Skip to main content

How Will Climate Change Impact Soil Microbial Communities?

Abstract

More than a century ago Svante Arrhenius predicted that continued combustion of fossil fuels would lead to a doubling of carbon dioxide in the atmosphere and associated climate warming (Arrhenius 1896). Despite this warning, we are now faced with the predicted doubling of atmospheric carbon dioxide and global temperature increase of 1.3°C by the end of this century if no policy changes are made (Cubasch et al. 2001). Furthermore, not only are we faced with rising global temperature but also shifting weather patterns, ocean acidification, and the potential loss of many species on earth (Intergovernmental Panel on Climate Change (IPCC) 2001). These factors will all have a marked impact on land use, land cover, soil quality, and productivity.

Keywords

  • Microbial Community
  • Microbial Biomass
  • Arbuscular Mycorrhizal Fungus
  • Soil Microbial Community
  • Microbial Community Structure

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-90-481-9479-7_10
  • Chapter length: 25 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   179.00
Price excludes VAT (USA)
  • ISBN: 978-90-481-9479-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   229.99
Price excludes VAT (USA)
Hardcover Book
USD   229.99
Price excludes VAT (USA)
Fig. 1

References

  • Aber J, McDowell W, Nadelhoffer K, Magill A, Berntson G, Kamakea M, McNulty S, Currie W, Rustad L, Fernandez I (1998) Nitrogen saturation in temperate forest ecosystems: hypothesis revisited. Bioscience 48:921–934

    Google Scholar 

  • Agren GI, Bosatta E (2002) Reconciling differences in predictions of temperature response of soil organic matter. Soil Biol Biochem 34:129–132

    CAS  Google Scholar 

  • Agren GI, Wetterstedt JAM (2007) What determines the temperature response of soil organic ­matter decomposition? Soil Biol Biochem 39:1794–1798

    Google Scholar 

  • Ajwa H, Dell CJ, Rice CW (1999) Changes in enzyme activities and microbial biomass of ­tallgrass prairie soil as related to burning and nitrogen fertilization. Soil Biol Biochem 31:769–777

    CAS  Google Scholar 

  • Allison S, Treseder KK (2008) Warming and drying suppress microbial activity and carbon cycling in boreal forest soils. Glob Change Biol 14:2898–2909

    Google Scholar 

  • Andrews JA, Matamala R, Westover KM, Schlesinger WH (2000) Temperature effects on the diversity of soil heterotrophs and the ∂13C of soil-respired CO2. Soil Biol Biochem 32:699–706

    CAS  Google Scholar 

  • Arrhenius S (1896) On the influence of carbonic acid in the air upon the temperature of the ground. Phil Mag J Sci 41:237–276

    CAS  Google Scholar 

  • Balser TC (2000) Linking soil microbial communities and ecosystem functioning. Doctoral dissertation, University of California, Berkeley, CA

    Google Scholar 

  • Balser TC, Kinzig A, Firestone MK (2001) Linking soil microbial communities and ecosystem functioning. In: Kinzig A, Pacala S, Tilman D (eds) The functional consequences of biodiversity: empirical progress and theoretical extensions. Princeton University Press, Princeton, NJ, pp 265–294

    Google Scholar 

  • Balser TC, Kinzig AP, Firestone MK (2002) Linking soil microbial communities and ecosystem functioning. In: Kinzig AP, Pacala SW, Tilman D (eds) The functional consequences of ­biodiversity: empirical process and theoretical extensions. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Balser TC (2005) Humification. In: Hillel D et al (eds) Encyclopedia of soils in the environment. Elsevier, Oxford, UK, pp 195–208

    Google Scholar 

  • Balser T, Treseder K, Ekenler M (2005) Using lipid analysis to estimate AM and saprotrophic fungal abundances along a soil chronosequence. Soil Biol Biochem 37:601–604

    CAS  Google Scholar 

  • Balser TC, Firestone MK (2005) Linking microbial community composition and soil processes in a California annual grassland and mixed-conifer forest. Biogeochemistry 73:395–415

    CAS  Google Scholar 

  • Balser TC, Wixon D (2009) Investigating biological control over soil carbon temperature ­sensitivity. Glob Change Biol. doi:10.1111/j.1365-2486.2009.01946.x

    Google Scholar 

  • Bardgett RD, Shine A (1999) Linkages between plant litter diversity, soil microbial biomass and ecosystem function in temperate grasslands. Soil Biol Biochem 31:317–321

    CAS  Google Scholar 

  • Barea JM, Azcon R, Azcon-Aguilar C (2002) Mycorrhizosphere interactions to improve plant fitness and soil quality. Antonie Leeuwenhoek 81:343–351

    PubMed  CAS  Google Scholar 

  • Boerner R, Brinkman JA, Smith A (2005) Seasonal variations in enzyme activity and organic carbon in soil of a burn and unburned hardwood forest. Soil Biol Biochem 37:1419–1426

    CAS  Google Scholar 

  • Boerner R, Waldrop TA, Shelburne VB (2006) Wildfire mitigation strategies affect soil enzyme activity and soil organic carbon in loblolly pine (Pinus taeda) forests. Can J For Res 36:3148–3154

    CAS  Google Scholar 

  • Bosatta E, Agren GI (1999) Soil organic matter quality interpreted thermodynamically. Soil Biol Biochem 31:1889–1891

    CAS  Google Scholar 

  • Bossuyt H, Six J, Hendrix PF (2002) Aggregate-protected carbon in no-tillage and conventional tillage agroecosystems using Carbon-14 labeled plant residue. Soil Sci Soc Am J 66:1965–1973

    CAS  Google Scholar 

  • Bradley K, Drijber RA, Knops J (2006) Increased N availability in grassland soils modifies their microbial communities and decreases the abundance of arbuscular mycorrhizal fungi. Soil Biol Biochem 38:1583–1595

    CAS  Google Scholar 

  • Bruce KD, Jones TH, Bezemer TM, Thompson LJ, Ritchie DA (2000) The effect of elevated atmospheric carbon dioxide levels on soil bacterial communities. Glob Change Biol 6:427–434

    Google Scholar 

  • Cardon ZG, Hungate BA, Cambardella CA, Chapin FS III, Field CB, Holland EA, Mooney HA (2001) Contrasting effects of elevated CO2 on old and new soil carbon pools. Soil Biol Biochem 33:365–373

    CAS  Google Scholar 

  • Carreiro MM, Sinsabaugh RL, Repert DA, Parkhurst DF (2000) Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition. Ecology 81:2359–2365

    Google Scholar 

  • Chapin FS (2003) Effects of plant traits on ecosystem and regional processes: a conceptual framework for predicting the consequences of global change. Ann Bot 91:455–463

    PubMed  Google Scholar 

  • Chena M, Zhu Y, Sua Y, Chena B, Fu B, Marschner P (2007) Effects of soil moisture and plant interactions on the soil microbial community structure. Eur J Soil Biol 43:31–38

    Google Scholar 

  • Clarholm M (1985) Possible roles for roots, bacteria, protozoa and fungi in supplying nitrogen to plants. In: Fitter A et al (eds) Ecological interactions in soil. Blackwell Scientific, Oxford, UK, pp 355–365

    Google Scholar 

  • Cleveland CC, Townsend AR, Schmidt SK, Constance BC (2003) Soil microbial dynamics and biogeochemistry in tropical forests and pastures, southwestern Costa Rica. Ecol Appl 13:314–326

    Google Scholar 

  • Contin M, Corcimaru S, Nobili MD, Brookes PC (2000) Temperature changes and the ATP concentration of the soil microbial biomass. Soil Biol Biochem 32:1219–1225

    CAS  Google Scholar 

  • Cookson WR, Osman M, Marschner P, Abaye DA, Clark I, Murphy DV, Stockdale EA, Watson CA (2007) Controls on soil nitrogen cycling and microbial community composition across land use and incubation temperature. Soil Biol Biochem 39:744–756

    CAS  Google Scholar 

  • Cotrufo MF, Ineson P, Scott A (1998) Elevated CO2 reduces the nitrogen concentration of plant tissues. Glob Change Biol 4:43–54

    Google Scholar 

  • Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000) Acceleration of global warming due to carbon cycle feedbacks in a coupled climate model. Nature 408:184–187

    PubMed  CAS  Google Scholar 

  • Cubasch U, Meehl GA, Boer GJ, Stouffer RJ, Dix M, Noda A, Senior CA, Raper S, Yap KS (2001) Projections of future climate change. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai C, Maskell K, Johnson CA (eds) Climate change 2001: the scientific basis. Cambridge University Press, New York, pp 525–582

    Google Scholar 

  • Curtis P, Drake B, Whigham D (1989) Nitrogen and carbon dynamics in C3 and C4 estuarine marsh plants grown under elevated carbon dioxide in situ. Oecologia 78:297–301

    Google Scholar 

  • Dalias P, Anderson JM, Bottner P, Couteaux M (2001) Temperature responses of carbon mineralization in conifer forest soils from different regional climates incubated under standard laboratory conditions. Glob Change Biol 7:181–192

    Google Scholar 

  • Davidson EA, Belk E, Boone BD (1998) Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Glob Change Biol 4:217–227

    Google Scholar 

  • Davidson EA, Trumbore SE, Amundson R (2000) Biogeochemistry: soil warming and organic carbon content. Nature 408:789–790

    PubMed  CAS  Google Scholar 

  • Dhillion S, Roy J, Abrams M (1996) Assessing the impact of elevated CO2 on soil microbial activity in a Mediterranean model ecosystem. Plant Soil 187:333–342

    CAS  Google Scholar 

  • Diaz S, Grime JP, Harris J, McPherson E (1993) Evidence of a feedback mechanism limiting plant response to elevated carbon dioxide. Nature 364:616–617

    CAS  Google Scholar 

  • Dixon GR (2009) The impact of climate and global change on crop production. In: Letcher TM (ed) Climate change: observed impacts on planet earth. Elsevier, Oxford, UK/Amsterdam, Netherlands, pp 307–324

    Google Scholar 

  • Dukes JS (2002) Comparison of the effect of elevated CO2 on an invasive species (Centaurea solstitialis) in monoculture and community settings. Plant Ecol 160:225–234

    Google Scholar 

  • Dupouey JL, Dambrine E, Lafftie JD, Moares C (2002) Irreversible impact of past land use on forest soils and biodiversity. Ecology 83:2978–2984

    Google Scholar 

  • Ebersberger D, Niklaus PA, Kandeler E (2003) Long term CO2 enrichment stimulates N-mineralisation and enzyme activities in calcareous grassland. Soil Biol Biochem 35:965–972

    CAS  Google Scholar 

  • Ellert BH, Bettany JR (1992) Temperature-dependence of net nitrogen and sulfur mineralization. Soil Sci Soc Am J 56:1133–1141

    CAS  Google Scholar 

  • Emmett BA, Beier C, Estiarte M, Tietema A, Kristensen HL, Williams D, Penuelas J, Schmidt I, Sowerby A (2004) The response of soil processes to climate change: results from manipulation studies of shrublands across an environmental gradient. Ecosystems 7:625–637

    Google Scholar 

  • Fang CM, Smith P, Moncrieff JB, Smith JU (2005) Similar response of labile and resistant soil organic matter pools to changes in temperature. Nature 433:57–59

    PubMed  CAS  Google Scholar 

  • Fierer N, Schimel JP, Holden PA (2003) Influence of drying-rewetting frequency on soil bacterial community structure. Microb Ecol 45:63–71

    PubMed  CAS  Google Scholar 

  • Fierer N, Craine J, McLauchlan K, Schimel JP (2005) Litter quality and the temperature sensitivity of decomposition. Ecology 86:320–326

    Google Scholar 

  • Fitter AH, Heinemeyer A, Staddon PL (2000) The impact of elevated CO2 and global climate change on arbuscular mycorrhizas: a mycocentric approach. New Phytol 147:179–187

    CAS  Google Scholar 

  • Flannigan M, Amiro BD, Logan KA, Stocks BJ, Wotton BM (2006) Forest fires and climate change in 21st century. Mitig Adapt Strateg Glob Change 11:847–859

    Google Scholar 

  • Foley JA, Ramankutty N (2004) A primer on the terrestrial carbon cycle: what we don’t know but should. In: Field CB, Raupach MR (eds) The global carbon cycle: integrating humans, climate, and the natural world. Island Press, Washington, DC, pp 279–294

    Google Scholar 

  • Franck VM, Hungate BA, Chapin FS III, Field CB (1997) Decomposition of litter produced under elevated CO2: dependence on plant species and nutrient supply. Biogeochemistry 36:223–237

    Google Scholar 

  • Fraterrigo JM, Turner MG, Pearson SM, Dixon P (2005) Effects of past land use on spatial heterogeneity of soil nutrients in southern Appalachian forests. Ecol Monogr 75:215–230

    Google Scholar 

  • Fraterrigo JM, Balser TC, Turner MG (2006) Microbial community variation and its relationship with nitrogen mineralization in historically altered forests. Ecology 87:570–579

    PubMed  Google Scholar 

  • Frey SD, Elliott ET, Paustian K (1999) Bacterial and fungal abundance and biomass in conventional and no-tillage agroecosystems along two climatic gradients. Soil Biol Biochem 31:573–585

    CAS  Google Scholar 

  • Gavito ME, Schweiger P, Jakobsen I (2003) P uptake by arbuscular mycorrhizal hyphae: effect of soil temperature and atmospheric CO2 enrichment. Glob Change Biol 9:106–116

    Google Scholar 

  • Giardina CP, Ryan MG (2000) Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature. Nature 404:858–861

    PubMed  CAS  Google Scholar 

  • Guggenberger G, Frey SD, Six J, Paustian K, Elliott ET (1999) Bacterial and fungal cell-wall residues in conventional and no-tillage agroecosystems. Soil Sci Soc Am J 63:1188–1198

    CAS  Google Scholar 

  • Gutknecht JLM (2007) Exploring long-term microbial responses to simulated global change. Doctoral dissertation, University of Wisconsin, Madison, WI

    Google Scholar 

  • Gutknecht JLM, Henry HA, Balser TC (2010) Inter-annual variation in soil extra-cellular enzyme activity in response to simulated global change and fire disturbance. Pedobiologia 53:283–293

    CAS  Google Scholar 

  • Hanson PJ, Edwards NT, Garten CT, Andrews JA (2000) Separating root and soil microbial contributions to soil respiration: a review of methods and observations. Biogeochemistry 48:115–146

    CAS  Google Scholar 

  • Hawkes CV, Wren IF, Herman DJ, Firestone MK (2005) Plant invasion alters nitrogen cycling by modifying the soil nitrifying community. Ecol Lett 8:976–985

    Google Scholar 

  • Henriksen T, Breland T (1999) Nitrogen availability effects on carbon mineralization, fungal and bacterial growth, and enzyme activities during decomposition of wheat straw in soil. Soil Biol Biochem 31:1121–1134

    CAS  Google Scholar 

  • Henry HA, Juarez JD, Field CB, Vitousek PM (2005a) Interactive effects of elevated CO2, N deposition and climate change on extracellular enzyme activity and soil density fractionation in a California annual grassland. Glob Change Biol 11:1808–1815

    Google Scholar 

  • Henry HA, Clelad EE, Field CB, Vitousek PM (2005b) Interactive effects of CO2, N deposition, and climate change on plant litter quality in a California annual grassland. Oecologia 142:465–473

    PubMed  Google Scholar 

  • Horz HP, Barbrook A, Field CB, Bohannan BJM (2004) Ammonia-oxidizing bacteria respond to multifactorial global change. Proc Natl Acad Sci USA 101:15136–15141

    PubMed  CAS  Google Scholar 

  • Horz HP, Rich V, Avrahami S, Bohannan BJM (2005) Methane-oxidizing bacteria in a California upland grassland soil: diversity and response to simulated global change. Appl Environ Microbiol 71:2642–2652

    PubMed  CAS  Google Scholar 

  • Hu S, Firestone MK, Chapin FSC (1999) Soil microbial feedbacks to atmospheric CO2 enrichment. Trends Ecol Evol 14:433–437

    PubMed  Google Scholar 

  • Hui DF, Luo Y (2004) Evaluation of soil CO2 production and transport in Duke Forest using a process-based modeling approach. Glob Biogeochem Cy 18:GB4029

    Google Scholar 

  • Hungate BA, Canadell J, Chapin FS (1996) Plant species mediate changes in soil microbial N in response to elevated CO2. Ecology 77:2505–2515

    Google Scholar 

  • Hungate BA, Lund CP, Pearson HL, Chapin FS (1997) Elevated CO2 and nutrient addition alter soil N cycling and N trace gas fluxes with early season wet-up in a California annual grassland. Biogeochemistry 37:89–109

    CAS  Google Scholar 

  • Hungate BA, Dijkstra P, Johnson DW, Hinkle CR, Drake BG (1999) Elevated CO2 increases nitrogen fixation and decreases soil nitrogen mineralization in Florida scrub oak. Glob Change Biol 5:781–789

    Google Scholar 

  • Hyvonen R, Agren GI, Dalias P (2005) Analysing temperature response of decomposition of organic matter. Glob Change Biol 11:770–778

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2001) Climate change 2001: synthesis report. Cambridge University Press, New York/Cambridge, p 398

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2007) Contribution of working group I to the fourth assessment report of the IPCC, the physical science basis. Cambridge University Press, Cambridge, UK/New York

    Google Scholar 

  • Jin VL, Evans RD (2007) Elevated CO2 increases microbial carbon substrate use and nitrogen cycling in Mojave Desert soils. Glob Change Biol 13:452–465

    Google Scholar 

  • Joel G, Chapin FS, Chiariello NR, Thayer SS, Field CB (2001) Species-specific responses of plant communities to altered carbon and nutrient availability. Glob Change Biol 7:435–450

    Google Scholar 

  • Johnson DW, Geisinger DR, Walker RF, Newman J, Vose JM, Elbot K, Ball JT (1994) Soil pCO2, soil respiration, and root activity in CO2-fumigated and nitrogen fertilized ponderosa pine. Plant Soil 165:129–138

    CAS  Google Scholar 

  • Kampichler C, Kandeler E, Bardgett RD, Jones TH, Thompson LJ (1998) Impact of elevated atmospheric CO2 concentration on soil microbial biomass and activity in a complex, weedy field model ecosystem. Glob Change Biol 4:335–346

    Google Scholar 

  • Kandeler E, Tscherko D, Bardgett RD, Hobbs PJ, Kamplichler C, Jones TH (1998) The response of soil microorganisms and roots to elevated CO2 and temperature in a terrestrial model ecosystem. Plant Soil 202:251–262

    CAS  Google Scholar 

  • Kardol P, Cornips NJ, Van Kempen MML, Bakx-Schotman JMT, Van Der Putten WH (2007) Microbe-mediated plant–soil feedback causes historical contingency effects in plant community assembly. Ecol Monogr 77:147–162

    Google Scholar 

  • Kennedy AC, Papendick RI (1995) Microbial characteristics of soil quality. J Soil Water Conserv 50:243–248

    Google Scholar 

  • Kennedy AC, Schillinger WF (2006) Soil quality and water intake in conventional-till vs. no-till paired farms in Washington’s Palouse Region. Soil Sci Soc Am J 70:940–949

    CAS  Google Scholar 

  • Kirschbaum MUF (2000) Will changes in soil organic carbon act as a positive or negative feedback on global warming? Biogeochemistry 48:21–51

    CAS  Google Scholar 

  • Klironomos JN, Rillig MC, Allen MF, Zak DR, Kubiske M, Pregitzer KS (1997) Soil fungal-arthropod responses to Populus tremuloides grown under enriched atmospheric CO2 under field conditions. Glob Change Biol 3:473–478

    Google Scholar 

  • Knorr W, Prentice IC, House JI, Holland EA (2005) Long-term sensitivity of soil carbon turnover to warming. Nature 433:298–301

    PubMed  CAS  Google Scholar 

  • Körner C, Arnone JA (1992) Responses to elevated carbon dioxide in artificial tropical ecosystems. Science 257:1672–1675

    PubMed  Google Scholar 

  • Kuikman PJ, Jansen AG, van Veen JA (1991) 15N-nitrogen mineralization from bacteria by ­protozoan grazing at different soil moisture regimes. Soil Biol Biochem 23:193–200

    CAS  Google Scholar 

  • Lavigne MB, Foster RJ, Goodine G (2004) Seasonal and annual changes in soil respiration in relation to soil temperature, water potential and trenching. Tree Physiol 24:415–424

    PubMed  CAS  Google Scholar 

  • Lee TD, Tjoelker MG, Russelle MP, Reich PB (2003) Contrasting response of an N-fixing and non N-fixing forb to elevated CO2: dependence on soil N supply. Plant Soil 255:475–486

    CAS  Google Scholar 

  • Lin G, Ehleringer JR, Rygiewicz PT, Johnson MG, Tingey D (1999) Elevated CO2 and temperature impacts on different components of soil CO2 efflux in Douglas-fir terracosms. Glob Change Biol 5:157–168

    Google Scholar 

  • Linkins AE, Melillo JM, Sinsabaugh RL (1984) Factors affecting cellulase activity in terrestrial and aquatic ecosystems. In: Klug MJ, Reddy CA (eds) Current perspectives in soil microbiology. American Society for Microbiology press, Washington, DC, pp 572–670

    Google Scholar 

  • Lipson DA (2007) Relationships between temperature responses and bacterial community structure along seasonal and altitudinal gradients. FEMS Microbiol Ecol 59:418–427

    PubMed  CAS  Google Scholar 

  • Luo Y, Wan S, Hui D, Wallace L (2001) Acclimatization of soil respiration to warming in a tall grass prairie. Nature 413:622–625

    PubMed  CAS  Google Scholar 

  • Lussenhop J, Treonis A, Curtis PS, Teeri JA, Vogel CS (1998) Response of soil biota to elevated atmospheric CO2 in poplar model systems. Oecologia 113:247–251

    Google Scholar 

  • Lutze JL, Gifford RM, Adams HN (2000) Litter quality and decomposition in Danthonia richardsonii swards in response to CO2 and nitrogen supply over four years growth. Glob Change Biol 6:13–24

    Google Scholar 

  • MacDonald NW, Zak DR, Pregitzer KS (1995) Temperature effects on kinetics of microbial respiration and net nitrogen and sulfur mineralization. Soil Sci Soc Am J 59:233–240

    CAS  Google Scholar 

  • Mack MC, Schuur EAG, Bret-Harte MS, Shaver GR, Chapin FS III (2004) Ecosystem carbon storage in arctic tundra reduced by long-termnutrient fertilization. Nature 431:440–443

    PubMed  CAS  Google Scholar 

  • Marschner B, Bredow A (2002) Temperature effects on release and ecologically relevant properties of dissolved organic carbon in sterilised and biologically active soil samples. Soil Biol Biochem 34:459–466

    CAS  Google Scholar 

  • Martin-Olmedo P, Rees RM, Grace J (2002) The influence of plants grown under elevated CO2 and N fertilization on soil nitrogen dynamics. Glob Change Biol 8:643–657

    Google Scholar 

  • Mayr C, Miller M, Insam H (1999) Elevated CO2 alters community-level physiological profiles and enzyme activities in alpine grassland. J Microbiol Meth 36:35–43

    CAS  Google Scholar 

  • Mentzer J, Goodman RM, Balser TC (2006) Microbial response over time to hydrologic and fertilization treatments in a simulated wet prairie. Plant Soil 284:85–100

    CAS  Google Scholar 

  • Mikan C, Schimel J, Doyle A (2002) Temperature controls of microbial respiration above and below freezing in Arctic tundra soils. Soil Biol Biochem 34:1785–1795

    CAS  Google Scholar 

  • Minoshima H, Jackson LE, Cavagnaro TR, Sanchez-Moreno S, Ferris H, Temple SR, Goyal S, Mitchell JP (2007) Soil food webs and carbon dynamics in response to conservation tillage in California. Soil Sci Soc Am J 71:952–963

    CAS  Google Scholar 

  • Montealegre CM, Kessel CV, Blumenthal JM, Hur HG, Hartwig UA, Sadowsky MJ (2000) Elevated atmospheric CO2 alters microbial population structure in a pasture ecosystem. Glob Change Biol 6:475–482

    Google Scholar 

  • Montealegre CM, Kessel CV, Russelle MP, Sadowsky MJ (2002) Changes in microbial activity and composition in a pasture ecosystem exposed to elevated atmospheric carbon dioxide. Plant Soil 243:197–207

    CAS  Google Scholar 

  • Mooney HA, Canadell J, Chapin SF III, Ehleringer JH, Körner C, McMurtrie RE, Parton WJ, Pitelka LF, Schulze ED (1999) Ecosystem physiology responses to global change. In: Walker B et al (eds) The terrestrial biosphere and global change, vol 4. Cambridge University Press, Cambridge, UK, pp 141–189

    Google Scholar 

  • Nakayama PS, Huluka G, Kimball BA, Lewin KF, Nagy J, Hendrey GR (1994) Soil carbon dioxide fluxes in natural and CO2 enriched systems. Agr Forest Meteorol 70:131–140

    Google Scholar 

  • Nicolardot B, Fauvet G, Cheneby D (1994) Carbon and nitrogen cycling through soil microbial biomass at various temperatures. Soil Biol Biochem 26:253–261

    CAS  Google Scholar 

  • Niinisto SM, Silvola J, Kellomaki S (2004) Soil CO2 efflux in a boreal pine forest under atmospheric CO2 enrichment and air warming. Glob Change Biol 10:1–14

    Google Scholar 

  • Niklaus PA (1998) Effects of elevated atmospheric CO2 on soil microbiota in calcerous grassland. Glob Change Biol 4:451–458

    Google Scholar 

  • Niklaus PA, Alphei J, Ebersberger D, Kampichler C, Kandeler E, Tscherko D (2003) Six years of in situ CO2 enrichment evoke changes in soil structure and soil biota of nutrient-poor grasslands. Glob Change Biol 9:585–600

    Google Scholar 

  • Norby R (1994) Issues and perspectives for investigating root responses to elevated atmospheric carbon dioxide. Plant Soil 165:9–20

    CAS  Google Scholar 

  • Norby RJ, Cotrufo MF (1998) A question of litter quality. Nature 396:17–18

    CAS  Google Scholar 

  • O’Neill EG (1994) Responses of soil biota to elevated atmospheric carbon dioxide. Plant Soil 165:55–65

    Google Scholar 

  • Owensby CE (1993) Potential impacts of elevated CO2 and above- and belowground litter quality of a tallgrass prairie. Water Air Soil Pollut 70:413–424

    CAS  Google Scholar 

  • Pajari B (1995) Soil respiration in a poor upland site of scots pine stand subjected to elevated temperature and atmospheric carbon concentration. Plant Soil 169:563–570

    Google Scholar 

  • Pan Y, Melillo JM, McGuire AD, Kicklighter DW, Pitelka LF, Hibbard K, Pierce LL, Running S, Ojima D, Parton WJ, Schimel DS, Members OV (1998) Modeled responses of terrestrial ecosystems to elevated atmospheric CO2: a comparison of simulations by the biogeochemistry models of the Vegetation/Ecosystem Modeling and Analysis Project (VEMAP). Oecologia 114:389–404

    Google Scholar 

  • Pendall E, Bridgham S, Hanson PJ, Hungate B, Kicklighter DW, Johnson DW, Law BE, Luo YQ, Megonigal JP, Olsrud M, Ryan MG, Wan SQ (2004) Below-ground process responses to elevated CO2 and temperature: a discussion of observations, measurement methods, and models. New Phytol 162:311–322

    Google Scholar 

  • Peterjohn WT, Melillo JM, Bowles FP, Steudler PA (1993) Soil warming and trace gas fluxes- experimental design and preliminary flux rates. Oecologia 93:18–24

    Google Scholar 

  • Petersen SO, Klug MJ (1994) Effects of sieving, storage, and incubation-temperature on the phospholipid fatty-acid profile of a soil microbial community. Appl Environ Microbiol 60:2421–2430

    PubMed  CAS  Google Scholar 

  • Peterson SO, Pamela S, Frohne, Kennedy AC (2002) Dynamics of a Soil Microbial Community under Spring Wheat. Soil Sci Soc Am J 66:826–833

    Google Scholar 

  • Poorter H (1993) Interspecific variation in the growth-response of plants to an elevated ambient CO2 concentration. Vegetatio 104:77–97

    Google Scholar 

  • Porazinska DL, Bardgett RD, Blaauw MB, Hunt HW, Parsons AN, Seastedt TR, Wall DH (2003) Relationships at the aboveground-belowground interface: plants, soil biota, and soil processes. Ecol Monogr 73:377–395

    Google Scholar 

  • Post WM, Emanuel WR, Zinke PJ, Stangenberger AG (1982) Soil carbon pools and life zones. Nature 298:156–159

    CAS  Google Scholar 

  • Pregitzer KS, Zak DR, Maziasz J, DeForest J, Curtis PS, Lussenhop J (2000) Interactive effects of atmospheric CO2 and soil-N availability on fine roots of Populus tremuloides. Ecol Appl 10:18–33

    Google Scholar 

  • Reichstein M, Subke JA, Angeli AC, Tenhunen JD (2005) Does the temperature sensitivity of decomposition of soil organic matter depend upon water content, soil horizon, or incubation time? Glob Change Biol 11:1754–1767

    Google Scholar 

  • Rey A, Jarvis P (2006) Modelling the effect of temperature on carbon mineralization rates across a network of European forest sites (FORCAST). Glob Change Biol 12:1894–1908

    Google Scholar 

  • Řezáčová V, Blum H, Hršelová H, Gamper H, Gryndler H (2005) Saprobic microfungi under Lolium perenne and Trifolium repens at different fertilization intensities and elevated atmospheric CO2 concentration. Glob Change Biol 11:224–230

    Google Scholar 

  • Rillig MC, Field CB (2003) Arbuscular mycorrhizae respond to plants exposed to elevated CO2 as a function of soil depth. Plant Soil 254:383–391

    CAS  Google Scholar 

  • Rinnan R, Michelsen A, Baath E, Jonasson S (2007) Fifteen years of climate change manipulations alter soil microbial communities in a subarctic heath ecosystem. Glob Change Biol 13:28–39

    Google Scholar 

  • Rodrigo A, Recous S, Neel C, Mary B (1997) Modelling temperature and moisture effects on C-N transformations in soils: comparison of nine models. Ecol Model 102:325–339

    CAS  Google Scholar 

  • Rustad LE, Huntington TG, Boone RD (2000) Controls on soil respiration: implications for climate change. Biogeochemistry 48:1–6

    Google Scholar 

  • Rustad LE, Campbell JL, Marion GM, Norby RJ, Mitchell MJ, Hartley AE, Cornelissen JHC, Gurevitch J, GCTE-NEWS (2001) A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126:543–562

    Google Scholar 

  • Saiya-Cork K, Sinsabaugh RL, Zak DR (2002) The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biol Biochem 34:1309–1315

    CAS  Google Scholar 

  • Saiz G, Black K, Reidy B, Lopez S, Farrell EP (2007) Assessment of soil CO2 efflux and its components using a process-based model in a young temperate forest site. Geoderma 139:79–89

    CAS  Google Scholar 

  • Schaeffer SM, Billings SA, Evans RD (2003) Responses of nitrogen dynamics in an intact Mojave Desert ecosystem to manipulations in soil carbon and nitrogen availability. Oecologia 134:547–553

    PubMed  CAS  Google Scholar 

  • Schimel DS (1995) Terrestrial ecosystems and the carbon cycle. Glob Change Biol 1:77–91

    Google Scholar 

  • Schimel JP, Gulledge JM, Clein-Curley JS, Lindstrom JE, Braddock JF (1999) Moisture effects on microbial activity and community structure in decomposing birch litter in the Alaskan taiga. Soil Biol Biochem 31:831–838

    CAS  Google Scholar 

  • Schimel J, Balser TC, Wallenstein M (2007) Microbial stress-response physiology and its implications for ecosystem function. Ecology 88:1386–1394

    PubMed  Google Scholar 

  • Schjonning P, Thomsen IK, Moldrup P, Christensen BT (2003) Linking soil microbial activity to water- and air-phase contents and diffusivities. Soil Sci Soc Am J 67:156–165

    CAS  Google Scholar 

  • Schlesinger WH (1996) Biogeochemistry; an analysis of global change, 2nd edn. Academic Press, San Diego, CA

    Google Scholar 

  • Schlesinger WH, Andrews JA (2000) Soil respiration and the global carbon cycle. Biogeochemistry 48:7–20

    CAS  Google Scholar 

  • Schlesinger WH, Lichter J (2001) Limited carbon storage potential in soil and litter of experimental forest plots under increased atmospheric CO2. Nature 411:466–469

    PubMed  CAS  Google Scholar 

  • Seghers D, Wittebolle L, Top EM, Verstraete W, Siciliano SD (2004) Impact of agricultural practices on the Zea mays, L. Endophytic community. Appl Environ Microbiol 70:1475–1482

    PubMed  CAS  Google Scholar 

  • Shaver GR, Canadell J, Chapin FS, Gurevitch J, Harte J, Henry G, Ineson I, Jonasson S, Melillo J, Pitelka L, Rustad L (2000) Global warming and terrestrial ecosystems: a conceptual framework for analysis. Bioscience 50:871–882

    Google Scholar 

  • Sinsabaugh RL, Careirro MM, Repert DA (2002) Allocation of extracellular enzymatic activity in relation to litter decomposition, N deposition, and mass loss. Biogeochemistry 60:1–24

    CAS  Google Scholar 

  • Six J, Frey SD, Thiet RK, Batten KM (2006) Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Sci Soc Am J 70:555–569

    CAS  Google Scholar 

  • Smith SD, Huxman TE, Zitzer SF, Charlet TN, Housman DC, Coleman JS, Fenstermaker LK, Seemann JR, Nowak RS (2000) Elevated CO2 increases productivity and invasive species success in an arid ecosystem. Nature 408:79–82

    PubMed  CAS  Google Scholar 

  • Smithwick EH, Turner MG, Metzger KL, Balser TC (2005) Variation in NH4+ mineralization and microbial communities with stand age in lodgepole pine (Pinus contorta) forests, Yellowstone National Park (USA). Soil Biol Biochem 37:1546–1559

    CAS  Google Scholar 

  • Sollins P, Homann P, Caldwell BA (1996) Stabilization and destabilization of soil organic matter: mechanisms and controls. Geoderma 74:65–105

    Google Scholar 

  • Sowerby A, Emmett B, Beier C, Tietema A, Peneulas J, Estiarte M, van Meeteren MJM, Hughes S, Freeman C (2005) Microbial community changes in heathland soil communities along a geographical gradient: interaction with climate change manipulations. Soil Biol Biochem 37:1805–1813

    CAS  Google Scholar 

  • Spiegelberger T, Hegg O, Diethart M, Hedlund K, Schaffner U (2006) Long-term effects of short-term perturbation in a subalpine grassland. Ecology 87:1939–1944

    PubMed  Google Scholar 

  • Stark JM, Firestone MK (1995) Mechanisms for soil moisture effects on activity of nitrifying bacteria. Appl Environ Microbiol 61:218–221

    PubMed  CAS  Google Scholar 

  • Steenwerth KL, Jackson LE, Calderon FJ, Stromberg MR, Scow KM (2003) Soil microbial ­community composition and land use history in cultivated and grassland ecosystems of coastal California. Soil Biol Biochem 35:489–500

    Google Scholar 

  • Steenwerth KL, Jackson LE, Calderon FJ, Scow KM, Rolston DE (2005) Response of microbial community composition and activity in agricultural and grassland soils after a simulated rainfall. Soil Biol Biochem 37:2249–2262

    CAS  Google Scholar 

  • Sylvia DM, Fuhrmann JJ, Hartel PG, Zuberer DA (2005) Principles and applications of soil microbiology. Pearson Education, Upper Saddle River, NJ

    Google Scholar 

  • Tate KR, Ross DJ (1997) Elevated CO2 and moisture effects on soil carbon storage and cycling in temperate grasslands. Glob Change Biol 3:225–235

    Google Scholar 

  • Taylor AR, Schroter D, Pflug A, Wolters V (2004) Response of different decomposer communities to the manipulation of moisture availability: potential effects of changing precipitation patterns. Glob Change Biol 10:1–12

    Google Scholar 

  • Thornley JHM, Cannell MGR (2001) Soil carbon storage response to temperature: an hypothesis. Ann Bot 87:591–598

    CAS  Google Scholar 

  • Tison DL, Pope DH (1980) Effect of temperature on mineralization by heterotrophic bacteria. Appl Environ Microbiol 39:584–587

    PubMed  CAS  Google Scholar 

  • Treseder KK, Allen MF (2000) Mycorrhizal fungi have a potential role in soil carbon storage under elevated CO2 and nitrogen deposition. New Phytol 147:189–200

    CAS  Google Scholar 

  • Treseder K (2004) A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytol 164:347–355

    Google Scholar 

  • Treseder KK (2008) Nitrogen additions and microbial biomass: a meta-analysis of ecosystem studies. Ecol Lett 11:1111–1120

    PubMed  Google Scholar 

  • Turner MG, Smithwick EAH, Metzger KL, Tinker DB, Romme WH (2007) Inorganic nitrogen availability after sever stand-replacing fire in the greater Yellowstone ecosystem. Proc Natl Acad Sci USA 104:4782–4789

    PubMed  CAS  Google Scholar 

  • Tylianakis JM, Didham RK, Bascompte J, Wardle DA (2008) Global change and species interactions in terrestrial ecosystems. Ecol Lett 11:1351–1363

    PubMed  Google Scholar 

  • Ulrich A, Klimke GK, Wirth S (2008) Diversity and activity of cellulose-decomposing bacteria, isolated from a sandy and a loamy soil after long-term manure application. Microb Ecol. 55:512–522

    PubMed  Google Scholar 

  • van Groenigen KJ, Harris D, Horwath WR, Hartwig UA, Kessel CV (2002) Linking sequestration of 13C and 15N in aggregates in a pasture soil following 8 years of elevated atmospheric CO2. Glob Change Biol 8:1094–1108

    Google Scholar 

  • van Veen K, Liljeroth E, Lekkerkerk J (1991) Carbon fluxes in plant-soil systems at elevated atmospheric carbon dioxide levels. Ecol Appl 1:175–181

    Google Scholar 

  • Vinolas LC, Vallejo VR, Jones DL (2001) Control of amino acid mineralization and microbial metabolism by temperature. Soil Biol Biochem 33:1137–1140

    CAS  Google Scholar 

  • Vose JM, Elliot KJ, Johnson DW, Walker RF, Johnson MG, Tingey DT (1995) Effects of elevated CO2 and N fertilization on soil respiration from ponderosa pine (Pinus ponderosa) in open-top chambers. Can J For Res 25:1243–1251

    Google Scholar 

  • Wagai R, Mayer LM, Kitayama K, Knicher H (2008) Climate and parent material controls on organic matter storage in surface soils: a three-pool, density-separation approach. Geoderma 147:23–33

    CAS  Google Scholar 

  • Waldrop M, Balser T, Firestone MK (2000) Linkages between microbial community composition and enzyme activities in soil. Soil Biol Biochem 32:1837–1846

    CAS  Google Scholar 

  • Waldrop MP, Firestone MK (2004) Altered utilization patterns of young and old soil C by microorganisms caused by temperature shifts and N additions. Biogeochemistry 67:235–248

    CAS  Google Scholar 

  • Waldrop M, Firestone MK (2006) Response of microbial community composition and function to soil climate change. Microb Ecol 52:716–724

    PubMed  CAS  Google Scholar 

  • Wander MN, Hedrick DS, Kaufman D, Traina SJ, Stinner BR, Kehrmeyer SR, White DC (1995) The functional significance of the microbial biomass in organic and conventionally managed soils. Plant Soil 170:87–97

    CAS  Google Scholar 

  • Wardle DA (2002) Communities and ecosystems: linking the aboveground and belowground components. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Wardle DA, Bardgett RD, Klironomos JN, Setala H, van der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 304:1629

    PubMed  CAS  Google Scholar 

  • Wolf AA, Drake BG, Erickson JE, Megonigal JP (2007) An oxygen-mediated positive feedback between elevated carbon dioxide and soil organic matter decomposition in a simulated anaerobic wetland. Glob Change Biol 13:2036–2044

    Google Scholar 

  • Wu J, Brookes PC (2005) The proportional mineralisation of microbial biomass and organic matter caused by air-drying and rewetting of a grassland soil. Soil Biol Biochem 37:507–515

    CAS  Google Scholar 

  • Yong-Mei Z, Ning W, Guo-Yi Z, Wei-Kai B (2005) Changes in enzyme activities of spruce (Picea balfouriana) forest soil as related to burning in the eastern Qinghai-Tibetan Plateau. Appl Soil Ecol 30:215–225

    Google Scholar 

  • Yuste JC, Janssens IA, Carrara A, Ceulemans R (2004) Annual Q(10) of soil respiration reflects plant phenological patterns as well as temperature sensitivity. Glob Change Biol 10:161–169

    Google Scholar 

  • Zak DR, Pregitzer KS, Curtis PS, Teeri JA, Fogel R, Randlett DL (1993) Elevated atmospheric CO2 and feedback between carbon and nitrogen cycles. Plant Soil 151:105–117

    CAS  Google Scholar 

  • Zak DR, Holmes WE, MacDonald NW, Pregitzer KS (1999) Soil temperature, matric potential, and the kinetics of microbial respiration and nitrogen mineralization. Soil Sci Soc Am J 63:575–584

    CAS  Google Scholar 

  • Zak DR, Pregitzer KS, King JS, Holmes WE (2000a) Elevated atmospheric CO2, fine roots and the response of soil microorganisms: a review and hypothesis. New Phytol 147:201–222

    CAS  Google Scholar 

  • Zak DR, Pregitzer KS, Curtis PS, Holmes WE (2000b) Atmospheric CO2 and the composition and function of soil microbial communities. Ecol Appl 10:47–59

    Google Scholar 

  • Zangerl AR, Bazzaz FA (1984) The response of plants to elevated CO2: competitive interactions among annual plants under varying light and nutrients. Oecologia 62:412–417

    Google Scholar 

  • Zhang YM, Wu N, Zhou GY, Bao WK (2005) Changes in enzyme activities of spruce (Picea balfouriana) forest soil as related to burning in the eastern Qinghai-Tibetan Plateau. Appl Soil Ecol 30:215–225

    CAS  Google Scholar 

  • Zogg GP, Zak DR, Ringelberg DB, MacDonald NW, Pregitzer KS, White DC (1997) Compositional and functional shifts in microbial communities due to soil warming. Soil Sci Soc Am J 61:475–481

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the members of the Balser laboratory at the University of Wisconsin-Madison, especially Dr. Harry Read and Kevin Budsberg, for their untiring support and assistance. We would also like to thank Dr. Chris Field, Dr. Nona Chiariello, and supporting staff at the Jasper Ridge Global Change Experiment where much of our own work has taken place. Finally we thank the book editors for their valuable comments in strengthening this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teri C. Balser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Balser, T.C., Gutknecht, J.L.M., Liang, C. (2010). How Will Climate Change Impact Soil Microbial Communities?. In: Dixon, G., Tilston, E. (eds) Soil Microbiology and Sustainable Crop Production. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9479-7_10

Download citation