Green Biofilms on Tree Barks: More than Just Algae

  • Katharina Freystein
  • Werner Reisser
Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE, volume 17)


Algae are a very diverse group of organisms ranging in size from unicellular microalgae to giant kelps. They are equally successful in settling aquatic as well as terrestrial and aerial habitats.


Algal Cell Algal Species Soil Crust Biological Soil Crust Tree Bark 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Achituv, Y. (2001) Effects of biological soil crusts on water redistribution in the Negev Desert, Israel: A case study in longitudinal dunes, ecological studies, In: I. Belnap and O.L. Lange (eds.) Biological soil crusts: Structure, Function and Management, Springer Verlag, Berlin, pp. 303–314.Google Scholar
  2. Aleksakhina, T.I. (1971) Soil algae in the rhizosphere of the dominant plants of forest biogeocenoses. Silviculture Laboratory, Academy of Science of the USSR, No. 1: 45–52.Google Scholar
  3. Akiyama, M. (1961) Aerial und terrestrial algae in San-In Region of Honshu, Japan. Bull. Shimane Univ. Nat. Sci. 10: 75–83.Google Scholar
  4. Bailey, D., Mazurak, P.A. and Rosowski, J.R. (1973) Aggregation of soil particles by algae. J. Phycol. 9: 99–101.Google Scholar
  5. Brand, F. (1925) Analyse der aerophilen Grünalgenanflüge, insbesondere der proto- pleurococcoiden Formen. Arch. Protistenk. 52: 265–354.Google Scholar
  6. Büdel, B. (2001) Synopsis: comparative biogeography of soil-crust biota, ecologial studies, In: I. Belnap and O.L. Lange (eds.) Biological Soil Crusts: Structure, Function and Management. Springer-Verlag, Berlin/Heidelberg. 150: 303–314.Google Scholar
  7. Büdel, B., Darienko, T., Deutschewitz, K., Dojani, S., Friedl, T., Mohr, K.I., Salisch, M., Reißer, W. and Weber, B. (2007) Presence, abundance and diversity of biological soil crusts (BSCs) along a 2000 km transect from the Namibian-Angolan border to the Cape Peninsula. Microb. Ecol. 57: 229–247.CrossRefGoogle Scholar
  8. Cambra, J. and Hernández-Martiné, M.C. (1989) Observationes sobre las algas corticícocales del nordeste y sudeste de España. Anal. Jard. Bot. Madrid 46: 115–126.Google Scholar
  9. Cox, E.R. and Hightower, J. (1972) Some corticolous algae of McMinn County, Tenessee, USA. J. Phycol. 8: 203–205.Google Scholar
  10. Crispim, C.A., Gaylarde, P.M. and Gaylarde, C.C. (2003) Algal and cyanobacterial biofilms on calcareous historic buildings. Curr. Microbiol. 46: 79–82.PubMedCrossRefGoogle Scholar
  11. Edlich, F. (1936) Einwirkung von Temperatur und Wasser auf aerophile Algen. Arch. Mikrobiol. 7: 62–109CrossRefGoogle Scholar
  12. Eldridge, D.J. and Greene, R.S.B. (1994) Assessment of sediment yield from a semi-arid red earth soil with varying cryptogames cover. J. Arid. Environ. 26: 221–232.CrossRefGoogle Scholar
  13. Ettl, H. and Gärtner, G. (1995) Syllabus der Boden-, Luft- und Flechtenalgen. Gustav Fischer Verlag, Stuttgart/Jena/New York.Google Scholar
  14. Evans, R.D. and Johanson, R.J. (1999) Microbiotic crusts and ecosystem processes. Critic. Rev. Plant Sci. 18: 183–225.CrossRefGoogle Scholar
  15. Freystein, K., Salisch, M. and Reisser, W. (2008) Algal biofilms on tree bark to monitor airborne pollutants. Biologia 63: 866–872.CrossRefGoogle Scholar
  16. Gärtner, G. (1974) Beitrag zur Systematik und Ökologie von Rindenalgen. Diss. Univ. Innsbruck.Google Scholar
  17. Gärtner, G. and Ingolić, E. (1989). Ein Beitrag zur Kenntnis von Apatococcus lobatus (Chlorophyta, Chaetophorales, Leptosiroideae). Pl. Syst. Evol. 164: 133–143.CrossRefGoogle Scholar
  18. Geitler, L. (1942) Morphologie, Entwicklungsgeschichte und Systematik neuerer bemerkenswerter aerophytischer Algen aus Wien. Flora 136: 1–29.Google Scholar
  19. Gollerbach, M.M. and Shtina, E.A. (1969) Soil Algae (in Russian). Nauka, Leningrad.Google Scholar
  20. Gorbushina, A.A. (2007) Life on the rocks. Environ. Microbiol. 9: 1613–1631.PubMedCrossRefGoogle Scholar
  21. Görs, S., Schumann, R., Häubner, N. and Karsten, U. (2007) Fungal and algal biomass on artificial surfaces quantified by ergosterol and chlorophyll a as biomarkers. Biodet. Biodegrad. 60: 50–59.CrossRefGoogle Scholar
  22. Graham, L.E., Macantee, F.J.S.J. and Bold, H.C. (1981) An investigation of some subaerial green algae. Texas J. Sci. 33: 13–16.Google Scholar
  23. Handa, S., Nakano, T. and Takeshita, S. (1991) Some corticolous algae from Shibetsu, Hokkaido, Northern Japan. J. Jpn. Bot. 66: 211–223.Google Scholar
  24. Honegger, R (1990) Surface interactions in lichens, In: W. Wiessner, D.G. Robinson and R.C. Starr (eds.) Experimental Phycology. Cell Walls and Surfaces, Reproduction, Photosynthesis. Springer, Berlin, pp. 40–54.CrossRefGoogle Scholar
  25. Honegger, R. (1991) Functional aspects of the lichen symbiosis. Ann. Rev. Plant Physiol. Plant Mol. Biol. 42: 553–578.CrossRefGoogle Scholar
  26. Honegger, R. (1993) Developmental biology of lichens. New Phytol. 125: 659–677.CrossRefGoogle Scholar
  27. Knapen, A., Poesen, J., Galindo-Morales, P., De Baets, S. and Pals, A. (2007) Effects of microbiotic crusts under cropland in temperate environments on soil erodibility during concentrated flow. Earth Surf. Process. Landforms 32: 1884–1901.CrossRefGoogle Scholar
  28. Mrozinska, T. (1990) Aerophytic algae from North Korea. Algolog. Studies 58: 29–47.Google Scholar
  29. Nakano, T., Handa, S. and Takeshita, S. (1991) Some corticolous algae from the Taishaku-kyo Gorge, Western Japan. Nova Hedwigia 52: 427–451.Google Scholar
  30. Poikolainen, J., Lippo, H., Hongisto, M., Kubin, E., Mikkola, K. and Lindgren, M., (1998) On the abundance of epiphytic green algae in relation to the nitrogen concentrations of biomonitors and nitrogen deposition in Finland. Environ. Poll. 102: 85–92.CrossRefGoogle Scholar
  31. Reisser, W. (1999) The unknown life of airborne algae, In: J. Seckbach (ed.). Enigamic Microorganisms and Life in Extreme Environments. Kluwer, Dordrecht, pp. 563–572.CrossRefGoogle Scholar
  32. Reisser, W. (2001) Algae living on trees, In: J. Seckbach (ed.) Symbiosis. Kluwer, Dordrecht, pp. 387–395.Google Scholar
  33. Reisser, W. and Houben, P. (2001) Different strategies of aeroterrestrial algae in reacting to increased levels of UV- B and ozone. Nova Hedwigia, Beiheft 123: 291–296.Google Scholar
  34. Schmidt, G. 1927. Zur Ökologie der Luftalgen. Ber. Dtsch. Bot. Ges. 45: 518–533.Google Scholar
  35. Schlichting Jr., H.E. (1975) Some subaerial algae from Ireland. Br. Phycol. J. 10: 257–261.CrossRefGoogle Scholar
  36. Sharma, N.K., Rai, A.K., Singh, S., Brown Jr., R.M. (2007) Airborne algae: their present status and relevance. J. Phycol. 43: 615–627.CrossRefGoogle Scholar
  37. Shtina, E.A. (1968) Über die Verbreitung und ökologische Bedeutung der Algen in Ackerböden. Pedobiologia 9: 226–242.Google Scholar
  38. Steiner, M. and Schulze-Horn, D. (1955) Über die Verbreitung und Expositionsabhängigkeit der Rindenepiphyten im Stadtgebiet von Bonn. Decheniata 108: 1–16.Google Scholar
  39. Turian, G. (1977) Coniosporium aeroalgicolum sp. nov., moisissure dématiée semilichénisante. Ber. Schweiz. Bot. Ges. 87: 19–24.Google Scholar
  40. Vischer, W. (1960) Reproduktion und systematische Stellung einiger Rinden- und Bodenalgen. Schweiz. Z. Hydrologie 22: 330–349.Google Scholar
  41. Winter-Günther, L. (1934) Über den Einfluß des Lichtes auf das Wachstum von Pleurococcus vulgaris. Planta 22: 614–643.CrossRefGoogle Scholar
  42. Wylie, P.A. and Schlichting, H.E. Jr. (1973) A floristic survey of corticolous subaerial algae in North Carolina. J. Elisha Mitchell Scient. Soc. 89: 179–183.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Institute of Biology I, General and Applied BotanyUniversity of LeipzigLeipzigGermany

Personalised recommendations