Advertisement

Grass Endophyte-Mediated Plant Stress Tolerance: Alkaloids and Their Functions

  • Mónica S. Torres
  • James F. WhiteJr
Chapter
Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE, volume 17)

Abstract

The Family Clavicipitaceae (Hypocreales, Ascomycota) includes saprotrophic and symbiotic species associated with insects and fungi (Cordyceps spp.) or grasses, rushes and sedges (Balansia spp., Epichloë spp., Claviceps spp.) (Bacon and White, 2000). Symbiotic interactions are a notable feature of the Clavicipitaceae and they range in a continuum from antagonism to mutualism (Schardl et al., 2004). The plant biotrophic forms within this family can be characterized based on the nature of the association with hosts, being epibiotic during part or the entire life cycle or strictly endophytic with hyphae growing intercellular in the aboveground plant parts such as leaves, stems, and culms of the host.

Keywords

Tall Fescue Ergot Alkaloid Indole Alkaloid Plant Plasma Membrane Grass Endophyte 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Alexopoulos, C.J., Mims, C.W. and Blackwell, M. (1996) Introductory Mycology, Wiley, New York.Google Scholar
  2. Allgren, R.L., Kynel, M.M. and Ciaranello, R.D. (1985) Pharmacological characterization of 5-HT1 serotonin binding sites from bovine brain. Brain Res. 348: 77–85.PubMedCrossRefGoogle Scholar
  3. Bacon, C.W. and White, J.F. Jr. (2000) Physiological adaptations in the evolution of endophytism in the Clavicipitaceae, In: C.W. Bacon and J.F. White (eds.) Microbial Endophytes. Marcel Dekker, New York, pp. 237–263.Google Scholar
  4. Bacon, C.W. and White, J.F. Jr. (2003) Evidence for nematode defense in symbiotic grasses, In: J.F. White, C.W. Bacon, N.L. Hywel-Jones and J.W. Spatafora (eds.) Clavicipitalean Fungi. Evolutionary Biology, Chemistry, Biocontrol, and Cultural Impacts. Marcel-Dekker, New York, pp. 549–569.Google Scholar
  5. Bacon, C.W., Porter, J.K., Robbins, J. and Lutrell, E.S. (1986) Ergot toxicity from endophyte infected weed grasses: a review. Agro. J. 78: 106–116.CrossRefGoogle Scholar
  6. Becker, D. and Hedrich, R. (2002) Channelling auxin action: modulation of ion transport by indole-3-acetic acid. Plant Mol. Biol. 49: 349–356.PubMedCrossRefGoogle Scholar
  7. Buchanan, B.B., Grussem, W. and Jones, R.L. (2000) Biochemistry and Molecular Biology of Plants, Wiley, Somerset.Google Scholar
  8. Bush, L.P., Wilkinson, H.H. and Schardl, C.L. (1997) Bioprotective alkaloids of grass-fungal endophyte symbioses. Plant Physiol. 114: 1–7.PubMedGoogle Scholar
  9. Clay, K. (1988) Fungal endophytes of grasses: a defensive mutualism between plants and fungi. Ecology 69: 10–16.CrossRefGoogle Scholar
  10. Clay, K. (1990) Fungal endophytes of grasses. Ann. Rev. Ecol. Syst. 21: 275–295.CrossRefGoogle Scholar
  11. Clay, K. (1997) Consequences of endophyte-infected grasses on plant biodiversity, In: C.W. Bacon and N.S. Hill (eds.) Neotyphodium/Grass Interactions. Plenum, New York, pp. 109–124.Google Scholar
  12. Clay, K. and Schardl, C.L. (2002) Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. Am. Nat. 160: S99–S127.PubMedCrossRefGoogle Scholar
  13. Cohen, J.D. and Slovin, J.P. (1999) Stable isotope methods for studies of IAA metabolism and turnover. Biol. Plant. Suppl. 87: 42.Google Scholar
  14. Cooke, T.J., Poli, D.B., Sztein, A.E. and Cohen, J.D. (2002) Evolutionary patterns in auxin action. Plant Mol. Biol. 49: 319–338.PubMedCrossRefGoogle Scholar
  15. Crowe, L.M., Mouradian, R., Crowe, J.H., Jackson, S.A. and Womersley, C. (1984) Effects of carbohydrates on membrane stability at low water activities. Biochem. Biophys. Acta 11: 769, 141–50.Google Scholar
  16. De Battista, J.P., Bacon, C.W., Severson, R., Plattner, R.D. and Bouton, J.H. (1990) Indole acetic acid production by the fungal endophyte of tall fescue. Agron. J. 82: 878–880.CrossRefGoogle Scholar
  17. Ditengou, F.A. and Lapeyrie, F. (2000) Hypaphorine from the ectomycorrhizal fungus Pisolithus tinctorius counteracts activities of indole-3-acetic acid and ethylene but not synthetic auxins in eucalypt seedlings. Mol. Plant-Microb. Interact. 13: 151–158.CrossRefGoogle Scholar
  18. Elberson, H.W. and West, C.P. (1996) Growth and water relations of field-grown tall fescue as influenced by drought and endophyte. Grass Forage Sci. 51: 333–342.CrossRefGoogle Scholar
  19. Elmi, A.A. and West, C.P. (1995) Endophyte effects on tall fescue stomatal response, osmotic adjustment, and tiller survival. New Phytol. 131: 61–67.CrossRefGoogle Scholar
  20. Elmi, A.A., West, C.P., Robbins, R.T. and Kirkpatrick, T.L. (2000) Endophyte effects on reproduction of a root-knot nematode (Melodogyne marylandi) and osmotic adjustment in tall fescue. Grass Forage Sci. 55: 166–172.CrossRefGoogle Scholar
  21. Faeth, S. (2002) Are endophytic fungi defensive plant mutualists? Oikos 98: 25–36.CrossRefGoogle Scholar
  22. Glenn, A.E. and Bacon, C.W. (1997) Distribution of ergot alkaloids within the family Clavicipitaceae, In: C.W. Bacon and N.S. Hill (eds.) Neotyphodium/Grass Interactions. Plenum, New York, pp. 53–56.Google Scholar
  23. Gloer, J.B. (1995) The chemistry of fungal antagonism and defense. Can. J. Bot. 73: S1265–1274.CrossRefGoogle Scholar
  24. Griffin, D.H. (1994) Fungal Physiology, Wiley, New York.Google Scholar
  25. Hall, J.L. and Williams, L.E. (2000) Assimilate transport and partitioning in fungal biotrophic interactions. Aust. J. Plant Physiol. 27: 549–560.Google Scholar
  26. Hong, Z., Smith, A.J., Archer, S.L., Wu, X.-C., Nelson, D.P., Peterson, D., Johnson, G. and Weir, E.K. (2005) Pergolide is an inhibitor of voltage-gated potassium channels, including Kv1.5, and causes pulmonary vasoconstriction. Circulation 112: 1494–1499.PubMedCrossRefGoogle Scholar
  27. Isaka, M., Kittakoop, P., Kirtikara, K., Hywel-Jones, N.L. and Thebtaranonth, Y. (2005) Bioactive substances from insect pathogenic fungi. Accounts Chem. Res. 38: 813–823.CrossRefGoogle Scholar
  28. Jambois, A., Dauphin, A., Kawano, T., Ditengou, F.A., Bouteau, F., Legue, V. and Lapeyrie, F. (2005) Competitive antagonism between IAA and indole alkaloid hypaphorine must contribute to ­regulate ontogenesis. Physiol. Plant 123: 120–129.CrossRefGoogle Scholar
  29. Keogh, R.G., Tapper, B.A. and Fletcher, R.H. (1996) Distribution of fungal endophyte Acremonium lolii and of the alkaloids lolitrem B and peramine within perennial ryegrass. N. Z. J. Agric. Res. 39: 121–127.CrossRefGoogle Scholar
  30. Lane, G.A., Christensen, M.J. and Miles, C.O. (2000) Coevolution of fungal endophytes with grasses: the significance of secondary metabolites, In: C.W. Bacon and J.F. White (eds.) Microbial ­Endophytes. Marcel Dekker, New York, pp. 341–388.Google Scholar
  31. Lindow, S. and Brandl, M.T. (2003) Microbiology of the phyllosphere. Appl. Environ. Microbiol. 69: 1875–1883.PubMedCrossRefGoogle Scholar
  32. Lyons, P.C., Evans, J.J. and Bacon, C.W. (1990) Effects of the fungal endophyte Acremonium coenophialum on nitrogen accumulation and metabolism in tall fescue. Plant Physiol. 92: 726–732.PubMedCrossRefGoogle Scholar
  33. Malinowski, D.P. and Beleski, D.P. (2000) Adaptations of endophyte-infected cool season grasses to environmental stresses: mechanisms of drought and mineral stress tolerance. Crop Sci. 40: 923–940.CrossRefGoogle Scholar
  34. Martin, F., Duplessis, S., Ditengou, F., Lagrange, H., Voiblet, C. and Lapeyrie, F. (2001) Develop­mental cross talking in the ectomycorrhizal symbiosis: signals and communication genes. New Phytol. 151: 145–154.CrossRefGoogle Scholar
  35. Miyamoto, M., Tamura, H., Takeuchi, H. and Endo, I. (1980) Effects of clavines, ergot alkaloids, on the membrane potential of an identifiable giant neuron of the African giant snail Achatina fulica Ferussac. C.R. Seances Soc. Biol. Fil. 174: 290–296.PubMedGoogle Scholar
  36. Moubarak, A.S., Johnson, Z.B. and Rosenkrans, C.F. (2003) Antagonistic effects of simultaneous exposure of ergot alkaloids on kidney adenosine triphosphatase system. In Vitro Cell. Dev. Biol.–Anim. 39: 395–398.PubMedCrossRefGoogle Scholar
  37. Nigovic, B., Kojic-Prodic, B. and Puntarec, V. (1992) Structure of a biologically active conjugate of auxin: n-indol-3-ylacetyl-l-norleucine at 297 and 133. Acta Cryst. 48: 1079–1082.Google Scholar
  38. Normanly, J. (1997) Auxin metabolism. Physiol. Plant 100: 431–442.CrossRefGoogle Scholar
  39. Palmgren, M.G. and Harper, J.F. (1999) Pumping with plant P-type ATPases. J. Exp. Bot. 50: 883–893.Google Scholar
  40. Panaccione, D.G. (2005) Origins and significance of ergot alkaloid diversity in fungi. FEMS Microbiol. Lett. 251: 9–17.PubMedCrossRefGoogle Scholar
  41. Pennel, C., Popay, A.J., Ball, O.J-P., Hume, D.E. and Baird, D.E. (2005) Occurrence and impact of pasture mealybug (Balanococcus poae) and root aphid (Aploneura lentisci) on ryegrass (Lolium spp.) with and without infection by Neotyphodium fungal endophytes. N. Z. J. Agricult. Res. 48: 329–337.CrossRefGoogle Scholar
  42. Popay, A.J. and Rowan, D.D. (1994) Endophytic fungi as mediators of plant insect interactions, In: E.A. Bernays (ed.) Insect-Plant Interactions. CRC Press, Boca Raton, FL, pp. 84–103.Google Scholar
  43. Popay, A.J. and Bonos, S.A. (2005) Biotic responses in endophytic grasses, In: C.A. Roberts, C.P. West and D.E. Spiers (eds.) Neotyphodium in Cool Season Grasses. Blackwell, Ames, IA, pp. 163–174.CrossRefGoogle Scholar
  44. Porter, J.K. (1994) Chemical constituents of of grass endophytes, In: C.W. Bacon and J.F. White Jr. (eds.) Biotechnology of Endophytic Fungi of Grasses. CRC Press, Boca Raton, FL, pp. 103–123.Google Scholar
  45. Porter, J.K., Bacon, C.W., Cutler, H.G., Arrendale, R.F. and Robbins, J.D. (1985) In vitro auxin production by Balansia epichloë. Phytochem. 24: 1429–1431.CrossRefGoogle Scholar
  46. Rahacek, Z. and Sadjl, P. (1990) Ergot Alkaloids. Chemistry, Biological Effects, Biotechnology, Elsevier, Praha, Czech Republic.Google Scholar
  47. Rasmussen, S., Parsons, A.J., Fraser, K., Xue, H. and Newman, J.A. (2008) Metabolic profiles of Lolium perenne are diferrentially affected by nitrogen supply, carbohydrate content and fungal endophyte infection. Plant Physiol. 146: 1440–1453.Google Scholar
  48. Reboutier, D., Bianchi, M., Brault, M., Roux, C., Dauphin, A., Rona, J.P., Legue, V., Lapeyrie, F. and Bouteau, F. (2002) The indolic compound hypaphorine produced by ectomycorrhizal fungus interferes with auxin action and evokes early responses in non host Arabidopsis thaliana. Mol. Plant-Microb. Interact. 15: 932–938.CrossRefGoogle Scholar
  49. Redman, R., Sheehan, K.B., Stout, R.G., Rodriguez, R.J. and Henson, J.M. (2002) Thermotolerance conferred to plant hosts and fungal endophyte during mutualistic symbiois. Science 298: 1581.PubMedCrossRefGoogle Scholar
  50. Richardson, M.D., Chapman, G.W., Hoveland, C.S. and Bacon, C.W. (1992) Sugar alcohols in ­endophyte-infected tall fescue under drought. Crop Sci. 32: 1060–1061.CrossRefGoogle Scholar
  51. Richmond, D.S., Niemczyk, H.D. and Sheltar, D.J. (2000) Overseeding endophytic perennial ryegrass into stands of Kentucky bluegrass to manage bluegrass billbug (Coleoptera: Curculionidae). J. Econ. Entomol. 93: 1662–1668.PubMedCrossRefGoogle Scholar
  52. Rodriguez, R. and Redman, R. (2008) More than 400 millon years of evolution and some plants still can’t make it on their own: plant stress tolerance via fungal symbiosis. J. Exp. Bot. 59: 1109–1114.PubMedCrossRefGoogle Scholar
  53. Saikkonen, K., Helander, M., Faeth, S.H., Schulthess, F. and Wilson, D. (1999) Endophyte-grass-herbivore interactions: the case of Neotyphodium endophytes in Arizona fescue populations. Oecologia 121: 411–420.CrossRefGoogle Scholar
  54. Schardl, C.L. and Phillips, T.D. (1997) Protective grass endophytes: where are they from and where are they going? Plant Dis. 81: 430–437.CrossRefGoogle Scholar
  55. Schardl, C.L., Leuchtmann, A. and Spiering, M.J. (2004) Symbioses of grasses with seedborne fungal endophytes. Annu. Rev. Plant Biol. 55: 315–340.PubMedCrossRefGoogle Scholar
  56. Secks, M.E., Richardson, M.D., West, C.P. and Murphy, J.B. (2004) Carbohydrate profiles of Neotyphodium coenophialum, In: 5th International Symposium on Neotyphodium/grass Interactions. Fayetteville, Arkansas, 23–26 May 2004.Google Scholar
  57. Shappell, N.W. (2003) Ergovaline toxicity on caco-2 cells as assessed by mtt, alamarblue, and DNA assays. In Vitro Cell. Dev. Biol.-Anim. 39: 329–335.PubMedCrossRefGoogle Scholar
  58. Smith, S.E. and Smith, F.A. (1990) Structure and function of the interfaces in biotrophic symbioses as they relate to nutrient transport. New Phytol. 114: 1–38.CrossRefGoogle Scholar
  59. Smith, K.T., Bacon, C.W. and Luttrell, E.S. (1985) Reciprocal translocation of carbohydrates between host and fungus in bahiagrass infected with Myriogenospora atramentosa. Phytopathol. 75: 407–411.CrossRefGoogle Scholar
  60. Stebbins, G.L. (1981) Coevolution of grasses and large herbivores. Ann. Miss. Bot. Garden 68: 75–86.CrossRefGoogle Scholar
  61. Tanakaa, A., Christensen, M.J., Takemoto, D., Park, P. and Scott, B. (2006) Reactive oxygen species play a role in regulating a fungus–perennial ryegrass mutualistic interaction. Plant Cell 18: 1052–1066CrossRefGoogle Scholar
  62. Torres, M.S., Singh, A.P., Vorsa, N. and White, J.F. Jr. (2008) An analysis of ergot alkaloids in ­Clavicipitaceae (Hypocreales, Ascomycota) and ecological implications. Symbiosis 46: 11–19.Google Scholar
  63. Tudzynski, P., Correia, T. and Keller, U. (2001) Biotechnology and genetics of ergot. Appl. Microbiol. Biotechnol. 57: 593–605.PubMedCrossRefGoogle Scholar
  64. Volaire, F. (2002) Drought survival, summer dormancy and dehydrin accumulation in constrasting cultivars of Dactylis glomerata. Physiol. Plant 116: 42–51.PubMedCrossRefGoogle Scholar
  65. White, J.F. Jr., Glenn, A.E. and Chandler, K.F. (1993) Endophyte-host associations in grasses. XVIII. Moisture relations and insect herbivory of the stromal leaf of Epichloë typhina. Mycologia 85: 195–202.CrossRefGoogle Scholar
  66. Wicklow, D.T. (1988) Metabolites in the coevolution of fungal chemical defense systems, In: K.A. Pirozynski and D.L. Hawksworth (eds.) Coevolution of Fungi with Plants and Animals. ­Academic, San Diego, CA, pp. 173–202.Google Scholar
  67. Wilkinson, H.H., Siegel, M.R., Blankenship, J.D., Mallory, A.C., Bush, L.P. and Schardl, C.L. (2000) Contribution of fungal loline alkaloids to protection from aphids in a grass-endophyte ­mutualism. Mol. Plant-Microb. Interact. 13: 1027–1033.CrossRefGoogle Scholar
  68. Williamson, R.C. and Potter, D.A. (1997) Turfgrass species and endophyte effects on survival, development, and feeding preference of black cutworm (Lepidoptera: Noctuidae). J. Econ. Entomol. 90: 1290–1299.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.School of Environmental and Biological SciencesRutgers UniversityNew BrunswickUSA

Personalised recommendations