Animal–Bacterial Endosymbioses of Gutless Tube-Dwelling Worms in Marine Sediments

Chapter
Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE, volume 17)

Abstract

Gutless tube-dwelling siboglinid worms of pogonophorans (also known as frenulates) and vestimentiferans depend on primary production of endosymbiotic bacteria. The endosymbionts include thiotrophs that oxidize sulfur for autotrophic production and methanotrophs that oxidize and assimilate methane. Although most of the pogonophoran and vestimentiferan tubeworms possess single thiotrophic 16S rRNA genes (16S rDNA) related to Gammaproteobacteria, some pogonohorans are known to bear single methanotroph species or even dual symbionts of thio- and methanotrophs. The vestimentiferan Lamellibrachia sp. L1 shows symbiotic 16S rDNA sequences of Alpha-, Beta-, Gamma-, and Epsilonproteobacteria, varying among specimens, with RuBisCO form II gene (cbbM) sequences related to Betaproteobacteria. An unidentified pogonophoran from the world’s deepest cold-seep at 7,326 m deep in Japan Trench hosts a symbiotic thiotroph based on 16S rDNA with the RuBisCO form I gene (cbbL). In contrast, a shallow-water pogonophoran (Oligobrachia mashikoi) in coastal Japan Sea has a methanotrophic 16S rDNA and thiotrophic cbbL, which may suggest the feature of type X methanotrophs. These observations demonstrate that pogonophoran and vestimentiferan worms have higher plasticity in bacterial symbioses than previously suspected.

Keywords

Muddy Sediment Cold Seep Worm Tube Endosymbiotic Bacterium Carbonate Concretion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Arp, A.J. and Childress, J.J. (1981) Blood function in the hydrothermal vent vestimentiferan tube worm. Science 213: 342–344.PubMedCrossRefGoogle Scholar
  2. Arp, A.J. and Childress, J.J. (1983) Sulfide binding by the blood of the hydrothermal vent tube worm Riftia pachyptila. Science 219: 295–297.PubMedCrossRefGoogle Scholar
  3. Baco, A.R. and Smith, C.R. (2003) High species richness in deep-sea chemoautotrophic whale skeleton communities. Mar. Ecol. Prog. Ser. 260: 109–114.CrossRefGoogle Scholar
  4. Beauchamp, B., Krouse, H.R., Harrison, J.C., Nassichuk, W.W. and Eliuk, L.S. (1989) Cretaceous cold-seep communities and methane-derived carbonates in the Canadian Arctic. Science 244: 53–56.PubMedCrossRefGoogle Scholar
  5. Bergquist, D.C., Williams, F.M. and Fisher, C.R. (2000) Longevity record for deep-sea invertebrate. Nature 403: 499–500.PubMedCrossRefGoogle Scholar
  6. Black, M.B., Halanych, K.M., Maas, P.A.Y., Hoeh, W.R., Hashimoto, J., Desbruyeres, D., Lutz, R.A. and Vrienhoek, R.C. (1997) Molecular systematics of vestimentiferan tubeworms from hydrothermal vents and cold-water seeps. Mar. Biol. 130:141–149.CrossRefGoogle Scholar
  7. Black, M.B., Trivedi, A., Maas, P.A.Y., Lutz, R.A. and Vrijenhoek, R.C. (1998) Population genetics and biogepgraphy of vestimentiferan tube worms. Deep-Sea Res. II 45: 365–382.CrossRefGoogle Scholar
  8. Brett, C.E. and Baird, G.C. (1986) Comparative taphonomy: a key to paleoenvironmental interpretation based on fossil preservation. Palaios 1: 207–227.CrossRefGoogle Scholar
  9. Bright, M., Keckies, H. and Fisher, C.R. (2000) An autoradiographic examination of carbon fixation, transfer and utilization in the Riftia pachyptila symbiosis. Mar. Biol. 136: 621–632.CrossRefGoogle Scholar
  10. Brooks, J.M., Kennicutt II, M.C., Fisher, C.R., Macko, S.A., Cole, K., Childress, J.J., Bidigare, R.R. and Vetter, R.D. (1987) Deep-sea hydrocarbon seep communities: evidence for energy and nutritional carbon sources. Science 238: 1138–1142.PubMedCrossRefGoogle Scholar
  11. Cary, S.C., Felbeck, H. and Holland, N.D. (1989) Observations on the reproductive biology of the hydrothermal vent tube worm, Riftia pachyptila. Mar. Ecol. Prog. Ser. 52: 89–94.CrossRefGoogle Scholar
  12. Cary, S.C., Warren, W., Anderson, E. and Giovannoni, S.J. (1993) Identification and localization of bacterial endosymbionts in hydrothermal vent taxa with symbiont-specific polymerase chain reaction amplification and in situ hybridization techniques. Mol. Mar. Biol. Biotechnol. 2: 51–82.PubMedGoogle Scholar
  13. Cavanaugh, C.M. (1994) Microbial symbiosis: patterns of diversity in the marine environment. Am. Zool. 34: 79–89.Google Scholar
  14. Cavanaugh, C.M., Gardiner, S.L., Jones, M.L., Jannasch, H.W. and Waterbury, J.B. (1981) Prokaryotic cells in the hydrothermal vent tube worm Riftia pachyptila: possible chemoautotrophic symbionts. Science 213: 340–342.PubMedCrossRefGoogle Scholar
  15. Chao, L.S.L., Davis, R.E. and Moyer, C.L. (2007) Characterization of bacterial community structure in vestimentiferan tubeworm Ridgeia piscesae trophosomes. Mar. Ecol. 28: 72–85.CrossRefGoogle Scholar
  16. Clark, M., Moran, N.A., Baumann, P. and Wernegreen, J.J. (2000) Cospeciation between bacterial endosymbionts (Buchnera) and a recent radiation of aphids (Uroleucon). Evolution 54: 517–525.PubMedGoogle Scholar
  17. Colby, J., Dalton, H. and Whittenbury, R. (1979) Biological and biochemical aspects of microbial growth on C1 compounds. Ann. Rev. Microbiol. 33: 481–517.CrossRefGoogle Scholar
  18. Cordes, E.E., Bergquist, D.C., Shea, K. and Fisher, C.R. (2003) Hydrogen sulphide demand of long-lived vestimentiferan tube worm aggregations modifies the chemical environment at hydrocarbon seeps. Ecol. Lett. 6: 212–219.CrossRefGoogle Scholar
  19. Cordes, E.E., Arthur, M.A., Shea, K., Arvidson, R.S. and Fisher, C.R. (2005) Modeling the mutualistc interactions between tubeworms and microbial consortia. PLoS Biol. 3: e77.PubMedCrossRefGoogle Scholar
  20. Costello, A.M. and Lidstrom, M.E. (1999) Molecular characterization of functional and phylogenetic genes from natural populations of methanotrophs in lake sediments. Appl. Environ. Microbiol. 65: 5066–5074.PubMedGoogle Scholar
  21. Dahlgren, T.G., Glover, A.G., Baco, A. and Smith, C.R.D. (2004) Fauna of whale falls: systematics and ecology of a new polychaete (Annelida: Chrysopetalidae) from the deep Pacific Ocean. Deep-Sea Res. I 51: 1873–1887.CrossRefGoogle Scholar
  22. Dale, C. and Moran, N.A. (2006) Molecular interactions between bacterial symbionts and their hosts. Cell 126: 453–465.PubMedCrossRefGoogle Scholar
  23. Dando, P.R., Southward, A.J., Southward, E.C. and Barrett, R.L. (1986) Possible energy sources for chemoautotrophic prokaryotes symbiotic with invertebrates from a Norwegian fjord. Ophelia 26: 135–150.CrossRefGoogle Scholar
  24. Dando, P.R., Southward, A.J., Southward, E.C., Dixon, D.R., Crawford, A. and Crawford, M. (1992) Shipwrecked tube worms. Nature 356: 667.CrossRefGoogle Scholar
  25. Dando, P.R., Bussmann, I., Niven, S.J., O’Hara, S.C.M., Schmaljohann, R. and Taylor, L.J. (1994) A methane seep area in the Skagerrak, the habitat of the pogonophore Siboglinum poseidoni and the bivalve mollusc Thyasira sarsi. Mar. Ecol. Prog. Ser. 107: 157–167.CrossRefGoogle Scholar
  26. de Burgh, M.E. (1986) Evidence for a physiological gradient in the vestimentiferan trophosome: size-frequency analysis of bacterial populations and trophosome chemistry. Can. J. Zool. 64: 1095–1103.CrossRefGoogle Scholar
  27. de Burgh, M.E. de, Juniper, S.K. and Singla, C.L. (1989) Bacterial symbiosis in North Pacific Vestimentifera: a TEM study. Mar. Biol. 101: 97–105.CrossRefGoogle Scholar
  28. Degnan, P.H., Lazarus, A.B., Brock, C.D. and Wernegreen, J.J. (2004) Host-symbiont stability and fast evolutionary rates in an ant-bacterium association: cospeciation of Camponotus species and their endosymbionts, Candidatus blochmannia. Syst. Biol. 53: 95–110.PubMedCrossRefGoogle Scholar
  29. Delaney, J.R., Kelley, D.S., Lilley, M.D., Butterfield, D.A., Baross, J.A., Wilcock, W.S.D., Embley, R.W. and Summit, M. (1998) The quantum event of oceanic crustal accretion: impacts of diking at mid-ocean ridges. Science 281: 222–230.CrossRefGoogle Scholar
  30. DeLong, E.F. (2000) Resolving a methane mystery. Nature 407: 577–578.PubMedCrossRefGoogle Scholar
  31. Di Meo, C.A., Wilbur, A.E., Holben, W.E., Feldman, R.A., Vrijenhoek, R.C. and Cary, S.C. (2000) Genetic variation among endosymbionts of widely distributed vestimentiferan tubeworms. Appl. Environ. Microbiol. 66: 651–658.PubMedCrossRefGoogle Scholar
  32. Distel, D.L. and Cavanaugh, C.M. (1994) Independent phylogenetic origins of methanotrophic and chemoautotrophic bacterial endosymbioses in marine bivalves. J. Bacteriol. 176: 1932–1938.PubMedGoogle Scholar
  33. Distel, D.L., Lane, D.J., Olsen, G.J., Giovannoni, S.J., Pace, P., Pace, N.R., Stahl, D.A. and Felbeck, H. (1988) Sulfur-oxidizing bacterial endosymbionts: analysis of phylogeny and specificity by 16S rRNA sequences. J. Bacteriol. 170: 2506–2510.PubMedGoogle Scholar
  34. Distel, D.L., Lee, H.K-W. and Cavanaugh, C.M. (1995) Intracellular coexistence of methano- and thioautotrophic bacteria in a hydrothermal vent mussel. Proc. Natl. Acad. Sci. U.S.A. 92: 9598–9602.PubMedCrossRefGoogle Scholar
  35. Distel, D.L., Beaudoin, D.J. and Morrill, W. (2002) Coexistence of multiple Proteobacterial endosymbionts in the gills of the wood-boring bivalve Lyrodus pedicellatus (Bivalvia: Teredinidae). Appl. Environ. Microbiol. 68: 6292–6299.PubMedCrossRefGoogle Scholar
  36. Dubilier, N., Giere, O., Distel, D.L. and Cavanaugh, C.M. (1995) Characterization of chemoautotrophic bacterial symbionts in a gutless marine worm (Oligochaeta, Annelida) by phylogenetic 16S rRNA sequence analysis and in situ hybridization. Appl. Environ. Microbiol. 61: 2346–2350.PubMedGoogle Scholar
  37. Dubilier, N., Aman, R., Erseus, C., Muyzer, G., Park, S.Y., Giere, O. and Cavanaugh, C.M. (1999) Phylogenetic diversity of bacterial endosymbionts in the gutless marine oligochaete Olavius loisae. Mar. Ecol. Prog. Ser. 178: 271–280.CrossRefGoogle Scholar
  38. Dubilier, N., Mülders, C., Ferdelman, T., de Beer, D., Pernthaler, A., Klein, M., Wagner, M., Erseus, C., Thiermann, F., Krieger, J., Giere, O. and Amann, R. (2001) Endosymbiotic sulphate-reducing and sulfide-oxidizing bacteria in an oligochaete worm. Nature 411: 298–302.PubMedCrossRefGoogle Scholar
  39. Dufour, S.C. and Felbeck, H. (2003) Sulphide mining by the superextensile foot of symbiotic thyasirid bivalves. Nature 426: 65–67.PubMedCrossRefGoogle Scholar
  40. Elsaied, H. and Naganuma, T. (2001) Phylogenetic diversity of ribulose-1, 5-bisphosphate carboxylase/oxygenase (RuBisCO) large subunit genes of deep-sea microorganisms. Appl. Environ. Microbiol. 67: 1751–1765.PubMedCrossRefGoogle Scholar
  41. Elsaied, H., Kimura, H. and Naganuma, T. (2002) Molecular characterization and endosymbiotic localization of the gene encoding ribulose-1, 5-bisphosphate carboxylase/oxygenase (RuBisCO) form II in the deep-sea vestimentiferan trophosome. Microbiology 148: 1947–1957.PubMedGoogle Scholar
  42. Felbeck, H. and Jarchow, J. (1998) Carbon release from purified chemoautotrophic bacterial symbionts of the hydrothermal vent tubeworm Riftia pahyptila. Physiol. Zool. 71: 294–302.PubMedGoogle Scholar
  43. Felbeck, H., Somero, G.N. and Childress, J.J. (1981) Calvin-Benson cycle sulphide oxidation enzymes in animals from sulphide rich habitats. Nature 293: 291–293.CrossRefGoogle Scholar
  44. Felbeck, H., Arndt, C., Hentschel, U. and Childress, J.J. (2004) Experimental application of vascular and coelomic catheterization to identify vascular transport mechanisms for inorganic carbon in the vent tubeworm, Riftia pachyptila. Deep-Sea Res. 1 51: 401–411.CrossRefGoogle Scholar
  45. Feldman, R.A., Black, M.B., Cary, C.S., Lutz, R.A. and Vrijenhoek, R.C. (1997) Molecular phylogenetics of bacterial endosymbionts and their vestimentiferan hosts. Mol. Mar. Biol. Biotechnol. 6: 268–277.PubMedGoogle Scholar
  46. Feldman, R.A., Shank, T.M., Black, M.B., Baco, A.R., Smith, C.R. and Vrijenhoek, R.C. (1998) Vestimentiferan on a whale fall. Biol. Bull. 194: 116–119.PubMedCrossRefGoogle Scholar
  47. Fiala-Medioni, A., McKiness, Z.P., Dando, P., Boulegue, J., Mariotti, A., Alayse-Danet, A.M., Robinson, J.J. and Cavanaugh, C.M. (2002) Ultrastructural, biochemical, and immunological characterization of two populations of the mytilid mussel Bathymodiolus azoricus from the Mid-Atlantic Ridge: evidence for a dual symbiosis. Mar. Biol. 141: 1035–1043.CrossRefGoogle Scholar
  48. Fisher, C.R. (1990) Chemoautotrophic and methanotrophic symbioses in marine invertebrates. Rev. Aquat. Sci. 2: 399–436.Google Scholar
  49. Fisher, C.R. and Childress, J.J. (1984) Substrate oxidation by trophosome tissue from Riftia pachyptila Jones (Phylum Pogonophora). Mar. Biol. Lett. 5: 171–183.Google Scholar
  50. Fisher, C.R., Childress, J.J., Oremland, R.S. and Bidigare, R.R. (1987) The importance of methane and thiosulfate in the metabolism of the bacterial symbionts of two deep-sea mussels. Mar. Biol. 96: 59–72.CrossRefGoogle Scholar
  51. Fisher, C.R., Urcuyo, I., Simpkins, M.A. and Nix, E. (1997) Life in the slow lane: growth and longevity of cold-seep vestimentiferans. Mar. Ecol. 18: 83–94.CrossRefGoogle Scholar
  52. Flügel, H.J. and Langhoff, I. (1982) Pogonophora in the Skagerrak. Sarsia 67: 211–212.Google Scholar
  53. Flügel, H.J. and Langhoff, I. (1983) A new hermaphroditic pogonophoran from the Skagerrak. Sarsia 68: 131–138.Google Scholar
  54. Freytag, J.K., Girguis, P.R., Bergquist, D.C., Andras, J.P., Childress, J.J. and Fisher, C.R. (2001) A paradox resolved: sulfide acquisition by roots of seep tubeworms sustains net chemoautotrophy. Proc. Natl. Acad. Sci. U.S.A. 98: 13408–13413.PubMedCrossRefGoogle Scholar
  55. Fujikura, K., Kojima, S., Tamaki, K., Maki, Y., Hunt, J. and Okutani, T. (1999) The deepest chemosynthesis-based community yet discovered from the hadal zone, 7326 m deep, in the Japan Trench. Mar. Ecol. Prog. Ser. 190: 17–26.CrossRefGoogle Scholar
  56. Fujiwara, Y., Kato, C., Masui, N., Fujikura, K. and Kojima, S. (2001) Dual symbiosis in the cold-seep thyasirid clam Maorithyas hadalis from the hadal zone in the Japan Trench, western Pacific. Mar. Ecol. Prog. Ser. 214: 151–159.CrossRefGoogle Scholar
  57. Fujiwara, Y., Kawato, M., Yamamoto, T., Sato-Okoshi, W., Noda, C., Tsuchida, S., Komai, T., Cubelio, S.S., Sasaki, T., Jacobsen, K., Kubokawa, K., Fujikura, K., Maruyama, T., Furushima, Y., Okoshi, K., Miyake, H., Miyazaki, M., Nogi, Y., Yatabe, A. and Okutani, T. (2007) Three-year investigations into sperm whale-fall ecosystems in Japan. Mar. Ecol. 28: 219–232.CrossRefGoogle Scholar
  58. Gaill, F., Shillito, B., Lechaire, J.-P., Chanzy, H. and Goffinet, G. (1992) The chitin secreting system from deep sea hydrothermal vent worms. Biol. Cell 76: 201–204.CrossRefGoogle Scholar
  59. Gal’chenko, V.F., Pimenov, N.V., Lein, A.Y., Galkin, S.V., Miller, Y.M. and Ivanov, M.V. (1992) Mixotrophic type of feeding of Olgaconcha tufari Beck (Gastropoda: Prosobranchia) from the active hydrothermal field of the Manus Basin (Bismarck Sea). Dokl. Biol. Sci. 323: 125–129.Google Scholar
  60. Gamo, T., Ishibashi, J., Shitashima, K., Kinoshita, M., Watanabe, M., Nakayama, E., Sohrin, Y., Kim, E.-S., Masuzawa, T. and Fujioka, K. (1988) Anomalies of bottom CH4 and trace metal concentrations associated with high heat flow at the Calyptogena community off Hatsushima Island, Sagami Bay, Japan: a preliminary report of Tansei Maru KT-88-1 cruise Leg-1. Geochem. J. 22: 215–230.CrossRefGoogle Scholar
  61. Giere, O. and Langheld, C. (1987) Structural organization, transfer and biological fate of endosymbiotic bacteria in gutless oligochaetes. Mar. Biol. 93: 641–650.CrossRefGoogle Scholar
  62. Giere, O., Conway, N.M., Gastrock, G. and Schmidt, C. (1991) “Regulation” of gutless annelid ecology by endosymbiotic bacteria. Mar. Ecol. Prog. Ser. 68: 287–299.CrossRefGoogle Scholar
  63. Girguis, P., Childress, J., Freytag, J., Klose, K. and Stuber, R. (2002) Effects of metabolic uptake on proton-equivalent elimination by two species of deep-sea vestimentiferan tubeworm, Riftia pachyptila and Lamellibrachia cf. luymesi: proton elimination is a necessary adaptation to sulfide-oxidizing chemoautotrophic symbionts. J. Exp. Biol. 205: 3055–3066.PubMedGoogle Scholar
  64. Glover, A.G., Kallstrom, B., Smith, C.R. and Dahlgren, T.G. (2005) World-wide whale worms? A new species of Osedax from the shallow north Atlantic. Proc. R. Soc B, Biol. Sci. 272: 2587–2592.CrossRefGoogle Scholar
  65. Goffredi, S.K., Orphan, V.J., Rouse, G.W., Jahnke, L., Embaye, T., Turk, K., Lee, R. and Vrijenhoek, R.C. (2005) Evolutionary innovation: a bone-eating marine symbiosis. Environ. Microbiol. 7: 1369–1378.PubMedCrossRefGoogle Scholar
  66. Gros, O., Liberge, M., Heddi, A., Khatchadourian, C. and Felbeck, H. (2003) Detection of the free-living forms of sulfide-oxidizing gill endosymbionts in the lucinid habitat (Thalassia testudinum environment) Appl. Environ. Microbiol. 69: 6264–6267.PubMedCrossRefGoogle Scholar
  67. Halanych, K.M. (2005) Molecular phylogeny of siboglinid annelids (a.k.a. pogonophorans): a review. Hydrobiologia 535: 297–307.CrossRefGoogle Scholar
  68. Halanych, K.M., Feldman, R.A. and Vrijenhoek, R.C. (2001) Molecular evidence that Sclerolinum brattstromi is closely related to vestimentiferans, not to frenulate pogonophorans (Siboglinidae, Annelida). Biol. Bull. 201: 65–75.PubMedCrossRefGoogle Scholar
  69. Halanych, K.M., Dahlgren, T.G. and McHugh, D. (2002) Unsegmented annelids? Possible origins of four lophotrochozoan worm taxa. Integr. Comp. Biol. 42: 678–684.PubMedCrossRefGoogle Scholar
  70. Hanson, R.S. and Hanson, T.E. (1996) Methanotrophic bacteria. Microbiol Rev. 60: 439–471.PubMedGoogle Scholar
  71. Hashimoto, J., Ohta, S., Tanaka, T., Hotta, H., Matsuzawa, S. and Sakai, H. (1989) Deep-sea communities dominated by the giant clam, Calyptogena soyoae, along the slope foot of Hatsushima Island, Sagami Bay, central Japan. Paleogeogr Paleoclimatol. Paleoecol. 71: 179–192.CrossRefGoogle Scholar
  72. Hashimoto, J., Ohta, S., Fujikura, K., Fujiwara, Y. and Sukizaki, S. (1995) Life habit of vesicomyid clam, Calyptogena soyoae, and hydrogen sulfide concentration in interstitial waters in Sagami Bay, Japan. J. Oceanogr. 51: 341–350.CrossRefGoogle Scholar
  73. Hattori, M., Oba, T., Kanie, Y. and Akimoto, K. (1994) Authigenic carbonates collected from cold seepage area off Hatsushima Island, Sagami Bay, central japan. JAMSTEC Deep Sea. Res. 10: 405–416 (in Japanese with English abstract).Google Scholar
  74. Hirano, S. (1996) Chitin biotechnology applications. Biotechnol. Annu. Rev. 2: 237–258.PubMedCrossRefGoogle Scholar
  75. Hughes, D.S., Felbeck, H. and Stein, J.L. (1997) A histidine kinase homolog from the endosymbionts of the hydrothermal vent tubeworm Riftia pachyptila. Appl. Environ. Microbiol. 63: 3494–3498.PubMedGoogle Scholar
  76. Imajima, M. (1973) A new species of the genus Oligobrachia (Pogonophora) collected from Tsukumo Bay, Noto Peninsula. Ann. Rep. Noto. Mar. Lab. 13: 7–12 (in Japanese with English description).Google Scholar
  77. Ivanov, A.V. (1963) Pogonophora. Academic Press, London.Google Scholar
  78. Jordan, D.B. and Ogren, W.L. (1981) Species variation in the specificity of ribulose 1,5-bisphosphate carboxylase/oxygenase. Nature 291: 513–515.CrossRefGoogle Scholar
  79. Julian, D, Gaill, F., Wood, E., Arp, A.J. and Fisher, C.R. (1999) Roots as a site of hydrogen sulfide uptake in the hydrocarbon seep vestimentiferan Lamellibrachia sp. J. Exp. Biol. 202: 2245–2257.PubMedGoogle Scholar
  80. Killingley, J.S., Berger, W.H., MacDonald, K.C. and Newman, W.A. (1981) 18O/16O variations in the deep-sea carbonate shells from the Rise hydrothermal field. Nature 287: 218–221.CrossRefGoogle Scholar
  81. Kimura, H., Higashide, Y. and Naganuma, T. (1999) Endosymbiotic and ambient microflorae of vestimentiferan tube worm. JAMSTEC Deep Sea Res. 15 (I): 25–33 (in Japanese with English abstract)Google Scholar
  82. Kimura, H., Sato, M., Sasayama, Y. and Naganuma, T. (2003a) Molecular characterization and in situ localization of endosymbiotic 16S rRNA and RuBisCO genes in the pogonophoran tissue. Mar. Biotechnol. 5: 261–269.PubMedCrossRefGoogle Scholar
  83. Kimura, H., Higashide, Y. and Naganuma, T. (2003b) Endosymbiotic microflora of the vestimentiferan tubeworm, Lamellibrachia sp., from a bathyal cold seep. Mar. Biotechnol. 5: 593–603.PubMedCrossRefGoogle Scholar
  84. Kojima, S. (2002) Deep-sea chemoautosynthesis-based communities in the Northwestern Pacific. J. Oceanogr. 58: 343–363.CrossRefGoogle Scholar
  85. Krieger, J., Giere, O. and Dubilier, N. (2000) Localization of RuBisCO and sulfur in endosymbiotic bacteria of the gutless marine oligochaete Inanidrilus leukodermatus (Annelida). Mar. Biol. 137: 239–244.CrossRefGoogle Scholar
  86. Lalou, C. and Brichet, E. (1982) Ages and implications of East Pacific Rise sulphide deposits at 21°N. Nature 300: 169–171.CrossRefGoogle Scholar
  87. Laue, B.E. and Nelson, D.C. (1997) Sulfur-oxidizing symbionts have not co-evolved with their hydrothermal vent tube worm hosts: an RFLP analysis. Mol. Mar. Biol. Biotechnol. 6: 180–188.PubMedGoogle Scholar
  88. Levin, L.A. and Michener, R.H. (2002) Isotopic evidence for chemosynthesis-based nutrition of macrobenthos: the lightness of being at pacific methane seeps. Limnol. Oceanogr. 47: 1336–1345.CrossRefGoogle Scholar
  89. Lutz, R.A. and Kennish, M.J. (1993) Ecology of deep-sea hydrothermal vent communities: a review. Rev. Geophys. 31: 211–242.CrossRefGoogle Scholar
  90. Lutz, R.A., Shank, T.M., Fornari, D.J., Haymon, R.M., Lilley, M.D., Von Damm, K.L. and Desbruyeres, D. (1994) Rapid rates of colonization and growth of vestimentiferan tube worms at newly-formed hydrothermal vents. Nature 371: 663–664.CrossRefGoogle Scholar
  91. MacDonald, I.R. and Fisher, C.R. (1996) Life without light. Nat. Geogr. 190(4): 86–97.CrossRefGoogle Scholar
  92. MacDonald, I.R., Kenna, E.M. and Murrell, J.C. (1995) Detection of methanotrophic bacteria in environmental samples with the PCR. Appl. Environ. Microbiol. 61: 116–121.Google Scholar
  93. MacDonald, I.R., Buthman, D.B., Sager, W.W., Peccini, M.B. and Guinasso, N.L. (2000) Pulsed oil discharge from a mud volcano. Geology 28: 907–910.CrossRefGoogle Scholar
  94. MacDonald, K.C., Becker, K., Spiess, F.N. and Ballard, R.D. (1980) Hydrothermal heat flux of the “black smoker” vents on the East Pacific Rise. Earth Planet Sci. Lett. 48: 1–7.CrossRefGoogle Scholar
  95. Masuzawa, T., Handa, N., Kitagawa, H. and Kusakabe, M. (1992) Sulfate reduction using methane in sediments beneath a bathyal “cold-seep” giant clam community off Hatsushima Island, Sagami Bay, Japan. Earth Planet Sci. Lett. 110: 39–50.CrossRefGoogle Scholar
  96. Matsuno, A. and Sasayama, Y. (2002) A comparative study of body wall structures of a pogonophore and an annelid from a phylogenetic viewpoint. Zool. Sci. 19: 695–701.PubMedCrossRefGoogle Scholar
  97. Mayer, L.A., Shor, A.N., Clarke, J.H. and Piper, D.J.W. (1988) Dense biological communities at 3850 m on the Laurentian Fan and their relationship to the deposits of the 1929 Grand Banks earthquake. Deep-Sea Res. 35A: 1235–1246.CrossRefGoogle Scholar
  98. McFadden, B.A., Torres-Ruiz, J., Daniell, H. and Sarojini, G. (1986) Interaction, functional relations and evolution of large and small subunits in RuBisCO from prokaryota and eukaryota. Philos. Trans. R. Soc. London, Biol. Sci. 313: 347–358.CrossRefGoogle Scholar
  99. McHugh, D. (1997) Molecular evidence that echiurans and pogonophorans are derived annelids. Proc. Natl. Acad. Sci. U.S.A. 94: 8006–8009.PubMedCrossRefGoogle Scholar
  100. McMullin, E.R., Hourdes, S., Schaeffer, S.W. and Fisher, C.R. (2003) Phylogeny and biogeography of deep sea vestimentiferan tubeworms and their bacterial symbionts. Symbiosis 34: 1–41.Google Scholar
  101. Millikan, D.S., Felbeck, H. and Stein, J.L. (1999) Identification and characterization of a flagellin gene from the endosymbiont of the hydrothermal vent tubeworm Riftia pachyptila. Appl. Environ. Microbiol. 65: 3129–3133.PubMedGoogle Scholar
  102. Minic, A., Gaill, F. and Hervé, G. (2002) Metabolism of pyrimidine nucleotides in the deep-sea tube worm Riftia pachyptila and its bacterial endosymbionts. Cah. Bio. Mar 43: 351–354.Google Scholar
  103. Naganuma, T. (1998) A hypothetical microbial consortium that stabilizes oxygen-gradient in chemosynthetic microenvironments. Supramolec. Sci. 5: 439–443.CrossRefGoogle Scholar
  104. Naganuma, T. (1999) Microbial processes associated with a methane seep tubeworm, In: K. Horikoshi and K. Tsujii (eds.) Extremophiles in Deep-Sea Environment. Tokyo, Japan, Springer, pp. 211–224.CrossRefGoogle Scholar
  105. Naganuma, T., Okayama, Y., Hattori, M. and Kanie, Y. (1995) Fossil worm tubes from the presumed cold-seep carbonates of the Miocene Hayama Group, Central Miura Peninsula, Japan. Island Arc. 4: 199–208.CrossRefGoogle Scholar
  106. Naganuma, T., Hattori, M., Hashimoto, J. and Kanie, Y. (1996) Elemental distributions in the tubes of modern vestimentiferan worms, and carbonate formation in their habitats. Fossils 60: 26–31 (in Japanese with English abstract).Google Scholar
  107. Naganuma, T., Naka, J., Okayama, Y., Minami, A. and Horikoshi, K. (1997a) Morphological diversity of the microbial population in a vestimentiferan tubeworm. J. Mar. Biotechnol. 5: 119–123.Google Scholar
  108. Naganuma, T., Kato, C., Hirayama, H., Moriyama, N., Hashimoto, J. and Horikoshi, K. (1997b) Intracellular occurrence of ε-Proteobacterial 16S rDNA sequences in the vestimentiferan trophosome. J. Oceanogr. 53: 193–197.Google Scholar
  109. Naganuma, T., Elsaied, H.E., Hoshii, D. and Kimura, H. (2005) Bacterial endosymbioses of gutless tube-dwelling worms in non-hydrothermal vent habitats. Mar. Biotechnol. 7: 416–428.PubMedCrossRefGoogle Scholar
  110. Nelson, K. and Fisher, C.R. (2000) Absence of cospeciation in deep-sea vestimentiferan tube worms and their bacterial endosymbionts. Symbiosis 28: 1–15.Google Scholar
  111. Nussbaumer, A.D., Fisher, C.R. and Bright, M. (2006) Horizontal endosymbiont transmission in hydrothermal vent tubeworms. Nature 411: 345–348.CrossRefGoogle Scholar
  112. Ohta, S. (1990) Ecological observations and remarks on the cold seep communities in Sagami Bay, central Japan. JAMSTEC Deep Sea Res. 6: 181–195 (in Japanese with English abstract).Google Scholar
  113. Peek, A.S., Feldman, R.A., Lutz, R.A. and Vrijenhoek, R.C. (1998) Cospeciation of chemoautotrophic bacteria and deep sea clams. Proc. Natl. Acad. Sci. U.S.A. 95: 9962–9966.PubMedCrossRefGoogle Scholar
  114. Pimenov, N., Savvichev, A., Rusanov, I., Lein, A., Egorov, A., Gebruk, A., Moskalev, L. and Vogt, P. (1999) Microbial processes of carbon cycle as the base of food chain of Håkon Mosby mud volcano benthic community. Geo-Mar. Lett. 19: 89–96.CrossRefGoogle Scholar
  115. Pond, D.W., Bell, M.V., Dixon, D.R., Fallick, A.E., Segonzac, M. and Sargent, J.R. (1998) Stable-carbon-isotope composition of fatty acids in hydrothermal vent mussels containing methanotrophic and thiotrophic bacterial endosymbionts. Appl. Environ. Microbiol. 64: 370–375.PubMedGoogle Scholar
  116. Robinson, J.J., Polz, M.F., Fiala-Medioni, A. and Cavanaugh, C.M. (1998) Physiological and immunological evidence for two distinct C1-utilizing pathways in Bathymodiolus puteoserpentis (Bivalvia: Mytilidae), a dual endosymbiotic mussel from the Mid-Atlantic Ridge. Mar. Biol. 132: 635–633.CrossRefGoogle Scholar
  117. Rouse, G.W. and Fauchald, K. (1997) Cladistics and polychaetes. Zool. Scripta 26: 139–204.CrossRefGoogle Scholar
  118. Rouse, G.W. and Pleijel, F. (2001) Polychaetes. Oxford University Press, Oxford.Google Scholar
  119. Rouse, G.W., Goffredi, S.K. and Vrijenhoek, R.C. (2004). Osedax: bone-eating marine worms with dwarf males. Science 305: 668–671.PubMedCrossRefGoogle Scholar
  120. Saitou, N. and Nei, M. (1987) The neighbor-joining method: a new method for constructing phylogenetic trees. Mol. Biol. Evol. 4: 406–425.PubMedGoogle Scholar
  121. Salivan-Plawen, L.V. (2000) What is convergent/homoplastic in Pogonophora? J. Zool. Syst. Evol. Res. 38: 133–147.CrossRefGoogle Scholar
  122. Schmaljohann, R. (1991) Oxidation of various potential energy sources by the methanotrophic endosymbionts of Siboglinum poseidoni (Pogonophora). Mar. Ecol. Prog. Ser. 76: 141–148.CrossRefGoogle Scholar
  123. Schmaljohann, R. and Flügel, H.J. (1987) Methane-oxidizing bacteria in Pogonophora. Sarsia 72: 91–98.Google Scholar
  124. Schmaljohann, R., Faber, E., Whiticar, M.J. and Dando, P.R. (1990) Co-existence of methane- and sulphur-based endosymbioses between bacteria and invertebrates at a site in the Skagerrak. Mar. Ecol. Prog. Ser. 61: 119–124.CrossRefGoogle Scholar
  125. Shanks, W.C., III, Böhlke, J.K. and Seal, R.R., II (1995) Stable isotopes in mid-ocean ridge hydrothermal systems: interaction between fluids, minerals, and organisms, In: S. Humphris, R.A. Zierenberg, L.S. Mullineaux and R.E. Thomson (eds.) Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions. American Geophysical Union, Washington, DC, pp. 194–221.CrossRefGoogle Scholar
  126. Schulze, A. and Halanych, K.M. (2003) Siboglinid evolution shaped by habitat preference and sulfide tolerance. Hydrobiologia 496: 199–205.CrossRefGoogle Scholar
  127. Simon, V., Purcarea, C., Sun, K., Joseph, J., Frebourg, G., Lechaire, J.-P., Gaill, F. and Hervé, G. (2002) The enzymes involved in synthesis and utilization of carbamylphosphate in the deep-sea tube worm Riftia pachyptila. Mar. Biol. 136: 115–127.CrossRefGoogle Scholar
  128. Smith, C.R. and Baco, A.R. (2003) The ecology of whale falls at the deep-sea floor. Oceanogr. Mar. Biol. Ann. Rev. 41: 311–354.Google Scholar
  129. Southward, E.C. (1971) Pogonophora of the Northwest Atlantic: Nova Scotia to Florida, Smithsonian Institution Press, Washington DC.Google Scholar
  130. Southward, E.C. (1972) On some pogonophora from the Carribean and the Gulf of Mexico. Bull. Mar. Sci. 22: 739–776.Google Scholar
  131. Southward, E.C. (1979) Horizontal and vertical distribution of Pogonophora in the Atlantic Ocean. Sarsia 64: 51–55.Google Scholar
  132. Southward, E.C. (1982) Bacterial symbionts in Pogonophora. J. Mar. Biol. Assoc. UK 62: 889–906.CrossRefGoogle Scholar
  133. Southward, E.C. (1988) Development of the gut and segmentation of newly settled stages of Ridgeia (Vestimentifera): implications for relationship between Vestimentifera and Pogonophora. J. Mar. Biol. Assoc. UK 68: 465–487.CrossRefGoogle Scholar
  134. Southward, E.C. (1991) 3 New species of pogonophora, including 2 vestimentiferans, from hydrothermal sites in the Lau Back-Arc basin (Southwest Pacific-Ocean). J. Nat. Hist. 25: 859–881.CrossRefGoogle Scholar
  135. Southward, A.J., Southward, E.C., Brattegard, T. and Bakke, T. (1979) Further experiments on the value of dissolved organic-matter as food for Siboglinum fjordicum (Pogonophora). J. Mar. Biol. Assoc. UK 59: 133–148.CrossRefGoogle Scholar
  136. Southward, A.J., Southward, E.C., Dando, P.R., Rau, G.H., Felbeck, H. and Flügel, H. (1981) Bacterial symbionts and low 13C/12C ratios in tissues of Pogonophora indicate unusual nutrition and metabolism. Nature 293: 616–620.CrossRefGoogle Scholar
  137. Southward, A.J., Southward, E.C., Dando, P.R., Barrett, R.L. and Ling, R. (1986) Chemoautotrophic function of bacterial symbionts in small Pogonophora. J. Mar. Biol. Assoc. UK 66: 415–437.CrossRefGoogle Scholar
  138. Southward, E.C., Schulze, A. and Gardiner, S.L. (2005) Pogonophora (Annelida): form and function. Hydrobiologia 535: 227–251.CrossRefGoogle Scholar
  139. Spiro, B., Greenwood, P.B., Southward, A.J. and Dando, P.R. (1986) 13C/12C ratios in marine invertebrates from reducing sediments: confirmation of nutritional importance of chemoautotrophic endosymbiotic bacteria. Mar. Ecol. Prog. Ser. 28: 233–240.CrossRefGoogle Scholar
  140. Stewart, F.J., Newton, I.L.G. and Cavanaugh, C.M. (2005) Chemosynthetic endosymbioses: adaptations to oxic-anoxic interfaces. Trends Microbiol. 13: 439–448.PubMedCrossRefGoogle Scholar
  141. Struck, T.H., Schult, N., Kusen, T., Hickman, E., Bleidorn, C., McHugh, D. and Halanych, K.M. (2007) Annelid phylogeny and the status of Sipuncula and Echiura. BMC Evol. Biol. 7: 57–66.PubMedCrossRefGoogle Scholar
  142. Trask, J.L. and Van Dover, C.L. (1999) Site-specific and ontogenetic variations in nutrition of mussels (Bathymodiolus sp.) from the Lucky Strike hydrothermal vent field, Mid-Atlantic Ridge. Limnol. Oceanogr. 44: 334–343CrossRefGoogle Scholar
  143. Van Dover, C.L. (2000) The Ecology of Deep-Sea Hydrothermal Vents, Princeton University Press, Princeton, NJ.Google Scholar
  144. Vasconcelos, C., McKenzie, J.A., Bernasconi, S., Grujic, D. and Tien, A.J. (1995) Microbial mediation as a possible mechanism for natural dolomite formation at low temperature. Nature 377: 220–222.CrossRefGoogle Scholar
  145. Webb, M. (1963) Siboglinum fjordicum sp. nov. from Raunefjord, western Norway. Sarsia 13: 33–44.Google Scholar
  146. Williams, N.A., Dixon, D.R., Southward, E.C. and Holland, P.W.H. (1993) Molecular revolution and diversification of the vestimentiferan tube worms. J. Mar. Biol. Assoc. UK 73: 437–452.CrossRefGoogle Scholar
  147. Winnepenninckx, B., Backeljau, T. and De Wachter, R. (1995) Phylogeny of protostome stome worms derived from 18S rRNA sequences. Mol. Biol. Evol. 12: 641–649.PubMedGoogle Scholar
  148. Yuasa, H.J., Green, B.N., Takagi, T., Suzuki, N., Vinogradov, S.N. and Suzuki, T. (1996) Electrospray ionization mass spectrometric composition of the 400 kDa hemoglobin from the pogonophoran Oligobrachia mashikoi and the primary structures of three major globin chains. Biochim. Biophys. Acta 1296: 235–44.PubMedCrossRefGoogle Scholar
  149. Zal, F., Leize, E., Lallier, F.H., Toulmond, A., Van Dorsselaer, A. and Childress, J.J. (1998) S-Sulfohemoglobin and disulfide exchange: The mechanisms of sulfide binding by Riftia pachyptila hemoglobins. Proc. Natl. Acad. Sci. U.S.A. 95: 8997–9002.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Graduate School of Biosphere ScienceHiroshima UniversityHigashi-hiroshimaJapan

Personalised recommendations