, Oeschger H (1989) Past environmental long-term records from the Arctic. In: Oeschger H, Langway Jr CC (Eds) The Environmental Record in Glaciers and Ice Sheets. Wiley, Chichester, pp 287–317.Google Scholar
  35. Daoxian Y, Cheng Z (Eds) (2002) Karst Processes and the Carbon Cycle. Geological Publishing House, Beijing, 220 pp.Google Scholar
  36. Davis JC (1986) Statistics and Data Analysis in Geology. Second edition. Wiley, New York, 646 pp.Google Scholar
  37. Davison AC (2003) Statistical models. Cambridge University Press, Cambridge, 726 pp.Google Scholar
  38. Diggle PJ (1990) Time Series: A Biostatistical Introduction. Clarendon Press, Oxford, 257 pp.Google Scholar
  39. Diks C (1999) Nonlinear Time Series Analysis: Methods and Applications. World Scientific, Singapore, 209 pp.Google Scholar
  40. Donner RV, Barbosa SM (Eds) (2008) Nonlinear Time Series Analysis in the Geosciences: Applications in Climatology, Geodynamics and Solar–Terrestrial Physics. Springer, Berlin, 390 pp.Google Scholar
  41. Douglass AE (1919) Climatic Cycles and Tree-Growth: A Study of the Annual Rings of Trees in Relation to Climate and Solar Activity, volume 1. Carnegie Institution of Washington, Washington, DC, 127 pp.Google Scholar
  42. Douglass AE (1928) Climatic Cycles and Tree-Growth: A Study of the Annual Rings of Trees in Relation to Climate and Solar Activity, volume 2. Carnegie Institution of Washington, Washington, DC, 166 pp.Google Scholar
  43. Douglass AE (1936) Climatic Cycles and Tree Growth: A Study of Cycles, volume 3. Carnegie Institution of Washington, Washington, DC, 171 pp.Google Scholar
  44. Eckmann J-P, Ruelle D (1992) Fundamental limitations for estimating dimensions and Lyapunov exponents in dynamical systems. Physica D 56(2–3): 185–187.Google Scholar
  45. Efron B (1979) Bootstrap methods: Another look at the jackknife. The Annals of Statistics 7(1): 1–26.Google Scholar
  46. Einstein A (1949) Autobiographisches–-Autobiographical notes. In: Schilpp PA (Ed) Albert Einstein: Philosopher–Scientist. Library of Living Philosophers, Evanston, IL, pp 1–95.Google Scholar
  47. Emiliani C (1955) Pleistocene temperatures. Journal of Geology 63(6): 538–578.Google Scholar
  48. Fairchild IJ, Frisia S, Borsato A, Tooth AF (2007) Speleothems. In: Nash DJ, McLaren SJ (Eds) Geochemical Sediments and Landscapes. Blackwell, Malden, MA, pp 200–245.Google Scholar
  49. Fine TL (1983) Foundations of probability. In: Kotz S, Johnson NL, Read CB (Eds) Encyclopedia of statistical sciences, volume 3. Wiley, New York, pp 175–184.Google Scholar
  50. Fleitmann D (2001) Annual to millennial Indian Ocean monsoon variability recorded in Holocene and Pleistocene stalagmites from Oman. Ph.D. Dissertation. University of Bern, Bern, 236 pp.Google Scholar
  51. Fleitmann D, Burns SJ, Mangini A, Mudelsee M, Kramers J, Villa I, Neff U, Al-Subbary AA, Buettner A, Hippler D, Matter A (2007a) Holocene ITCZ and Indian monsoon dynamics recorded in stalagmites from Oman and Yemen (Socotra). Quaternary Science Reviews 26(1–2): 170–188.Google Scholar
  52. Fleitmann D, Burns SJ, Mudelsee M, Neff U, Kramers J, Mangini A, Matter A (2003) Holocene forcing of the Indian monsoon recorded in a stalagmite from southern Oman. Science 300(5626): 1737–1739.Google Scholar
  53. Fleitmann D, Burns SJ, Neff U, Mudelsee M, Mangini A, Matter A (2004) Paleoclimatic interpretation of high-resolution oxygen isotope profiles derived from annually laminated speleothems from southern Oman. Quaternary Science Reviews 23(7–8): 935–945.Google Scholar
  54. Fligge M, Solanki SK, Beer J (1999) Determination of solar cycle length variations using the continuous wavelet transform. Astronomy and Astrophysics 346(1): 313–321.Google Scholar
  55. Gillieson D (1996) Caves: Processes, Development and Management. Blackwell, Oxford, 324 pp.Google Scholar
  56. Glaser R (2001) Klimageschichte Mitteleuropas. Wissenschaftliche Buchgesellschaft, Darmstadt, 227 pp.Google Scholar
  57. Gordon C, Cooper C, Senior CA, Banks H, Gregory JM, Johns TC, Mitchell JFB, Wood RA (2000) The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Climate Dynamics 16(2–3): 147–168.Google Scholar
  58. Goreau TJ (1980) Frequency sensitivity of the deep-sea climatic record. Nature 287(5783): 620–622.Google Scholar
  59. Gosse JC, Phillips FM (2001) Terrestrial in situ cosmogenic nuclides: Theory and application. Quaternary Science Reviews 20(14): 1475–1560.Google Scholar
  60. Gradstein FM, Ogg JG, Smith AG (Eds) (2004) A Geologic Time Scale 2004. Cambridge University Press, Cambridge, 589 pp.Google Scholar
  61. Grassberger P (1986) Do climatic attractors exist? Nature 323(6089): 609–612.Google Scholar
  62. Grün R (1989) Die ESR-Altersbestimmungsmethode. Springer, Berlin, 132 pp.Google Scholar
  63. Haldane JBS (1942) Moments of the distributions of powers and products of normal variates. Biometrika 32(3–4): 226–242.Google Scholar
  64. Hammer C, Mayewski PA, Peel D, Stuiver M (Eds) (1997) Greenland Summit Ice Cores GISP2/GRIP, volume 102(C12) of Journal of Geophysical Research. [Special issue]Google Scholar
  65. Hann J (1901) Lehrbuch der Meteorologie. Tauchnitz, Leipzig, 805 pp.Google Scholar
  66. Hansen AR, Sutera A (1986) On the probability density distribution of planetary-scale atmospheric wave amplitude. Journal of the Atmospheric Sciences 43(24): 3250–3265.Google Scholar
  67. Hays JD, Imbrie J, Shackleton NJ (1976) Variations in the Earth’s orbit: Pacemaker of the ice ages. Science 194(4270): 1121–1132.Google Scholar
  68. Heisenberg W (1969) Der Teil und das Ganze. Piper, Munich, 334 pp.Google Scholar
  69. Henderson GM (2002) New oceanic proxies for paleoclimate. Earth and Planetary Science Letters 203(1): 1–13.Google Scholar
  70. Holton JR, Curry JA, Pyle JA (Eds) (2003) Encyclopedia of Atmospheric Sciences, volume 1–6. Academic Press, Amsterdam, 2780 pp.Google Scholar
  71. Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (Eds) (2001) Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, 881 pp.Google Scholar
  72. Imbrie J, Hays JD, Martinson DG, McIntyre A, Mix AC, Morley JJ, Pisias NG, Prell WL, Shackleton NJ (1984) The orbital theory of Pleistocene climate: Support from a revised chronology of the marine δ 18O record. In: Berger A, Imbrie J, Hays J, Kukla G, Saltzman B (Eds) Milankovitch and Climate, volume 1. D. Reidel, Dordrecht, pp 269–305.Google Scholar
  73. Ivanovich M, Harmon RS (Eds) (1992) Uranium-series Disequilibrium: Applications to Earth, Marine, and Environmental Sciences. Second edition. Clarendon Press, Oxford, 910 pp.Google Scholar
  74. Johns TC, Carnell RE, Crossley JF, Gregory JM, Mitchell JFB, Senior CA, Tett SFB, Wood RA (1997) The second Hadley Centre coupled ocean–atmosphere GCM: Model description, spinup and validation. Climate Dynamics 13(2): 103–134.Google Scholar
  75. Johnsen SJ, Dahl-Jensen D, Gundestrup N, Steffensen JP, Clausen HB, Miller H, Masson-Delmotte V, Sveinbjörnsdottir AE, White J (2001) Qxygen isotope and palaeotemperature records from six Greenland ice-core stations: Camp Century, Dye-3, GRIP, GISP2, Renland and NorthGRIP. Journal of Quaternary Science 16(4): 299–307.Google Scholar
  76. Johnson NL, Kotz S, Balakrishnan N (1994) Continuous Univariate Distributions, volume 1. Second edition. Wiley, New York, 756 pp.Google Scholar
  77. Johnson NL, Kotz S, Balakrishnan N (1995) Continuous Univariate Distributions, volume 2. Second edition. Wiley, New York, 719 pp.Google Scholar
  78. Jones PD, Moberg A (2003) Hemispheric and large-scale surface air temperature variations: An extensive revision and an update to 2001. Journal of Climate 16(2): 206–223.Google Scholar
  79. Jouzel J, Masson-Delmotte V, Cattani O, Dreyfus G, Falourd S, Hoffmann G, Minster B, Nouet J, Barnola JM, Chappellaz J, Fischer H, Gallet JC, Johnsen S, Leuenberger M, Loulergue L, Luethi D, Oerter H, Parrenin F, Raisbeck G, Raynaud D, Schilt A, Schwander J, Selmo E, Souchez R, Spahni R, Stauffer B, Steffensen JP, Stenni B, Stocker TF, Tison JL, Werner M, Wolff EW (2007) Orbital and millennial Antarctic climate variability over the past 800,000 years. Science 317(5839): 793–796.Google Scholar
  80. Kandel ER (2006) In Search of Memory: The Emergence of a New Science of Mind. W. W. Norton, New York, 510 pp.Google Scholar
  81. Kant I (1781) Critik der Reinen Vernunft. Hartknoch, Riga, 856 pp.Google Scholar
  82. Kantz H, Schreiber T (1997) Nonlinear time series analysis. Cambridge University Press, Cambridge, 304 pp.Google Scholar
  83. Kennett JP (1982) Marine Geology. Prentice-Hall, Englewood Cliffs, NJ, 813 pp.Google Scholar
  84. Kolmogoroff A (1933) Grundbegriffe der Wahrscheinlichkeitsrechnung. Ergebnisse der Mathematik und ihrer Grenzgebiete 2(3): 195–262.Google Scholar
  85. Köppen W (1923) Die Klimate der Erde: Grundriss der Klimakunde. de Gruyter, Berlin, 369 pp.Google Scholar
  86. Kotz S, Balakrishnan N, Johnson NL (2000) Continuous Multivariate Distributions, volume 1. Second edition. Wiley, New York, 722 pp.Google Scholar
  87. Kotz S, Johnson NL, Read CB (Eds) (1982a) Encyclopedia of statistical sciences, volume 1. Wiley, New York, 480 pp.Google Scholar
  88. Kotz S, Johnson NL, Read CB (Eds) (1982b) Encyclopedia of statistical sciences, volume 2. Wiley, New York, 613 pp.Google Scholar
  89. Kotz S, Johnson NL, Read CB (Eds) (1983a) Encyclopedia of statistical sciences, volume 3. Wiley, New York, 722 pp.Google Scholar
  90. Kotz S, Johnson NL, Read CB (Eds) (1986) Encyclopedia of statistical sciences, volume 7. Wiley, New York, 714 pp.Google Scholar
  91. Kotz S, Johnson NL, Read CB (Eds) (1988a) Encyclopedia of statistical sciences, volume 8. Wiley, New York, 870 pp.Google Scholar
  92. Kotz S, Johnson NL, Read CB (Eds) (1989) Encyclopedia of statistical sciences, volume S. Wiley, New York, 283 pp.Google Scholar
  93. Kotz S, Read CB, Banks DL (Eds) (1997) Encyclopedia of statistical sciences, volume U1. Wiley, New York, 568 pp.Google Scholar
  94. Kotz S, Read CB, Banks DL (Eds) (1998) Encyclopedia of statistical sciences, volume U2. Wiley, New York, 745 pp.Google Scholar
  95. Kotz S, Read CB, Banks DL (Eds) (1999) Encyclopedia of statistical sciences, volume U3. Wiley, New York, 898 pp.Google Scholar
  96. Kuhn TS (1970) The Structure of Scientific Revolutions. Second edition. University of Chicago Press, Chicago, 210 pp.Google Scholar
  97. Kürschner WM, van der Burgh J, Visscher H, Dilcher DL (1996) Oak leaves as biosensors of late Neogene and early Pleistocene paleoatmospheric CO2 concentrations. Marine Micropaleontology 27(1–4): 299–312.Google Scholar
  98. Lakatos I, Musgrave A (Eds) (1970) Criticism and the Growth of Knowledge. Cambridge University Press, Cambridge, 282 pp.Google Scholar
  99. Lindley DV (1965) Introduction to Probability and Statistics. Cambridge University Press, Cambridge, 259 pp.Google Scholar
  100. Lisiecki LE, Raymo ME (2005) A Pliocene–Pleistocene stack of 57 globally distributed benthic δ 18O records. Paleoceanography 20(1): PA1003. [doi:10.1029/2004PA001071]Google Scholar
  101. Lomnicki ZA (1967) On the distribution of products of random variables. Journal of the Royal Statistical Society, Series B 29(3): 513–524.Google Scholar
  102. Lorenz EN (1963) Deterministic nonperiodic flow. Journal of the Atmospheric Sciences 20(2): 130–141.Google Scholar
  103. Lorenz EN (1991) Dimension of weather and climate attractors. Nature 353(6341): 241–244.Google Scholar
  104. Maidment DR (Ed) (1993) Handbook of Hydrology. McGraw-Hill, New York, 1400 pp.Google Scholar
  105. Marquardt DW, Acuff SK (1982) Direct quadratic spectrum estimation from unequally spaced data. In: Anderson OD, Perryman MR (Eds) Applied Time Series Analysis. North-Holland, Amsterdam, pp 199–227.Google Scholar
  106. Martin RJ (1998) Irregularly sampled signals: Theories and techniques for analysis. Ph.D. Dissertation. University College London, London, 158 pp.Google Scholar
  107. Matteucci G (1990) Analysis of the probability distribution of the late Pleistocene climatic record: Implications for model validation. Climate Dynamics 5(1): 35–52.Google Scholar
  108. McAvaney BJ, Covey C, Joussaume S, Kattsov V, Kitoh A, Ogana W, Pitman AJ, Weaver AJ, Wood RA, Zhao Z-C (2001) Model evaluation. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (Eds) Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 471–523.Google Scholar
  109. McGuffie K, Henderson-Sellers A (1997) A Climate Modelling Primer. Second edition. Wiley, Chichester, 253 pp.Google Scholar
  110. Moore PD, Webb JA, Collinson ME (1991) Pollen analysis. Second edition. Blackwell, Oxford, 216 pp.Google Scholar
  111. Mudelsee M (2005) A new, absolutely dated geomagnetic polarity timescale for the Late Pliocene to Early Pleistocene. In: Berger A, Ercegovac M, Mesinger F (Eds) Milutin Milankovitch Anniversary Symposium: Paleoclimate and the Earth Climate System. Serbian Academy of Sciences and Arts, Belgrade, pp 145–149.Google Scholar
  112. Mudelsee M, Börngen M, Tetzlaff G, Grünewald U (2003) No upward trends in the occurrence of extreme floods in central Europe. Nature 425(6954): 166–169. [Corrigendum: Insert in Eq. (1) on the right-hand side a factor \( {{h}^{{-1}}} \) before the sum sign.]Google Scholar
  113. Mudelsee M, Stattegger K (1994) Plio-/{P}leistocene climate modeling based on oxygen isotope time series from deep-sea sediment cores: The Grassberger–Procaccia algorithm and chaotic climate systems. Mathematical Geology 26(7): 799–815.Google Scholar
  114. Mudelsee M, Stattegger K (1997) Exploring the structure of the mid-Pleistocene revolution with advanced methods of time-series analysis. Geologische Rundschau 86(2): 499–511.Google Scholar
  115. Negendank JFW, Zolitschka B (Eds) (1993) Paleolimnology of European Maar Lakes. Springer, Berlin, 513 pp.Google Scholar
  116. Neuendorf KKE, Mehl Jr JP, Jackson JA (2005) Glossary of Geology. Fifth edition. American Geological Institute, Alexandria, VA, 779 pp.Google Scholar
  117. Nicolis C, Nicolis G (1984) Is there a climatic attractor? Nature 311(5986): 529–532.Google Scholar
  118. Nierenberg WA (Ed) (1992) Encyclopedia of Earth System Science, volume 1–4. Academic Press, San Diego, 2825 pp.Google Scholar
  119. North Greenland Ice Core Project members (2004) High-resolution record of northern hemisphere climate extending into the last interglacial period. Nature 431(7005): 147–151.Google Scholar
  120. Oeschger H, Langway Jr CC (Eds) (1989) The Environmental Record in Glaciers and Ice Sheets. Wiley, Chichester, 401 pp.Google Scholar
  121. Packard NH, Crutchfield JP, Farmer JD, Shaw RS (1980) Geometry from a time series. Physical Review Letters 45(9): 712–716.Google Scholar
  122. Parthasarathy B, Munot AA, Kothawale DR (1994) All-India monthly and seasonal rainfall series: 1871–1993. Theoretical and Applied Climatology 49(4): 217–224.Google Scholar
  123. Parzen E (Ed) (1984) Time Series Analysis of Irregularly Observed Data. Springer, New York, 363 pp.Google Scholar
  124. Percival DB, Walden AT (2000) Wavelet Methods for Time Series Analysis. Cambridge University Press, Cambridge, 594 pp.Google Scholar
  125. Pestiaux P, Berger A (1984) Impacts of deep-sea processes on paleoclimatic spectra. In: Berger A, Imbrie J, Hays J, Kukla G, Saltzman B (Eds) Milankovitch and Climate, volume 1. D. Reidel, Dordrecht, pp 493–510.Google Scholar
  126. Peterson TC, Easterling DR, Karl TR, Groisman P, Nicholls N, Plummer N, Torok S, Auer I, Boehm R, Gullett D, Vincent L, Heino R, Tuomenvirta H, Mestre O, Szentimrey T, Salinger J, Førland EJ, Hanssen-Bauer I, Alexandersson H, Jones P, Parker D (1998a) Homogeneity adjustments of in situ atmospheric climate data: A review. International Journal of Climatology 18(13): 1493–1517.Google Scholar
  127. Petit JR, Jouzel J, Raynaud D, Barkov NI, Barnola J-M, Basile I, Bender M, Chappellaz J, Davis M, Delaygue G, Delmotte M, Kotlyakov VM, Legrand M, Lipenkov VY, Lorius C, Pépin L, Ritz C, Saltzman E, Stievenard M (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399(6735): 429–436.Google Scholar
  128. Pfister C (1999) Wetternachhersage. Paul Haupt, Bern, 304 pp.Google Scholar
  129. Polanyi M (1958) Personal Knowledge: Towards a Post-Critical Philosophy. University of Chicago Press, Chicago, 428 pp.Google Scholar
  130. Popper K (1935) Logik der Forschung: Zur Erkenntnistheorie der {modernen Naturwissenschaft}. Julius Springer, Wien, 248 pp.Google Scholar
  131. Preisendorfer RW (1988) Principal Component Analysis in Meteorology and Oceanography. Elsevier, Amsterdam, 425 pp.Google Scholar
  132. Prell WL, Imbrie J, Martinson DG, Morley JJ, Pisias NG, Shackleton NJ, Streeter HF (1986) Graphic correlation of oxygen isotope stratigraphy application to the late Quaternary. Paleoceanography 1(2): 137–162.Google Scholar
  133. Priestley MB (1981) Spectral Analysis and Time Series. Academic Press, London, 890 pp.Google Scholar
  134. Randall DA, Wood RA, Bony S, Colman R, Fichefet T, Fyfe J, Kattsov V, Pitman A, Shukla J, Srinivasan J, Stouffer RJ, Sumi A, Taylor KE (2007) Climate models and their evaluation. In: Solomon S, Qin D, Manning M, Marquis M, Averyt K, Tignor MMB, Miller Jr HL, Chen Z (Eds) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 589–662.Google Scholar
  135. Raynaud D, Jouzel J, Barnola JM, Chappellaz J, Delmas RJ, Lorius C (1993) The ice record of greenhouse gases. Science 259(5097): 926–934.Google Scholar
  136. Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Bertrand CJH, Blackwell PG, Buck CE, Burr GS, Cutler KB, Damon PE, Edwards RL, Fairbanks RG, Friedrich M, Guilderson TP, Hogg AG, Hughen KA, Kromer B, McCormac G, Manning S, Ramsey CB, Reimer RW, Remmele S, Southon JR, Stuiver M, Talamo S, Taylor FW, van der Plicht J, Weyhenmeyer CE (2004) INTCAL04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46(3): 1029–1058.Google Scholar
  137. Röthlisberger R, Bigler M, Hutterli M, Sommer S, Stauffer B, Junghans HG, Wagenbach D (2000) Technique for continuous high-resolution analysis of trace substances in firn and ice cores. Environmental Science & Technology 34(2): 338–342.Google Scholar
  138. Ruddiman WF, Raymo ME (2003) A methane-based time scale for Vostok ice. Quaternary Science Reviews 22(2–4): 141–155.Google Scholar
  139. Ruelle D (1990) Deterministic chaos: The science and the fiction. Proceedings of the Royal Society of London, Series A 427(1873): 241–248.Google Scholar
  140. Schiffelbein P (1984) Effect of benthic mixing on the information content of deep-sea stratigraphical signals. Nature 311(5987): 651–653.Google Scholar
  141. Schiffelbein P (1985) Extracting the benthic mixing impulse response function: A constrained deconvolution technique. Marine Geology 64(3–4): 313–336.Google Scholar
  142. Schweingruber FH (1988) Tree Rings: Basics and Applications of Dendrochronology. Kluwer, Dordrecht, 276 pp.Google Scholar
  143. Scott DW (1979) On optimal and data-based histograms. Biometrika 66(3): 605–610.Google Scholar
  144. Seibold E, Berger WH (1993) The Sea Floor. Second edition. Springer, Berlin, 356 pp.Google Scholar
  145. Selley RC, Cocks LRM, Plimer IR (Eds) (2005) Encyclopedia of Geology, volume 1–5. Elsevier, Amsterdam, 3297 pp.Google Scholar
  146. Shackleton N (1967) Oxygen isotope analyses and Pleistocene temperatures re-assessed. Nature 215(5096): 15–17.Google Scholar
  147. Shackleton NJ (2000) The 100,000-year ice-age cycle identified and found to lag temperature, carbon dioxide, and orbital eccentricity. Science 289(5486): 1897–1902.Google Scholar
  148. Shackleton NJ, Crowhurst S, Hagelberg T, Pisias NG, Schneider DA (1995a) A new late Neogene time scale: Application to Leg 138 sites. In: Pisias NG, Mayer LA, Janecek TR, Palmer-Julson A, van Andel TH (Eds) Proc. ODP, Sci. Results, volume 138. Ocean Drilling Program, College Station, TX, pp 73–101.Google Scholar
  149. Shackleton NJ, Fairbanks RG, Chiu T-c, Parrenin F (2004) Absolute calibration of the Greenland time scale: Implications for Antarctic time scales and for δ 14O. Quaternary Science Reviews 23(14–15): 1513–1522.Google Scholar
  150. Shackleton NJ, Hall MA (1984) Oxygen and carbon isotope stratigraphy of Deep Sea Drilling Project hole 552a: Plio–Pleistocene glacial history. In: Roberts DG, Schnitker D, Backman J, Baldauf JG, Desprairies A, Homrighausen R, Huddlestun P, Kaltenback AJ, Krumsiek KAO, Morton AC, Murray JW, Westberg-Smith J, Zimmerman HB (Eds) Init. Repts. DSDP, volume 81. U.S. Govt. Printing Office, Washington, DC, pp 599–609.Google Scholar
  151. Shackleton NJ, Hall MA, Pate D (1995b) Pliocene stable isotope stratigraphy of Site 846. In: Pisias NG, Mayer LA, Janecek TR, Palmer-Julson A, van Andel TH (Eds) Proc. ODP, Sci. Results, volume 138. Ocean Drilling Program, College Station, TX, pp 337–355.Google Scholar
  152. Shumway RH, Stoffer DS (2006) Time Series Analysis and Its Applications: With R Examples. Second edition. Springer, New York, 575 pp.Google Scholar
  153. Silverman BW (1986) Density Estimation for Statistics and Data Analysis. Chapman and Hall, London, 175 pp.Google Scholar
  154. Simonoff JS (1996) Smoothing Methods in Statistics. Springer, New York, 338 pp.Google Scholar
  155. Sokal A, Bricmont J (1998) Intellectual Impostures. Profile Books, London, 274 pp.Google Scholar
  156. Solanki SK, Usoskin IG, Kromer B, Schüssler M, Beer J (2004) Unusual activity of the Sun during recent decades compared to the previous 11,000 years. Nature 431(7012): 1084–1087.Google Scholar
  157. Solomon S, Qin D, Manning M, Marquis M, Averyt K, Tignor MMB, Miller Jr HL, Chen Z (Eds) (2007) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, 996 pp.Google Scholar
  158. Spall JC (Ed) (1988) Bayesian Analysis of Time Series and Dynamic Models. Marcel Dekker, New York, 536 pp.Google Scholar
  159. Stanley SM (1989) Earth and life through time. Second edition. Freeman, New York, 689 pp.Google Scholar
  160. Steele JH, Thorpe SA, Turekian KK (Eds) (2001) Encyclopedia of Ocean Sciences, volume 1–6. Academic Press, San Diego, 3399 pp.Google Scholar
  161. Stott PA, Tett SFB, Jones GS, Allen MR, Mitchell JFB, Jenkins GJ (2000) External control of 20th century temperature by natural and anthropogenic forcings. Science 290(5499): 2133–2137.Google Scholar
  162. Stuiver M, Reimer PJ, Bard E, Beck JW, Burr GS, Hughen KA, Kromer B, McCormac G, van der Plicht J, Spurk M (1998) INTCAL98 radiocarbon age calibration, 24,000–0 cal BP. Radiocarbon 40(3): 1041–1083.Google Scholar
  163. Taylor RE (1987) Radiocarbon Dating: An Archaeological Perspective. Academic Press, Orlando, FL, 212 pp.Google Scholar
  164. Thomson J, Cook GT, Anderson R, MacKenzie AB, Harkness DD, McCave IN (1995) Radiocarbon age offsets in different-sized carbonate components of deep-sea sediments. Radiocarbon 37(2): 91–101.Google Scholar
  165. Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bulletin of the American Meteorological Society 79(1): 61–78.Google Scholar
  166. Trauth MH (1998) TURBO: A dynamic-probabilistic simulation to study the effects of bioturbation on paleoceanographic time series. Computers and Geosciences 24(5): 433–441.Google Scholar
  167. Traverse A (2007) Paleopalynology. Second edition. Springer, Dordrecht, 813 pp.Google Scholar
  168. Tsonis AA, Elsner JB (Eds) (2007) Nonlinear Dynamics in Geosciences. Springer, New York, 604 pp.Google Scholar
  169. von Storch H, Zwiers FW (1999) Statistical Analysis in Climate Research. Cambridge University Press, Cambridge, 484 pp.Google Scholar
  170. von Weizsäcker CF (1985) Aufbau der Physik. Deutscher Taschenbuch Verlag, Munich, 662 pp.Google Scholar
  171. Walker M (2005) Quaternary Dating Methods. Wiley, Chichester, 286 pp.Google Scholar
  172. Wasserman L (2004) All of Statistics: A Concise Course in Statistical Inference. Springer, New York, 442 pp.Google Scholar
  173. Wasserman L (2006) All of Nonparametric Statistics. Springer, New York, 268 pp.Google Scholar
  174. Weikinn C (1958) Quellentexte zur Witterungsgeschichte Europas von der Zeitwende bis zum Jahre 1850: Hydrographie, Teil 1 (Zeitwende–1500). Akademie-Verlag, Berlin, 531 pp.Google Scholar
  175. Weikinn C (1960) Quellentexte zur Witterungsgeschichte Europas von der Zeitwende bis zum Jahre 1850: Hydrographie, Teil 2 (1501–1600). Akademie-Verlag, Berlin, 486 pp.Google Scholar
  176. Weikinn C (1961) Quellentexte zur Witterungsgeschichte Europas von der Zeitwende bis zum Jahre 1850: Hydrographie, Teil 3 (1601–1700). Akademie-Verlag, Berlin, 586 pp.Google Scholar
  177. Weikinn C (1963) Quellentexte zur Witterungsgeschichte Europas von der Zeitwende bis zum Jahre 1850: Hydrographie, Teil 4 (1701–1750). Akademie-Verlag, Berlin, 381 pp.Google Scholar
  178. Wilks DS (1995) Statistical Methods in the Atmospheric Sciences. Academic Press, San Diego, 467 pp.Google Scholar
  179. Wilks DS (2006) Statistical Methods in the Atmospheric Sciences. Second edition. Elsevier, Amsterdam, 627 pp.Google Scholar
  180. Wu P, Wood R, Stott P (2005) Human influence on increasing Arctic river discharges. Geophysical Research Letters 32(2): L02703. [doi:10.1029/2004GL021570]Google Scholar
  181. Weikinn C (2000) Quellentexte zur Witterungsgeschichte Europas von der Zeitwende bis zum Jahr 1850: Hydrographie, Teil 5 (1751–1800). Gebrüder Borntraeger, Berlin, 674 pp. [Börngen M, Tetzlaff G (Eds)]Google Scholar
  182. Weikinn C (2002) Quellentexte zur Witterungsgeschichte Europas von der Zeitwende bis zum Jahr 1850: Hydrographie, Teil 6 (1801–1850). Gebrüder Borntraeger, Berlin, 728 pp. [Börngen M, Tetzlaff G (Eds)]Google Scholar
  183. Mudelsee M, Raymo ME (2005) Slow dynamics of the Northern Hemisphere Glaciation. Paleoceanography 20(4): PA4022. [doi:10.1029/2005PA001153]Google Scholar
  184. Mudelsee M, Deutsch M, Börngen M, Tetzlaff G (2006) Trends in flood risk of the River Werra (Germany) over the past 500 years. Hydrological Sciences Journal 51(5): 818–833.Google Scholar
  185. Kotz S, Johnson NL, Read CB (Eds) (1985a) Encyclopedia of statistical sciences, volume 5. Wiley, New York, 741 pp.Google Scholar
  186. Kotz S, Johnson NL, Read CB (Eds) (1985b) Encyclopedia of statistical sciences, volume 6. Wiley, New York, 758 pp.Google Scholar
  187. Deep Sea Drilling Project (Ed) (1969–1986) Initial Reports of the Deep Sea Drilling Project, volume 1–96. U.S. Govt. Printing Office, Washington, DC.Google Scholar
  188. Ocean Drilling Program (Ed) (1986–2004) Proceedings of the Ocean Drilling Program, Initial Reports, volume 101–210. Ocean Drilling Program, College Station, TX.Google Scholar
  189. Ocean Drilling Program (Ed) (1988–2007) Proceedings of the Ocean Drilling Program, Scientific Results, volume 101–210. Ocean Drilling Program, College Station, TX.Google Scholar
  190. Negendank JFW, Zolitschka B (Eds) (1993) Paleolimnology of European Maar Lakes. Springer, Berlin, 513 pp.Google Scholar
  191. Geyh MA, Schleicher H (1990) Absolute Age Determination: Physical and Chemical Dating Methods and Their Application. Springer, Berlin, 503 pp.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Climate Risk AnalysisHannoverGermany
  2. 2.Alfred Wegener Institute for Polar and Marine ResearchBremerhavenGermany

Personalised recommendations