Skip to main content

Arbuscular Mycorrhizal Symbiosis Under Stress Conditions: Benefits and Costs

Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE,volume 17)

Abstract

Mycorrhization is a highly prevalent association of plants with fungi. Most plant species harbor symbioses with arbuscular mycorrhizal fungi (AMF), which take place within the plant roots. Arbuscular mycorrhizal (AM) symbiosis plays a major role in ecosystems, facilitating nutrient cycling by providing plants with essential nutrients. The AMF are members of the fungal phylum Glomeromycota (Schüssler et al., 2001) and form symbiotic associations with most terrestrial vascular flowering plants (Smith and Read, 1997). In addition to increasing nutrient uptake, other key contributions of AMF to plants have been recorded, including improved rooting and plant establishment, improved vegetative growth, and accelerated budding and flowering (Smith and Read, 1997). Moreover, the plant–AMF symbiosis has been shown to promote the plant’s ability to withstand numerous abiotic stress conditions. This phenomenon is the subject of the present review.

Keywords

  • Arbuscular Mycorrhizal Fungus
  • Arbuscular Mycorrhizal
  • Mycorrhizal Plant
  • Arbuscular Mycorrhizal Fungus Colonization
  • Depletion Zone

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-90-481-9449-0_16
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   299.00
Price excludes VAT (USA)
  • ISBN: 978-90-481-9449-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   379.99
Price excludes VAT (USA)
Hardcover Book
USD   379.99
Price excludes VAT (USA)
Figure 1.
Figure 2.

References

  • Al-Karaki, G.N. (2000) Growth of mycorrhizal tomato and mineral acquisition under salt stress. Mycorrhiza 10: 51–54.

    CAS  CrossRef  Google Scholar 

  • Al-Karaki, G.N., Hammad, R. and Rusan, M. (2001) Response of two tomato cultivars differing in salt tolerance to inoculation with mycorrhizal fungi under salt stress. Mycorrhiza 11: 43–47.

    CAS  CrossRef  Google Scholar 

  • Allen, M.F. and Boosalis, M.G. (1983) Effects of two species of VA mycorrhizal fungi on drought tolerance of winter wheat. New Phytol. 93: 67–76.

    CrossRef  Google Scholar 

  • Aroca, R., Vernieri, P. and Ruiz-Lozano, J.M. (2008) Mycorrhizal and non-mycorrhizal Lactuca sativa plants exhibit contrasting responses to exogenous ABA during drought stress and recovery. J. Exp. Bot. 59: 2029–2041.

    PubMed  CAS  CrossRef  Google Scholar 

  • Augé, R.M. (1989) Do VA mycorrhiza enhance transpiration by influencing host phosphorus status? J. Plant Nutr. 12: 743–753.

    CrossRef  Google Scholar 

  • Augé, R.M. (2001) Water relations, drought and VA mycorrhizal symbiosis. Mycorrhiza 11: 3–42.

    CrossRef  Google Scholar 

  • Augé, R.M., Scheckel, K.A. and Wample, R.L. (1986) Greater leaf conductance of well-watered VA mycorrhizal rose plants is not related to phosphorus nutrition. New Phytol. 103: 107–116.

    CrossRef  Google Scholar 

  • Augé, R.M., Scheckel, K.A. and Wample, R.L. (1987) Leaf water and carbohydrate status of VA mycorrhizal rose exposed to water deficit stress. Plant Soil 99: 291–302.

    CrossRef  Google Scholar 

  • Augé, R.M., Stodola, A.J.W., Brown, M.S. and Bethlenfalvay, G.J. (1992) Stomatal responses of mycorrhizal cowpea and soybean to short-term osmotic stress. New Phytol. 120: 117–125.

    CrossRef  Google Scholar 

  • Augé, R.M., Stodola, A.J.W., Tims, J.E. and Saxton, A.M. (2001) Moisture retention properties of a mycorrhizal soil. Plant Soil 230: 87–97.

    CrossRef  Google Scholar 

  • Augé, R.M., Moore, J.L., Sylvia, D.M. and Cho, K. (2004) Mycorrhizal promotion of host stomatal conductance in relation to irradiance and temperature. Mycorrhiza 14: 85–92.

    PubMed  CrossRef  Google Scholar 

  • Augé, R.M., Toler, H.D., Sams, C.E. and Nasim, G. (2008) Hydraulic conductance and water potential gradients in squash leaves showing mycorrhiza-induced increases in stomatal conductance. Mycorrhiza 18: 115–121.

    PubMed  CrossRef  Google Scholar 

  • Azcón, R. and El-Atrash, F. (1997) Influence of arbuscular mycorrhizae and phosphorus fertilization on growth, nodulation and N2 (N-15) in Medicago sativa at four salinity levels. Biol. Fertility Soils 24: 81–86.

    CrossRef  Google Scholar 

  • Balestrini, R. and Bonfante, P. (2005) The interface compartment in arbuscular mycorrhizae: a special type of plant cell wall? Plant Biosyst. 139: 8–15.

    CrossRef  Google Scholar 

  • Balestrini, R. and Lanfranco, L. (2006) Fungal and plant gene expression in arbuscular mycorrhizal symbiosis. Mycorrhiza 16: 509–524.

    PubMed  CAS  CrossRef  Google Scholar 

  • Bécard, G., Kosuta, S., Tamasloukht, M., Séjalon-Delmas, N. and Roux, C. (2004) Partner communication in the arbuscular mycorrhizal interaction. Can. J. Bot. 82: 1186–1197.

    CrossRef  Google Scholar 

  • Benedetto, A., Magurno, F., Bonfante, P. and Lanfranco, L. (2005) Expression profiles of a phosphate transporter gene (GmosPT) from the endomycorrhizal fungus Glomus mosseae. Mycorrhiza 15: 620–627.

    PubMed  CAS  CrossRef  Google Scholar 

  • Ben Khaled, L., Gomez, A.M., Ouarraqi, E.M. and Oihabi, A. (2003) Physiological and biochemical responses to salt stress of mycorrhized and/or nodulated clover seedlings (Trifolium alexandrinum L.). Agronomie 23: 571–580.

    CAS  CrossRef  Google Scholar 

  • Bereau, M., Barigah, T.S, Louisanna, E. and Garbaye, J. (2000) Effects of endomycorrhizal development and light regimes on the growth of Dicorynia guianensis Amshoff seedlings Ann. Forest Sci. 57: 725–733.

    CrossRef  Google Scholar 

  • Bethlenfalvay, G.J., Brown, M.S., Mihara, K.L. and Stafford, A.E. (1987) The Glycine-Glomus-Bradyrhizobium symbiosis. V. Effects of mycorrhiza on nodule activity and transpiration in soybean under drought stress. Plant Physiol. 85: 115–119.

    PubMed  CAS  CrossRef  Google Scholar 

  • Blokhina, O., Virolainen, E. and Fagerstedt, K.V. (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann. Bot. 91: 179–194.

    PubMed  CAS  CrossRef  Google Scholar 

  • Bolandnazar, S., Aliasgarzad, N., Neishabury, M.R. and Chaparzadeh, N. (2007) Mycorrhizal colonization improves onion (Allium cepa L.) yield and water use efficiency under water deficit condition. Scientia Hort. 114: 11–15.

    CrossRef  Google Scholar 

  • Brundrett, M.C. (2002) Coevolution of roots and mycorrhizas of land plants. New Phytol. 154: 275–304.

    CrossRef  Google Scholar 

  • Bucher, M. (2007) Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. New Phytol. 173: 11–26.

    PubMed  CAS  CrossRef  Google Scholar 

  • Buée, M., Rossignol, M., Jauneau, A., Ranjeva, R. and Bécard, G. (2000) The pre-symbiotic growth of arbuscular mycorrhizal fungi is induced by a branching factor partially purified from plant root exudates. Mol. Plant-Microbe Interact. 13: 693–698.

    PubMed  CrossRef  Google Scholar 

  • Cho, K., Toler, H., Lee, J., Ownley, B., Stutz, J.C., Moore, J.L. and Augé, R.M. (2006) Mycorrhizal symbiosis and response of sorghum plants to combined drought and salinity stresses. J. Plant Physiol. 163: 517–528.

    PubMed  CAS  CrossRef  Google Scholar 

  • Colla, G., Rouphael, Y., Cardarelli, M., Tullio, M., Rivera, C.M. and Rea, E. (2008) Alleviation of salt stress by arbuscular mycorrhizal(e?) in zucchini plants grown at low and high phosphorus concentration. Biol. Fertil. Soils 44: 501–509.

    CAS  CrossRef  Google Scholar 

  • David-Schwartz, R., Badani, H., Wininger, S., Levy, A., Galili, G. and Kapulnik, Y. (2001) Identification of a novel genetically controlled step in mycorrhizal colonization: plant resistance to infection by fungal spores but not extra-radical hyphae. Plant J. 27: 561–569.

    PubMed  CAS  CrossRef  Google Scholar 

  • David-Schwartz, R., Gadkar, V., Wininger, S., Bendov, R., Galili, G., Levy, A. and Kapulnik, Y. (2003) Isolation of a pre-mycorrhizal infection (pmi2) mutant of tomato, resistant to arbuscular mycorrhizal fungal colonization. Mol. Plant–Microbe Interact. 16: 382–388.

    PubMed  CAS  CrossRef  Google Scholar 

  • Davies, F.T., Potter, J.R. and Linderman, R.G. (1993) Drought resistance of mycorrhizal pepper plants independent of leaf P-concentration—response in gas exchange and water relations. Physiologia Planta. 87: 45–53.

    CAS  CrossRef  Google Scholar 

  • Douds, D.D.J., Pfeffer, P.E. and Shachar-Hill, Y. (2000) Carbon partitioning, cost, and metabolism of arbuscular mycorrhizas, In: Y. Kapulnik and D.D.J. Douds (eds.) Arbuscular Mycorrhizas: Physiology and Function. Kluwer, Dordrecht, The Netherlands, pp. 107–129.

    CrossRef  Google Scholar 

  • Duan, X., Newman, D.S., Reiber, J.M., Green, C.D., Saxton, A.M. and Augé, R.M. (1996) Mycorrhizal influence on hydraulic and hormonal factors implicated in the control of stomatal conductance during drought. J. Exp. Bot. 47: 1541–1550.

    CAS  CrossRef  Google Scholar 

  • Feng, G., Zhang, F.S., Li, X.L., Tian, C.Y., Tang, C. and Rengel, Z. (2002) Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza 12: 185–190.

    PubMed  CAS  CrossRef  Google Scholar 

  • Gadkar, V., David-Schwartz, R., Kunik, T. and Kapulnik, Y. (2001) Arbuscular mycorrhizal fungal fungi elicit a novel intracellular apparatus in Medicago truncatula root epidermal cells before colonization. Factors involved in host recognition. Plant Physiol. 127: 1493–1499.

    PubMed  CAS  CrossRef  Google Scholar 

  • Genre, A. and Bonfante, P. (2005) Building a mycorrhizal cell: how to reach compatibility between plants and arbuscular mycorrhizal fungi. J. Plant Interact. 1: 3–13.

    CAS  CrossRef  Google Scholar 

  • Genre, A., Chabaud, M., Timmers, T., Bonfante, P. and Barker, D.G. (2005) Arbuscular mycorrhizal infection. Plant Cell 17: 3489–3499.

    PubMed  CAS  CrossRef  Google Scholar 

  • Gianinazzi-Pearson, V. and Brechenmacher, L. (2004) Functional genomics of arbuscular mycorrhiza: decoding the symbiotic cell programme. Can. J. Bot. 82: 1228–1234.

    CAS  CrossRef  Google Scholar 

  • Gianinazzi-Pearson, V., Branzanti, B. and Gianinazzi, S. (1989) In vitro enhancement of spore germination and early hyphal growth of a vesicular-arbuscular mycorrhizal fungus by host root exudates and plant flavonoids. Symbiosis 7: 243–255.

    CAS  Google Scholar 

  • Giovannetti, M., Avio, L., Sbrana, C. and Citernesi, A.S. (1993a) Factors affecting appressorium development in the vesicular-arbuscular mycorrhizal fungus Glomus mosseae (Nicol. & Gerd.) Gerd. and Trappe. New Phytol. 123: 115–122.

    CrossRef  Google Scholar 

  • Giovannetti, M., Sbrana, C., Avio, L., Citernesi, A.S. and Logi, C. (1993b) Differential hyphal morphogenesis in arbuscular mycorrhizal fungi during pre-infection stages. New Phytol. 125: 587–593.

    CrossRef  Google Scholar 

  • Giovannetti, M., Sbrana, C. and Logi, C. (1994) Early processes involved in host recognition by arbuscular mycorrhizal fungi. New Phytol. 127: 703–709.

    CrossRef  Google Scholar 

  • Giri, B. and Mukerji, K.G. (2004) Mycorrhizal inoculant alleviates salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field conditions: evidence for reduced sodium and improved magnesium uptake. Mycorrhiza 14: 307–312.

    PubMed  CrossRef  Google Scholar 

  • Goicoechea, N., Antolin, M.C. and Sánchez-Díaz, M. (1997) Gas exchange is related to the hormone balance in mycorrhizal or nitrogen-fixing alfalfa subjected to drought. Physiologia Planta. 100: 989–997.

    CAS  CrossRef  Google Scholar 

  • Hamblin, A.P. (1985) The influence of soil structure on water movement, crop root growth, and water uptake. Adv. Agron. 38: 95–158.

    CrossRef  Google Scholar 

  • Harrison, M.J. (2005) Signaling in the arbuscular mycorrhizal symbiosis. Annu. Rev. Microbiol. 59: 19–42.

    PubMed  CAS  CrossRef  Google Scholar 

  • Harrison, M.J. and van Buuren, M.L. (1995) A phosphate transporter from the mycorrhizal fungus Glomus versiforme. Nature 378: 626–629.

    PubMed  CAS  CrossRef  Google Scholar 

  • Harrison, M.J., Dewbre, G.R. and Liu, J. (2002) A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi. Plant Cell 14: 2413–2429.

    PubMed  CAS  CrossRef  Google Scholar 

  • Hause, B. and Fester, T. (2005) Molecular and cell biology of arbuscular mycorrhizal symbiosis. Planta 221: 184–196.

    PubMed  CAS  CrossRef  Google Scholar 

  • Hetrick, B.A.D., Gerschefske, K. and Wilson, G.T. (1987) Effects of drought stress on growth response in corn, sudan grass, and big bluestem to Glomus etunicatum. New Phytol. 105: 403–410.

    CrossRef  Google Scholar 

  • Hoekstra, F.A., Golovina, E.A. and Buitink, J. (2001) Mechanisms of plant desiccation tolerance. Trends Plant Sci. 6: 431–438.

    PubMed  CAS  CrossRef  Google Scholar 

  • Jahromi, F., Aroca, R., Porcel, R. and Ruiz-Lozano, J.M. (2008) Influence of salinity on the in vitro development of Glomus intraradices and on the in vivo physiological and molecular responses of mycorrhizal lettuce plants. Microbial Ecol. 55: 45–53.

    CrossRef  Google Scholar 

  • Jastrow, J.D. and Miller, R.M. (1991) Methods for assessing the effects of biota on soil structure. Agric. Ecosys. Environ. 34: 279–303.

    CrossRef  Google Scholar 

  • Jindal, V., Atwal, A., Sekhon, B.S., Rattan, S. and Singh, R. (1993) Effect of vesicular-arbuscular mycorrhizae on metabolism of moong plants under NaCl salinity. Plant Physiol. Biochem.31: 475–481.

    CAS  Google Scholar 

  • Karandashov, V. and Bucher, M. (2005) Symbiotic phosphate transport in arbuscular mycorrhizas. Trends Plant Sci. 10: 22–29.

    PubMed  CAS  CrossRef  Google Scholar 

  • Klironomos, J.N. (2003) Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology 84: 2292–2301.

    CrossRef  Google Scholar 

  • Koltai, H., Gadkar, V. and Kapulnik, Y. (2010) Biochemical and practical views of arbuscular mycorrhizal fungus-host association in horticultural crops, In: J. Janick (ed.) Horticultural Reviews. Wiley36: 257–287.

    Google Scholar 

  • Kramer, P.J. and Boyer, J.S. (1997) Water Relations of Plants and Soils. Academic Press, San Diego, CA.

    Google Scholar 

  • Kyllo, D.A., Velez, V.T. and Melvin, T. (2003) Combined effects of arbuscular mycorrhizas and light on water uptake of the neotropical understory shrubs, Piper and Psychotria. New Phytol. 160: 443–454.

    CrossRef  Google Scholar 

  • Lee, D.W., Krishnapillay, B., Mansor, M., Mohamad, H. and Yap, S.K. (1996) Irradiance and spectral quality affect Asian tropical rain forest seedling development. Ecology 77: 568–580.

    CrossRef  Google Scholar 

  • Maldonado-Mendoza, I.E., Dewbre, G.R. and Harrison, M.J. (2001) A phosphate transporter gene from the extra-radical mycelium of an arbuscular mycorrhizal fungus Glomus intraradices is regulated in response to phosphate in the environment. Mol. Plant-Microbe Interact 14: 1140–1148.

    PubMed  CAS  CrossRef  Google Scholar 

  • Marschner, H. (1995) Mineral Nutrition of Higher Plants, 2nd ed. Academic Press, Cambridge.

    Google Scholar 

  • Menge, J.A., Steirle, D., Bagyaraj, D.J., Johnson, E.L.V. and Leonard, R.T. (1978) Phosphorus concentrations in plants responsible for inhibition of mycorrhizal infection. New Phytol. 80: 575–578.

    CAS  CrossRef  Google Scholar 

  • Morgan, J.M. (1984) Osmoregulation and water stress in higher plants. Annu. Rev. Plant Physiol. 35: 299–319.

    CrossRef  Google Scholar 

  • Mosse, B. and Hepper, C. (1975) Vesicular-arbuscular mycorrhizal infections in root organ cultures. Physiol. Plant Pathol. 5: 215–223.

    CrossRef  Google Scholar 

  • Munns, R. (2002) Comparative physiology of salt and water stress. Plant Cell Environ. 25: 239–250.

    PubMed  CAS  CrossRef  Google Scholar 

  • Nagahashi, G. and Douds, D.D. (2000) Partial separation of root exudate components and their effects upon the growth of germinated spores of AM fungi. Mycol. Res. 104: 1453–1464.

    CrossRef  Google Scholar 

  • Oades, J.M. and Waters, A.G. (1991) Aggregate hierarchy in soils. Austr. J. Soil Res. 29, 815–828.

    CrossRef  Google Scholar 

  • Paszkowski, U. (2006) A journey through signaling in arbuscular mycorrhizal symbioses. New Phytol. 172: 35–46.

    PubMed  CAS  CrossRef  Google Scholar 

  • Paszkowski, U., Kroken, S., Roux, C. and Briggs, S.P. (2002) Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis. Proc. Natl. Acad. Sci. U.S.A. 99: 13324–13329.

    PubMed  CAS  CrossRef  Google Scholar 

  • Paszkowski, U., Jakovleva, L. and Boller, T. (2006) Maize mutants affected at distinct stages of the arbuscular mycorrhizal symbiosis. Plant J. 47: 165–173.

    PubMed  CAS  CrossRef  Google Scholar 

  • Pfeiffer, C.M. and Bloss, H.E. (1987) Growth and nutrition of guayule (Parthenium argentatum) in a saline soil as influenced by vesicular-arbuscular mycorrhiza and phosphorus fertilization. New Phytol. 108: 315–321.

    CrossRef  Google Scholar 

  • Pfleger, F.L. and Linderman, R.G. (1994) Mycorrhizae and Plant Health. APS Press, St. Paul, MN.

    Google Scholar 

  • Pierce, S., Vianelli, A. and Cerabolini, B. (2005) Essay review: from ancient genes to modern communities: the cellular stress response and the evolution of plant strategies. Funct. Ecol. 19: 763–776.

    CrossRef  Google Scholar 

  • Pivonia, S., Levita, R., Cohen, S., Gamliel, A., Wininger, S., Ben-Gal, A., Yermiyahu, U. and Kapulnik, Y. (2009) Reducing the effects of biotic and abiotic stresses on pepper cultivated under arid conditions using arbuscular mycorrhizal (AM) technology, In: F. Feldmann, Y. Kapulnik and J. Baar (eds.) Mycorrhiza. Works, ISBN 978-3-8001-8919-9 Deutsche Phytomedizinische Gesellschaft, Braunschweig, Germany, pp. 197–208.

    Google Scholar 

  • Poirier, Y. and Bucher, M. (2002) Phosphate transport and homeostasis in Arabidopsis, In: C.R. Somerville and E.M. Meyerowitz (eds.) The Arabidopsis Book. American Society of Plant Biologists, Rockville, MD, pp. 1–35.

    Google Scholar 

  • Porcel, R. and Ruiz-Lozano, J.M. (2004) Arbuscular mycorrhizal influence on leaf water potential, solute accumulation, and oxidative stress in soybean plants subjected to drought stress. J. Exp. Bot. 55: 1743–1750.

    PubMed  CAS  CrossRef  Google Scholar 

  • Porcel, R., Barea, J.M. and Ruiz-Lozano, J.M. (2003) Antioxidant activities in mycorrhizal soybean plants under drought stress and their possible relationship to the process of nodule senescence. New Phytol. 157: 135–143.

    CAS  CrossRef  Google Scholar 

  • Purin, S. and Rillig, M.C. (2008) Parasitism of arbuscular mycorrhizal fungi: reviewing the evidence. FEMS Microbiol. Lett. 279: 8–14.

    PubMed  CAS  CrossRef  Google Scholar 

  • Querejeta, J.I., Allen, M.F., Alguacil, M.M. and Roldan, A. (2007) Plant isotopic composition provides insight into mechanisms underlying growth stimulation by AM fungi in a semiarid environment. Funct. Plant Biol. 34: 683–691.

    CAS  CrossRef  Google Scholar 

  • Raghothama, K.G. (2000) Phosphate transport and signaling. Curr. Opin. Plant Biol. 3: 182–187.

    PubMed  CAS  Google Scholar 

  • Raskin, I. and Ensley, B.D. (eds.) (2000) Phytoremediation of Toxic Metals: Using Plants to Clean Up the Environment. Wiley, New York, pp. 15–31.

    Google Scholar 

  • Rausch, C. and Bucher, M. (2002) Molecular mechanisms of phosphate transport in plants. Planta 216: 23–37.

    PubMed  CAS  CrossRef  Google Scholar 

  • Rausch, C., Daram, P., Brunner, S., Jansa, J., Laloi, M., Leggewie, G., Amrhein, N. and Bucher, M. (2001) A phosphate transporter expressed in arbuscule-containing cells in potato. Nature 414: 462–470.

    PubMed  CAS  CrossRef  Google Scholar 

  • Reddy, D.M.R.S., Schorderet, M., Feller, U. and Reinhardt, D. (2007) A petunia mutant affected in intracellular accommodation and morphogenesis of arbuscular mycorrhizal fungi. Plant J. 51: 739–750.

    CrossRef  CAS  Google Scholar 

  • Reinhardt, D. (2007) Programming good relations—development of the arbuscular mycorrhizal symbiosis. Curr. Opin. Plant Biol. 10: 98–105.

    PubMed  CrossRef  Google Scholar 

  • Remy, W., Taylor, T.N., Hass, H. and Kerp, H. (1994) Four hundred-million-year-old vesicular arbuscular mycorrhizae. Proc. Natl. Acad. Sci. U.S.A. 91: 11841–11843.

    PubMed  CAS  CrossRef  Google Scholar 

  • Requena, N., Serrano, E., Ocon, A. and Breuninger, M. (2007) Plant signals and fungal perception during arbuscular mycorrhiza establishment. Phytochemistry 68: 33–40.

    PubMed  CAS  CrossRef  Google Scholar 

  • Rillig, M.C., Wright, S.F. and Eviner, V.T. (2002) The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation: comparing effects of five plant species. Plant Soil 238: 325–333.

    CAS  CrossRef  Google Scholar 

  • Rosendahl, C.N. and Rosendahl, S. (1991) Influence of vesicular-arbuscular mycorrhizal fungi (Glomus spp.) on the response of cucumber (Cucumis sativis L.) to salt stress. Environ. Exp. Bot. 31: 313–318.

    CrossRef  Google Scholar 

  • Ruiz-Lozano, J.M. (2003) Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress. New perspectives for molecular studies. Mycorrhiza 13: 309–317.

    PubMed  CrossRef  Google Scholar 

  • Ruiz-Lozano, J.M. and Azcón, R. (2000) Symbiotic efficiency and infectivity of an autochthonous arbuscular mycorrhizal Glomus sp. from saline soils and Glomus deserticola under salinity. Mycorrhiza 10: 137–143.

    CAS  CrossRef  Google Scholar 

  • Ruiz-Lozano, J.M., Azcón, R. and Gómez, M. (1995a) Effects of arbuscular mycorrhizal Glomus species on drought tolerance: physiological and nutritional plant responses. Appl. Environ. Microbiol. 61: 456–460.

    PubMed  CAS  Google Scholar 

  • Ruiz-Lozano, J.M., Gómez, M. and Azcón, R. (1995b) Influence of different Glomus species on the time-course of physiological plant responses of lettuce to progressive drought stress periods. Plant Sci.110: 37–44.

    CAS  CrossRef  Google Scholar 

  • Ruiz-Lozano, J.M., Azcón, R. and Gomez, M. (1996a) Alleviation of salt stress by arbuscular-mycorrhizal Glomus species in Lactuca sativa plants. Physiol. Plant 98: 767–772.

    CAS  CrossRef  Google Scholar 

  • Ruiz-Lozano, J., Azcón, R. and Palma, J.M. (1996b) Superoxide dismutase activity in arbuscular-mycorrhizal Lactuca sativa L. plants subjected to drought stress. New Phytol. 134: 327–333.

    CAS  CrossRef  Google Scholar 

  • Ruiz-Lozano, J.M., Collados, C., Barea, J.M. and Azcón, R. (2001) Cloning of cDNAs encoding SODs from lettuce plants which show differential regulation by arbuscular mycorhizal symbiosis and by drought stress. J. Exp. Bot. 52: 2241–2242.

    PubMed  CAS  Google Scholar 

  • Sannazzaro, A.I., Echeverría, M., Albertó, E.O., Ruiz, O.A. and Menéndez, A.B. (2007) Modulation of polyamine balance in Lotus glaber by salinity and arbuscular mycorrhiza. Plant Physiol. Biochem. 45: 39–46.

    PubMed  CAS  CrossRef  Google Scholar 

  • Schüssler, A., Schwarzott, D. and Walker, C. (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol. Res. 105: 1413–1421.

    CrossRef  Google Scholar 

  • Siciliano, V., Genre, A., Balestrini, R., Cappellazzo, G., deWit, P.J. and Bonfante, P. (2007) Transcriptome analysis of arbuscular mycorrhizal roots during development of the prepenetration apparatus. Plant Physiol. 144: 1455–1466.

    PubMed  CAS  CrossRef  Google Scholar 

  • Simpson, D. and Daft, M.J. (1991) Effects of Glomus clarum and water stress on growth and nitrogen fixation in 2 genotypes of groundnut. Agric. Ecosys. Environ. 35: 47–54.

    CrossRef  Google Scholar 

  • Smith, S.E. and Read, D.J. (1997) Mycorrhizal Symbiosis, 2nd ed. Academic Press, San Diego, CA.

    Google Scholar 

  • Smith, S.E., Smith, F.A. and Jakobsen, I. (2003) Mycorrhizal fungi can dominate phosphate supply to plant irrespective of growth responses. Plant Physiol. 133: 16–20.

    PubMed  CAS  CrossRef  Google Scholar 

  • Smith, S.E., Smith, F.A. and Jakobsen, I. (2004) Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. New Phytol. 162: 511–524.

    CrossRef  Google Scholar 

  • Stirzaker, R.J. and Passioura, J.B. (1996) The water relations of the root-soil interface. Plant Cell Environ. 19: 201–208.

    CrossRef  Google Scholar 

  • Subramanian, K.S. and Charest, C. (1998) Arbuscular mycorrhizae and nitrogen assimilation in maize after drought and recovery. Physiologia Planta. 102: 285–296.

    CAS  CrossRef  Google Scholar 

  • Thomson, B.D., Robson, A.D., and Abbott, L.K. (1991) Soil mediated effects of phosphorus supply on the formation of mycorrhizas by Scutellispora calospora (Nicol. & Gerd.) Walker & Sanders on subterranean clover. New Phytol. 118: 463–469.

    CAS  CrossRef  Google Scholar 

  • Vierheilig, H. and Piché, Y. (2002) Signalling in arbuscular mycorrhiza: facts and hypotheses. Adv. Exp. Med. Biol. 505: 23–39.

    PubMed  CAS  CrossRef  Google Scholar 

  • Wilkinson, S. and Davies, W.J. (2002) ABA-based chemical signalling: the co-ordination of responses to stress in plants. Plant Cell Environ. 25: 195–210.

    PubMed  CAS  CrossRef  Google Scholar 

  • Wu, Q.S. and Xia, R.X. (2006) Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. J. Plant Physiol. 163: 417–425.

    PubMed  CAS  CrossRef  Google Scholar 

  • Wu, Q., Zou, Y. and Xia, R. (2007) Effect of Glomus versiforme inoculation on reactive oxygen metabolism of Citrus tangerine leaves exposed to water stress. Frontiers of Agriculture in China 1: 438–443.

    CrossRef  Google Scholar 

Download references

Acknowledgement

This work was funded by The Israeli Ministry of Agriculture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hinanit Koltai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Koltai, H., Kapulnik, Y. (2010). Arbuscular Mycorrhizal Symbiosis Under Stress Conditions: Benefits and Costs. In: Seckbach, J., Grube, M. (eds) Symbioses and Stress. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 17. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9449-0_16

Download citation