Advertisement

Three in a Boat: Host-Plant, Insect Herbivore, and Fungal Entomopathogen

  • Shalom W. Applebaum
  • Dana Ichelczik
  • Richard A. Humber
Chapter
Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE, volume 17)

Abstract

This review of open-ended tritrophic relations deals with the interactions of se­veral major pathogenic fungal species and their insect hosts, resident on di­fferent plants and how such interactions are affected by the physiology of these organisms in a changing environment.

Keywords

Entomopathogenic Fungus Colorado Potato Beetle Cuticular Hydrocarbon Insect Host Entomopathogenic Nematode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank Professor Joseph Seckbach for encouraging us to conceive and write this review. Our studies on entomopathogenic fungi have benefited from the ­support of the US-AID Middle East Regional Cooperation program (MERC) and the Mauerberger Foundation Fund.

References

  1. Acevedo, J.P., Samuels, R.I., Machado, I.R. and Dolinski, C. (2007) Interactions between isolates of the entomopathogenic fungus Metarhizium anisopliae and the entomopathogenic nematode Heterorhabditis bacteriophora JPM4 during infection of the sugar cane borer Diatraea saccharalis (Lepidoptera: Pyralidae). J. Invertebr. Pathol. 96: 187–192.PubMedCrossRefGoogle Scholar
  2. Akai, H. and Sato, S. (1973) Ultrastructure of the larval hemocytes of the silkworm, Bombyx mori L. (Lepidoptera: Bombycidae). Intl. J. Insect Morphol. Embryol. 2: 207–231.CrossRefGoogle Scholar
  3. Altre, J.A. and Vandenberg, J.D. (2001a) Comparison of blastospores of two Paecilomyces fumosoroseus isolates: in vitro traits and virulence when injected into fall armyworm, Spodoptera frugiperda. J. Invertebr. Pathol. 78: 170–175.PubMedCrossRefGoogle Scholar
  4. Altre, J.A. and Vandenberg, J.D. (2001b) Factors influencing the infectivity of isolates of Paecilomyces fumosoroseus against diamondback moth, Plutella xylostella. J. Invertebr. Pathol. 78: 31–36.PubMedCrossRefGoogle Scholar
  5. Altre, J.A. and Vandenberg, J.D. (2001c) Penetration of cuticle and proliferation in hemolymph by Paecilomyces fumosoroseus isolates that differ in virulence against lepidopteran larvae. J. Invertebr. Pathol. 78: 81–86.PubMedCrossRefGoogle Scholar
  6. Altre, J.A., Vandenberg, J.D. and Cantone, F.A. (1999) Pathogenicity of Paecilomyces fumosoroseus isolates to diamondback moth, Plutella xylostella: correlation with spore size, germination speed, and attachment to cuticle. J. Invertebr. Pathol. 73: 332–338.PubMedCrossRefGoogle Scholar
  7. Alves, S.B., Rossi, L.S., Lopes, R.B., Tamai, M.A. and Pereira, R.M. (2002) Beauveria bassiana yeast phase on agar medium and its pathogenicity against Diatraea saccharalis (Lepidoptera: Crambidae) and Tetranychus urticae (Acari: Tetranychidae). J. Invertebr. Pathol. 81: 70–77.PubMedCrossRefGoogle Scholar
  8. Amirhusin, B., Shade, R. E., Koiwa, H., Hasegawa, P. M., Bressan, R. A., Murdock, L. L. and Zhu-Salzman, K. (2007) Protease inhibitors from several classes work synergistically against Callosobruchus maculatus. J. Insect. Physiol. 53: 734–740.PubMedCrossRefGoogle Scholar
  9. Andersen, S.O. (1979) Biochemistry of the insect cuticle. Annu. Rev. Entomol. 24: 29–61.CrossRefGoogle Scholar
  10. Ansari, M.A., Casteels, H., Tirry, L. and Moens, M. (2004) Biology of Hoplia philanthus (Col., Scarabaeidae, Melolonthinae): a new and severe pest in Belgian turf. Environ. Entomol. 35: 1500–1507.CrossRefGoogle Scholar
  11. Antunez, K., Piccini, C., Castro-Sowinski, S., Rosado, A.S., Seldin, L. and Zunino, P. (2007) Phenotypic and genotypic characterization of Paenibacillus larvae isolates. Vet. Microbiol. 124: 178–183.PubMedCrossRefGoogle Scholar
  12. Arruda, W., Lubeck, I., Schrank, A. and Vainstein, M.H. (2005) Morphological alterations of Metarhizium anisopliae during penetration of Boophilus microplus ticks. Exp. Appl. Acarol. 37: 231–244.PubMedCrossRefGoogle Scholar
  13. Asaff, A., Cerda-Garcia-Rojas, C. and de la Torre, M. (2005) Isolation of dipicolinic acid as an insecticidal toxin from Paecilomyces fumosoroseus. Appl. Microbiol. Biotechnol. 68: 542–547.PubMedCrossRefGoogle Scholar
  14. Asano, T. and Ashida, M. (2001) Cuticular pro-phenoloxidase of the silkworm, Bombyx mori. Purification and demonstration of its transport from hemolymph. J. Biol. Chem. 276: 11100–11112.PubMedCrossRefGoogle Scholar
  15. Aso, Y., Kramer, K.J., Hopkins, T.L. and Lookhart, G.L. (1985) Characterization of haemolymph protyrosinase and a cuticular activator from Manduca sexta (L). Insect Biochem. Mol. Biol. 15: 9–17.CrossRefGoogle Scholar
  16. Azambuja, P., Garcia, E.S., Mello, C.B. and Feder, D. (1997) Immune responses in Rhodnius prolixus: influence of nutrition and ecdysone. J. Insect Physiol. 43: 513–519.PubMedCrossRefGoogle Scholar
  17. Baldwin, I.T. and Preston, C.A. (1999) The eco-physiological complexity of plant responses to insect herbivores. Planta 208: 137–145.CrossRefGoogle Scholar
  18. Bandani, A.R. (2004) Effect of entomopathogenic fungus Tolypocladium species metabolite efrapeptin on Galleria mellonella agglutinin. Commun. Agric. Appl. Biol. Sci. 69: 165–169.PubMedGoogle Scholar
  19. Bandani, A.R., Tork, M. and Rassoulian, G.R. (2006) Comparison of pathogenicity of two isolates of the entomopathogenic fungus Metarhizium anisopliaeon adult Sunn pest (Eurygaster integriceps Puton.). Commun. Agric. Appl. Biol. Sci. 71: 543–548.PubMedGoogle Scholar
  20. Barbercheck, M.E. and Kaya, H.K. (1991) Competitive interactions between entomopathogenic nematodes and Beauveria bassiana (Deuteromycotina: Hypomycetes) in soilborne larvae of Spodoptera exigua (Lepidoptera: Noctuidae). Environ. Entomol. 20: 707–712.Google Scholar
  21. Barnes, A.I. and Siva-Jothy, M.T. (2000) Density-dependent prophylaxis in the mealworm beetle Tenebrio molitor L. (Coleoptera: Tenebrionidae): cuticular melanization is an indicator of investment in immunity. Proc. Biol. Sci. 267: 177–182.PubMedCrossRefGoogle Scholar
  22. Barrett, F.M. (1987) Phenoloxidase from larval cuticle of the Sheep Blowfly, Lucilia cuprina: Characterization, developmental changes, and inhibition by antiphenoloxidase antibodies. Arch. Insect Biochem. Physiol. 5: 99–118.CrossRefGoogle Scholar
  23. Bartlet, E., Blight, M.M., Lane, P. and Williams, I.H. (1997) The responses of the cabbage seed weevil Ceutorhynchus assimilis to volatile compounds from oilseed rape in a linear track olfactometer. Entomol. Exp. Appl. 85: 257–262.CrossRefGoogle Scholar
  24. Bassman, J.H. (2004) Ecosystem consequences of enhanced solar ultraviolet radiation: Secondary plant metabolites as mediators of multiple trophic interactions in terrestrial plant communities. Photochem. Photobiol. 79, 382–398.PubMedCrossRefGoogle Scholar
  25. Beckage, N.E., Foreman, R.C., Palmatier, C.M. and Tan, F.F. (2002) Inhibition of the larval ecdysis and emergence behavior of the parasitoid Cotesia congregata by methoprene. J. Insect Physiol. 48: 725–732.PubMedCrossRefGoogle Scholar
  26. Bedick, J.C., Tunaz, H., Nor Aliza, A.R., Putnam, S.M., Ellis, M.D. and Stanley, D.W. (2001) Eicosanoids act in nodulation reactions to bacterial infections in newly emerged adult honey bees, Apis mellifera, but not in older foragers. Comp. Biochem. Physiol. C. Toxicol. Pharmacol. 130: 107–117.PubMedCrossRefGoogle Scholar
  27. Bennett R.N. and Wallsgrove, R.M. (1994) Secondary metabolites in plant defence mechanisms. New Phytol. 127: 617–633.CrossRefGoogle Scholar
  28. Bidochka, M.J. and Hajek, A.E. (1998) A nonpermissive entomophthoralean fungal infection increases activation of insect prophenoloxidase. J. Invertebr. Pathol. 72: 231–238.PubMedCrossRefGoogle Scholar
  29. Binod, P., Sukumaran, R.K., Shirke, S.V., Rajput, J.C. and Pandey, A. (2007) Evaluation of fungal culture filtrate containing chitinase as a biocontrol agent against Helicoverpa armigera. J. Appl. Microbiol. 103: 1845–1852.PubMedCrossRefGoogle Scholar
  30. Blande, J.D., Pickett, J.A. and Poppy, G.M. (2007) A comparison of cemiochemically mediated interactions involving specialist and generalist Brassica-feeding aphids and the braconid parasitoid Diaeretiella rapae. J. Chem. Ecol. 33: 767–779.PubMedCrossRefGoogle Scholar
  31. Blanford, S. and Thomas, M.B. (2001) Adult survival, maturation, and reproduction of the desert locust Schistocerca gregaria infected with the fungus Metarhizium anisopliae var acridum. J. Chem. Ecol. 78, 1–8.Google Scholar
  32. Bogo, M.R., Rota, C.A., Pinto, H. Jr., Ocampos, M., Correa, C.T., Vainstein, M.H. and Schrank, A. (1998) A chitinase encoding gene (chit1 gene) from the entomopathogen Metarhizium anisopliae: isolation and characterization of genomic and full-length cDNA. Curr. Microbiol. 37: 221–225.PubMedCrossRefGoogle Scholar
  33. Bogus, M.I., Kedra, E., Bania, J., Szczepanik, M., Czygier, M., Jablonski, P., Pasztaleniec, A., Samborski, J., Mazgajska, J. and Polanowski, A. (2007) Different defense strategies of Dendrolimus pini, Galleria mellonella, and Calliphora vicina against fungal infection. J. Insect. Physiol. 53: 909–922.PubMedCrossRefGoogle Scholar
  34. Boucias, D.G. and Penland, J.C. (1991) Attachment of mycopathogens to cuticle, the initial event of mycoses in arthopod host, In: G.T. Cole and H.C. Hoch (eds.) The Fungal Spore ad Disease Initiation in Plants and Animals. Plenum Press, New York, pp. 101–127.Google Scholar
  35. Boucias, D.G., Pendland, J.C. and Latge, J.P. (1988) Nonspecific factors involved in attachment of entomopathogenic Deuteromycetes to Host Insect Cuticle. Appl. Environ. Microbiol. 54: 1795–1805.PubMedGoogle Scholar
  36. Brayner, F.A., Araujo, H.R., Santos, S.S., Cavalcanti, M.G., Alves, L.C., Souza, J.R. and Peixoto, C.A. (2007) Haemocyte population and ultrastructural changes during the immune response of the mosquito Culex quinquefasciatus to microfilariae of Wuchereria bancrofti. Med. Vet. Entomol. 21: 112–120.PubMedCrossRefGoogle Scholar
  37. Brey, P.T., Lee, W.J., Yamakawa, M., Koizumi, Y., Perrot, S., Francois, M. and Ashida, M. (1993) Role of the integument in insect immunity: epicuticular abrasion and induction of cecropin synthesis in cuticular epithelial cells. Proc. Natl. Acad. Sci. U.S.A. 90: 6275–6279.PubMedCrossRefGoogle Scholar
  38. Brooks, J.S., Williams, E.H. and Feeny, P. (1996) Quantification of contact oviposition stimulants for black swallowtail butterfly, Papilio polyxenes, on the leaf surfaces of wild carrot, Daucus carota. J. Chem. Ecol. 22: 2341–2357.CrossRefGoogle Scholar
  39. Buckner, J.S. (1993) Cuticular polar lipids of insects, In: D.R. Nelson and D.W. Stanley-Samuelson (eds.) Lipids: Chem, Biochem and Biol. University of Nebraska Press, pp. 227–270.Google Scholar
  40. Butt, T.M., Hajek, A.E. and Humber, R.A. (1996) Gypsy moth immune defenses in response to hyphal bodies and natural protoplasts of entomophthoralean fungi. J. Invertebr. Pathol. 68: 278–285.PubMedCrossRefGoogle Scholar
  41. Bye, N.J. and Charnley, A.K. (2008) Regulation of cuticle-degrading subtilisin proteases from the entomopathogenic fungi, Lecanicillium spp: implications for host specificity. Arch. Microbiol. 189: 81–92.PubMedCrossRefGoogle Scholar
  42. Campos, R.A., Arruda, W., Boldo, J.T., da Silva, M.V., de Barros, N.M., de Azevedo, J.L., Schrank, A. and Vainstein, M.H. (2005) Boophilus microplus infection by Beauveria amorpha and Beauveria bassiana: SEM analysis and regulation of subtilisin-like proteases and chitinases. Curr. Microbiol. 50: 257–261.PubMedCrossRefGoogle Scholar
  43. Castro, D.P., Figueiredo, M.B., Ribeiro, I.M., Tomassini, T.C., Azambuja, P. and Garcia, E.S. (2008) Immune depression in Rhodnius prolixus by seco-steroids, physalins. J. Insect Physiol. 54: 555–562.PubMedCrossRefGoogle Scholar
  44. Chai, L.Q., Tian, Y.Y., Yang, D.T., Wang, J.X. and Zhao, X.F. (2008) Molecular cloning and characterization of a C-type lectin from the cotton bollworm, Helicoverpa armigera. Dev. Comp. Immunol. 32: 71–83.PubMedCrossRefGoogle Scholar
  45. Charnley, A.K. (2003) Fungal pathogens of insect: cuticle degrading enzymes and toxins. Adv. Bot. Res. 40: 241–321.CrossRefGoogle Scholar
  46. Choo, H.Y., Kaya, H.K., Huh, J., Lee, D.W., Kim, H.H., Lee, S.M. and Choo, Y.M. (2002) Entomopathogenic nematodes (Steinernema spp. and Heterorhabditis bacteriophora) and a fungus Beauveria brongniartii for biological control of the white grubs, Ectinohoplia rufipes and Exomala orientalis, in Korean golf courses. BioControl 47: 177–192.CrossRefGoogle Scholar
  47. Clark, K.D., Pech, L.L. and Strand, M.R. (1997) Isolation and identification of a plasmatocyte-spreading peptide from the hemolymph of the lepidopteran insect Pseudoplusia includens. J. Biol. Chem. 272: 23440–23447.CrossRefGoogle Scholar
  48. Clarkson, J.M. and Charnley, A.K. (1996) New insights into the mechanisms of fungal pathogenesis in insects. Trends Microbiol. 4: 197–203.PubMedCrossRefGoogle Scholar
  49. Colonello N.A., Zufelato, M.S., Simoes, Z.L.P. and Bitondi, M.M.G. (2003) In vitro secretion of ecdysteroid-dependent proteins and of a 70 kDa subunit reactive to anti-prophenoloxidase serum by Apis mellifera integument. Apidologie 34: 377–388.CrossRefGoogle Scholar
  50. Crespo, R., Juarez, M.P. and Cafferata, L.F.R. (2000) Biochemical interaction between entomopathogenous fungi and their insect-host-like hydrocarbons. Mycologia 92: 528–536.CrossRefGoogle Scholar
  51. Dani, M.P., Richards, E.H. and Edwards, J.P. (2004) Venom from the pupal endoparasitoid, Pimpla hypochondriaca, increases the susceptibility of larval Lacanobia oleracea to the entomopathogens Bacillus cereus and Beauveria bassiana. J. Invertebr. Pathol. 86: 19–25.PubMedCrossRefGoogle Scholar
  52. Davidson, G., Phelps, K., Sunderland, K.D., Pell, J.K., Ball, B.V., Shaw, K.E. and Chandler, D. (2003) Study of temperature-growth interactions of entomopathogenic fungi with potential for control of Varroa destructor (Acari: Mesostigmata) using a nonlinear model of poikilotherm development. J. Appl. Microbiol. 94: 816–825.PubMedCrossRefGoogle Scholar
  53. De Gregorio, E., Spellman, P.T., Rubin, G.M. and Lemaitre, B. (2001) Genome-wide analysis of the Drosophila immune response by using oligonucleotide microarrays. Proc. Natl. Acad. Sci. U.S.A. 98: 12590–12595.PubMedCrossRefGoogle Scholar
  54. De Gregorio, E., Han, S.J., Lee, W.J., Baek, M.J., Osaki, T., Kawabata, S., Lee, B.L., Iwanaga, S., Lemaitre, B. and Brey, P.T. (2002a) An immune-responsive serpin regulates the melanization cascade in Drosophila. Dev. Cell. 3: 581–592.PubMedCrossRefGoogle Scholar
  55. De Gregorio, E., Spellman, P.T., Tzou, P., Rubin, G.M. and Lemaitre, B. (2002b) The Toll and Imd pathways are the major regulators of the immune response in Drosophila. EMBO J. 21: 2568–2579.PubMedCrossRefGoogle Scholar
  56. Despres, L., David, J.P. and Gallet, C. (2007) The evolutionary ecology of insect resistance to plant chemicals. Trends Ecol. Evol. 22: 298–307.PubMedCrossRefGoogle Scholar
  57. Devi, P.S., Prasad, Y.G., Chowdary, D.A., Rao, L.M. and Balakrishnan, K. (2003) Identification of virulent isolates of the entomopathogenic fungus Nomuraea rileyi (F) Samson for the management of Helicoverpa armigera and Spodoptera litura (identification of virulent isolates of N. rileyi). Mycopathologia. 156: 365–373.PubMedCrossRefGoogle Scholar
  58. Dimopoulos, G., Richman, A., Muller, H.M. and Kafatos, F.C. (1997) Molecular immune responses of the mosquito Anopheles gambiae to bacteria and malaria parasites. Proc. Natl. Acad. Sci. U.S.A. 94: 11508–11513.PubMedCrossRefGoogle Scholar
  59. Dowd, P.F. (1999) Relative inhibition of insect phenoloxidase by cyclic fungal metabolites from insect and plant pathogens. Nat. Toxins. 7: 337–341.PubMedCrossRefGoogle Scholar
  60. Drummond, J. and Pinnock, D.E. (1990) Aflatoxin production by entomopathogenic isolates of Aspergillus parasiticus and Aspergillus flavus. J. Invertebr. Pathol. 55: 332–336.PubMedCrossRefGoogle Scholar
  61. Duetting, P.S., Ding, H., Neufeld, J. and Eigenbrode, S.D. (2003) Plant waxy bloom on peas affects infection of pea aphids by Pandora neoaphidis. J. Invertebr. Pathol. 84: 149–158.PubMedCrossRefGoogle Scholar
  62. Durmus, Y., Buyukguzel, E., Terzi, B., Tunaz, H., Stanley, D. and Buyukguzel, K. (2008) Eicosanoids mediate melanotic nodulation reactions to viral infection in larvae of the parasitic wasp, Pimpla turionellae. J. Insect Physiol. 54: 17–24.PubMedCrossRefGoogle Scholar
  63. Eguchi, M., Itoh, M., Nishino, K., Shibata, H., Tanaka, T., Kamei-Hayashi, K. and Hara, S. (1994) Amino acid sequence of an inhibitor from the silkworm (Bombyx mori) hemolymph against fungal protease. J. Biochem. 115: 881–884.PubMedGoogle Scholar
  64. Eigenbrode, S.D. and Espelie, K.E. (1995) Effects of plant epicuticular lipids on insect herbivores. Ann. Rev. Entomol. 40: 171–194.CrossRefGoogle Scholar
  65. Eilenberg, J., Bresciani, J., Olesen, U. and Olson, L., (1995) Ultrastructural studies of secondary spore formation and discharge in the genus entomophthora. J. Invertebr. Pathol. 65: 179–185.CrossRefGoogle Scholar
  66. Ekengren, S. and Hultmark, D. (1999) Drosophila cecropin as an antifungal agent. Insect Biochem. Mol. Biol. 29: 965–972.PubMedCrossRefGoogle Scholar
  67. Eleftherianos, I., Gokcen, F., Felfoldi, G., Millichap, P.J., Trenczek, T.E., ffrench-Constant, R.H. and Reynolds, S. E. (2007) The immunoglobulin family protein hemolin mediates cellular immune responses to bacteria in the insect Manduca sexta. Cell. Microbiol. 9: 1137–11347.PubMedCrossRefGoogle Scholar
  68. Ericsson, J.D., Kabaluk, J.T., Goettel, M.S. and Myers, J.H. (2007) Spinosad interacts synergistically with the insect pathogen Metarhizium anisopliae against the exotic wireworms Agriotes lineatus and Agriotes obscurus (Coleoptera: Elateridae). J. Econ. Entomol. 100: 31–38.PubMedCrossRefGoogle Scholar
  69. Espelie, K. E. and Bernays, E. A. (1989) Diet-related difference in the cuticular lipids of Manduca sexta larvae. J. Chem. Ecol. 15: 2003–2018.CrossRefGoogle Scholar
  70. Fan, Y., Fang, W., Guo, S., Pei, X., Zhang, Y., Xiao, Y., Li, D., Jin, K., Bidochka, M. J. and Pei, Y. (2007) Increased insect virulence in Beauveria bassiana strains overexpressing an engineered chitinase. Appl. Environ. Microbiol. 73: 295–302.PubMedCrossRefGoogle Scholar
  71. Faraldo, A.C., Gregorio, E.A. and Lello, E. (2008) Morphological and quantitative aspects of nodule formation in hemolymph of the blowfly Chrysomya megacephala (Fabricius, 1794). Exp. Parasitol. 118: 372–377.PubMedCrossRefGoogle Scholar
  72. Fargues, J. and Remaudiere, G. (1977) Considerations on the specificity of entomopathogenic fungi. Mycopathologia 62: 31–37.CrossRefGoogle Scholar
  73. Feng, C.J. and Fu, W.J. (2004) Tissue distribution and purification of Prophenoloxidase in larvae of Asian Corn Borer, Ostrinia furnacalis Guenee (Lepidoptera: Pyralidae). Acta Bioch. Biophys. Sin. 36: 360–364.CrossRefGoogle Scholar
  74. Feng, M-G., Chen, C., Shang, S-W., Ying, S-H., Shen, Z-C. and Chen, X-X. (2007) Aphid dispersal flight disseminates fungal pathogens and parasitoids as natural control agents of aphids. Ecol. Entomol. 32: 97–104.CrossRefGoogle Scholar
  75. Ferguson, K.I. and Stiling, P. (1996) Non-additive effects of multiple natural enemies on aphid populations. Oecologia 108: 375–379.Google Scholar
  76. Foukas, L.C., Katsoulas, H.L., Paraskevopoulou, N., Metheniti, A., Lambropoulou, M. and Marmaras, V.J. (1998) Phagocytosis of Escherichia coli by insect hemocytes requires both activation of the Ras/mitogen-activated protein kinase signal transduction pathway for attachment and beta3 integrin for internalization. J. Biol. Chem. 273: 14813–14818.PubMedCrossRefGoogle Scholar
  77. Freitak, D., Wheat, C.W., Heckel, D.G. and Vogel, H. (2007) Immune system responses and fitness costs associated with consumption of bacteria in larvae of Trichoplusia ni. BMC Biol. 5: 56–68.PubMedCrossRefGoogle Scholar
  78. Fuentes-Contreras, E., Pell, J.K. and Niemeyer, H.M. (1998) Influence of host plant resistance at the third trophic level: interactions between parasitoids and entomopathogenic fungi of cereal aphids. Oecologia 117: 426–432.CrossRefGoogle Scholar
  79. Fuguet, R. and Vey, A. (2004) Comparative analysis of the production of insecticidal and melanizing macromolecules by strains of Beauveria spp.: in vivo studies. J. Invertebr. Pathol. 85: 152–167.PubMedCrossRefGoogle Scholar
  80. Furlong, M.J. and Groden, E. (2001) Evaluation of synergistic interactions between the Colorado potato beetle (Coleoptera: Chrysomelidae) pathogen Beauveria bassiana and the insecticides, imidacloprid, and cyromazine. J. Econ. Entomol. 94: 344–356.PubMedCrossRefGoogle Scholar
  81. Furlong, M.J. and Pell, J.K. (1996) Interactions between the fungal entomopathogen Zoophthora radicans Brefeld (Entomophthorales) and two hymenopteran parasitoids attacking the diamondback moth, Plutella xylostella L. J. Invertebr. Pathol. 68: 15–21.PubMedCrossRefGoogle Scholar
  82. Furlong, M.J. and Pell, J.K. (2000) Conflicts between a fungal entomopathogen, Zoophthora radicans, and two larval parasitoids of the diamondback moth. J. Invertebr. Pathol. 76: 85–94.PubMedCrossRefGoogle Scholar
  83. Furukawa, S., Tanaka, H., Nakazawa, H., Ishibashi, J., Shono, T. and Yamakawa, M. (1999) Inducible gene expression of moricin, a unique antibacterial peptide from the silkworm (Bombyx mori). Biochem. J. 340: 265–271.PubMedCrossRefGoogle Scholar
  84. Geetha, I. and Balaraman, K. (1999) Effect of entomopathogenic fungus, Beauveria bassiana on larvae of three species of mosquitoes. Indian J. Exp. Biol. 37: 1148–1150.PubMedGoogle Scholar
  85. Gillespie, J.P., Bateman, R. and Charnley, A.K. (1998) Role of cuticle-degrading proteases in the virulence of Metarhizium spp. for the desert locust, Schistocerca gregaria. J. Invertebr. Pathol. 71: 128–137.PubMedCrossRefGoogle Scholar
  86. Gillespie, J.P., Burnett, C. and Charnley, A.K. (2000) The immune response of the desert locust Schistocerca gregaria during mycosis of the entomopathogenic fungus, Metarhizium anisopliae var acridum. J. Insect Physiol. 46: 429–437.PubMedCrossRefGoogle Scholar
  87. Glinski, Z. and Buczek, K. (2003) Response of the Apoidea to fungal infections. Apiacta 38: 183–189.Google Scholar
  88. Golkar, L., LeBrun, R.A., Ohayon, H., Gounon, P., Papierok, B. and Brey, P.T. (1993) Variation of larval susceptibility to Lagenidium giganteum in three mosquito species. J. Invertebr. Pathol. 62: 1–8.PubMedCrossRefGoogle Scholar
  89. Green, P.W., Stevenson, P.C., Simmonds, M.S. and Sharma, H.C. (2003) Phenolic compounds on the pod-surface of pigeonpea, Cajanus cajan, mediate feeding behavior of Helicoverpa armigera larvae. J. Chem. Ecol. 29: 811–821.PubMedCrossRefGoogle Scholar
  90. Griffiths, D. W., Deighton, N., Birch, A. N. E., Patrian, B., Baur, R. and Stadler, E. (2001) Identification of glucosinolates on the leaf surface of plants from the Cruciferae and other closely related species. Phytochem. 57: 693–700.CrossRefGoogle Scholar
  91. Grossniklaus-Burgin, C. and Lanzrein, B. (1990) Endocrine interrelationship between the parasitoid Chelonus sp. and its host Trichoplusia ni. Arch. Insect Biochem. Physiol. 14: 201–216.PubMedCrossRefGoogle Scholar
  92. Hadley, N.F. (1991) Integumental lipids of plants and animals: comparative function and biochemistry. Adv. Lipid Res. 24: 303–320.PubMedGoogle Scholar
  93. Hajek, A.E. and Eastburn, C.C. (2003) Attachment and germination of Entomophaga maimaiga conidia on host and non-host larval cuticle. J. Invertebr. Pathol. 82: 12–22.PubMedCrossRefGoogle Scholar
  94. Hajek, A.E. and St.Leger, R.J. (1994) Interactions between fungal pathogens and insect hosts. Annu. Rev. Entomol. 39: 293–322.CrossRefGoogle Scholar
  95. Hara, S. and Yamakawa, M. (1995) Moricin, a novel type of antibacterial peptide isolated from the silkworm, Bombyx mori. J. Biol. Chem. 270: 29923–29927.PubMedCrossRefGoogle Scholar
  96. Hare, J.D. and Andreadis, T.G. (1983) Variation in the susceptibility of Leptinotarsa decemlineata (Coleoptera: Chrysomelidae) when reared on different host plants to the fungal pathogen Beauveria bassiana in the field and laboratory. Environ. Entomol. 12: 1892–1897.Google Scholar
  97. Harpaz, I., Kislev, N. and Zelcer, A. (1969) Electron-microscopic studies on hemocytes of the Egyptian cottonworm, Spodopteru littoralis (Boisduval) infected with a Nuclear-Polyhedrosis virus, as compared to noninfected hemocytes. J. Invertebr. Pathol. 14: 175–185.PubMedCrossRefGoogle Scholar
  98. Harri, S.A., Krauss, J. and Muller, C.B. (2008) Natural enemies act faster than endophytic fungi in population control of cereal aphids. J. Anim. Ecol. 77: 605–611.PubMedCrossRefGoogle Scholar
  99. Hartzer, K.L., Zhu, K.Y. and Baker, J.E. (2005) Phenoloxidase in larvae of Plodia interpunctella (Lepidoptera: Pyralidae): molecular cloning of the proenzyme cDNA and enzyme activity in larvae paralyzed and parasitized by Habrobracon hebetor (Hymenoptera: Braconidae). Arch. Insect Biochem. Physiol. 59: 67–79.PubMedCrossRefGoogle Scholar
  100. Hedengren-Olcott, M., Olcott, M.C., Mooney, D.T., Ekengren, S., Geller, B.L. and Taylor, B.J. (2004) Differential activation of the NF-kappaB-like factors Relish and Dif in Drosophila melanogaster by fungi and Gram-positive bacteria. J. Biol. Chem. 279: 21121–21127.PubMedCrossRefGoogle Scholar
  101. Hemmati, F., Pell, J.K., McCartney, A.H. and Deadman, M.L. (2001) Airborne concentrations of conidia of Erynia neoaphidis above cereal fields. Mycol. Res. 105: 485–489CrossRefGoogle Scholar
  102. Hibbett, D.S., Binder, M., Bischoff, J.F., Blackwell, M. (2007). A higher-level phylogenetic classification of the Fungi. Mycol. Res. 111: 509–547.CrossRefGoogle Scholar
  103. Higes, M., Garcia-Palencia, P., Martin-Hernandez, R. and Meana, A. (2007) Experimental infection of Apis mellifera honeybees with Nosema ceranae (Microsporidia). J. Invertebr. Pathol. 94: 211–217.PubMedCrossRefGoogle Scholar
  104. Hillyer, J.F., Schmidt, S.L. and Christensen, B.M. (2003) Hemocyte-mediated phagocytosis and melanization in the mosquito Armigeres subalbatus following immune challenge by bacteria. Cell Tissue Res. 313: 117–127.PubMedCrossRefGoogle Scholar
  105. Hiruma, K. and Riddiford, L.M. (1988) Granular phenoloxidase involved in cuticular melanization in the tobacco hornworm: regulation of its synthesis in the epidermis by juvenile hormone. Developmental Biol. 130: 87–97.CrossRefGoogle Scholar
  106. Hoffmann, J.A. (1995) Innate immunity of insects. Curr. Op. Immunol. 7: 4–10.CrossRefGoogle Scholar
  107. Hoffmann, J.A. and Reichhart, J.M. (2002) Drosophila innate immunity: an evolutionary perspective. Nat. Immunol. 3: 121–126.PubMedCrossRefGoogle Scholar
  108. Hoffmann, J.A., Reichhart, J.M. and Hetru, C. (1996) Innate immunity in higher insects. Curr. Opin. Immunol. 8: 8–13.PubMedCrossRefGoogle Scholar
  109. Hoffmann, J.A., Kafatos, F. C., Janeway, C. A. and Ezekowitz, R. A. (1999) Phylogenetic perspectives in innate immunity. Science 284: 1313–1318.PubMedCrossRefGoogle Scholar
  110. Hopkins, R.J., Birch, A.N.E., Griffiths, D.W., Baur, R., Stadler, E. and Mckinlay, R.G. (1997) Leaf surface compounds and the oviposition preference of the turnip root fly Delia floralis (Diptera: Anthomyiidae): The role of glucosinolate and non-glucosinolate compounds. J. Chem. Ecol. 23: 629–643.CrossRefGoogle Scholar
  111. Howard, K. (1993) Cuticular hydrocarbons and chemical communication, In: D.R. Nelson and D.W. Stanley-Samuelson (Eds.) Lipids: Chem, Biochem and Biol. University of Nebraska Press, pp. 179–226.Google Scholar
  112. Huang, C.Y., Chou, S.Y., Bartholomay, L.C., Christensen, B.M. and Chen, C.C. (2005) The use of gene silencing to study the role of dopa decarboxylase in mosquito melanization reactions. Insect Mol. Biol. 14: 237–44.PubMedCrossRefGoogle Scholar
  113. Hughes, W.O. and Boomsma, J.J. (2004) Let your enemy do the work: within-host interactions between two fungal parasites of leaf-cutting ants. Proc. Biol. Sci. 271: 104–106.CrossRefGoogle Scholar
  114. Hultmark, D. (2003) Drosophila immunity: paths and patterns. Curr. Opin. Immunol. 15: 12–19.PubMedCrossRefGoogle Scholar
  115. Humber, R.A. (2008) Evolution of pathogenicity in fungi. J. Invertebr. Pathol. 98: 262–266.PubMedCrossRefGoogle Scholar
  116. Inyang, E.N., Butt, T.M., Beckett, A. and Archer, S. (1999) The effect of crucifer epicuticular waxes and leaf extracts on the germination and virulence of Metarhizium anisopliae conidia. Mycol. Res. 103: 419–426.CrossRefGoogle Scholar
  117. Irving, P., Ubeda, J.M., Doucet, D., Troxler, L., Lagueux, M., Zachary, D., Hoffmann, J.A., Hetru, C. and Meister, M. (2005) New insights into Drosophila larval haemocyte functions through genome-wide analysis. Cell. Microbiol. 7: 335–350.PubMedCrossRefGoogle Scholar
  118. Jaenicke, E. and Decker, H. (2004) Functional changes in the family of type 3 copper proteins during evolution. Chem. Biochem. 5: 163–169.Google Scholar
  119. James, R.R. and Buckner, J.S. (2004) Lipids stimulate spore germination in the entomopathogenic ascomycete Ascosphaera aggregata. Mycopathologia 158: 293–302.PubMedCrossRefGoogle Scholar
  120. James, R.R., Buckner, J.S. and Freeman, T.P. (2003) Cuticular lipids and silverleaf whitefly stage affect conidial germination of Beauveria bassiana and Paecilomyces fumosoroseus. J. Invertebr. Pathol. 84: 67–74.PubMedCrossRefGoogle Scholar
  121. James, T.Y., Kauff, F., Schoch, C.L., Matheny, P.B. et al. (2006). Reconstructing the early evolution of Fungi using a six–gene phylogeny. Nature 403: 818–822.PubMedCrossRefGoogle Scholar
  122. Jenks, M.A. and Ashworth, E.N. (1999) Plant epicuticular waxes: function, production, and genetics. Horticultural Rev. 23: 1–68.Google Scholar
  123. Jermy, T. (1984) Evolution of insect/host plant relationships. Am. Nat. 124: 609–630.CrossRefGoogle Scholar
  124. Johnson, S.N., Gregory, P.J., Greenham, J.R., Zhang, X. and Murray, P.J. (2005) Attractive properties of an isoflavonoid found in white clover root nodules on the clover root weevil. J. Chem. Ecol. 31: 2223–2229.PubMedCrossRefGoogle Scholar
  125. Joshi, L., St Leger, R.J. and Bidochka, M.J. (1995) Cloning of a cuticle-degrading protease from the entomopathogenic fungus, Beauveria bassiana. FEMS Microbiol. Lett. 125: 211–217.PubMedCrossRefGoogle Scholar
  126. Joslyn, D.J. and Boucias, D.G. (1981) Isozyme differentiation among three pathotypes of the entomogenous fungus Nomuraea rileyi. Can. J. Microbiol. 27: 364–366.PubMedCrossRefGoogle Scholar
  127. Kalia, V., Chaudhari, S. and Gujar, G.T. (2001) Changes in haemolymph constituents of American bollworm, Helicoverpa armigera (Hubner), infected with Nucleopolyhedrovirus. Indian J. Exp. Biol. 39: 1123–1129.PubMedGoogle Scholar
  128. Kanost, M.R. (1999) Serine proteinase inhibitors in arthropod immunity. Dev. Comp. Immunol. 23: 291–301.PubMedCrossRefGoogle Scholar
  129. Kanost, M.R., Jiang, H. and Yu, X.Q. (2004) Innate immune responses of a lepidopteran insect, Manduca sexta. Immunol. Rev. 198: 97–105.PubMedCrossRefGoogle Scholar
  130. Kaplan, I., Halitschke, R., Kessler, A., Sardanelli, S. and Denno, R.F. (2008) Constitutive and induced defenses to herbivory in above- and belowground plant tissues. Ecology 89: 392–406.PubMedCrossRefGoogle Scholar
  131. Kawamoto, H. and Aizawa, K., 1986. Formation and regeneration of protoplasts from blastospores of an entomogenous fungus, Beauveria bassiana. Appl. Entomol. Zool. 21: 531–553.Google Scholar
  132. Kim, M.H., Joo, C.H., Cho, M.Y., Kwon, T.H., Lee, K.M., Natori, S., Lee, T.H. and Lee, B.L. (2000) Bacterial-injection-induced syntheses of N-beta-alanyldopamine and Dopa decarboxylase in the hemolymph of coleopteran insect, Tenebrio molitor larvae. Eur. J. Biochem. 267: 2599–2608.PubMedCrossRefGoogle Scholar
  133. Kiuchi, M., Yasui, H., Hayasaka, S. and Kamimura, M. (2003) Entomogenous fungus Nomuraea rileyi inhibits host insect molting by C22-oxidizing inactivation of hemolymph ecdysteroids. Arch. Insect. Biochem. Physiol. 52: 35–44.PubMedCrossRefGoogle Scholar
  134. Kleemann, J., Takahara, H., Stuber, K. and O’Connell, R. (2008) Identification of soluble secreted proteins from appressoria of Colletotrichum higginsianum by analysis of expressed sequence tags. Microbiology 154: 1204–1217.PubMedCrossRefGoogle Scholar
  135. Koella, J.C. and Sorense, F.L. (2002) Effect of adult nutrition on the melanization immune response of the malaria vector Anopheles stephensi. Med. Vet. Entomol. 16: 316–320.PubMedCrossRefGoogle Scholar
  136. Krasnoff, S.B., Sommers, C.H., Moon, Y.S., Donzelli, B.G., Vandenberg, J.D., Churchill, A.C. and Gibson, D.M. (2006) Production of mutagenic metabolites by Metarhizium anisopliae. J. Agric. Food Chem. 54: 7083–7088.PubMedCrossRefGoogle Scholar
  137. Krieger de Moraes, C., Schrank, A. and Vainstein, M.H. (2003) Regulation of extracellular chitinases and proteases in the entomopathogen and acaricide Metarhizium anisopliae. Curr. Microbiol. 46: 205–210.PubMedCrossRefGoogle Scholar
  138. Krishnan, N., Mohanan, M., Chaudhuri, N.A., Mitra, P., Saratchandra, B. and Roy, A.K. (2000) Role of 3, 4-dihydroxyphenyl alanine in the nodulation response of silkworm Bombyx mori L. to bacterial infection. Curr. Sci. 79: 1011–1016.Google Scholar
  139. Kumar, V., Singh, G.P., Kumar, V., Babu, A.M. and Datta, R.K. (1997) SEM study on the invasion of Nomuraea rileyi (Farlow) on silkworm, Bombyx mori Linn. causing green muscardine. Mycopathology 139: 141–144.CrossRefGoogle Scholar
  140. Kumar, V., Singh, G.P. and Babu, A.M. (2004) Surface ultrastructural studies on the germination, penetration and conidial development of Aspergillus flavus Link:Fries infecting silkworm, Bombyx mori Linn. Mycopathology 157: 127–135.CrossRefGoogle Scholar
  141. Labrosse, C., Eslin, P., Doury, G., Drezen, J.M. and Poirie, M. (2005) Haemocyte changes in D. Melanogaster in response to long gland components of the parasitoid wasp Leptopilina boulardi: a Rho-GAP protein as an important factor. J. Insect Physiol. 51: 161–170PubMedCrossRefGoogle Scholar
  142. Lacey, L.A. and Shapiro-Ilan, D.I. (2008) Microbial control of insect pests in temperate orchard systems: potential for incorporation into IPM. Annu. Rev. Entomol. 53: 121–144.PubMedCrossRefGoogle Scholar
  143. Lahtinen, M., Salminen, J.P., Kapari, L., Lempa, K., Ossipov, V., Sinkkonen, J., Valkama, E., Haukioja, E. and Pihlaja, K. (2004) Defensive effect of surface flavonoid aglycones of Betula pubescens leaves against first instar Epirrita autumnata larvae. J. Chem. Ecol. 30: 2257–2268.PubMedCrossRefGoogle Scholar
  144. Lai-Fook, J. (1966) The repair of wounds in the integument of insects. J. Insect. Physiol. 12: 195–226.CrossRefGoogle Scholar
  145. Lai, S.C., Chen, C.C. and Hou, R.F. (2002) Immunolocalization of prophenoloxidase in the process of wound healing in the mosquito Armigeres subalbatus (Diptera: Culicidae). J. Med. Entomol. 39: 266–274.PubMedCrossRefGoogle Scholar
  146. Lavine, M.D. and Strand, M.R. (2002) Insect hemocytes and their role in immunity. Insect Biochem. Mol. Biol. 32: 1295–1309.PubMedCrossRefGoogle Scholar
  147. Lecuona, R., Crespo, D. and La Rossa, F. (2007) Populational parameters of Spalangia endius walker (Hymenoptera: Pteromalidae) on pupae of Musca domestica L. (Diptera: Muscidae) treated with two strains of Beauveria bassiana (Bals.) Vuil. (Deuteromycetes). Neotrop. Entomol. 36: 537–541.PubMedCrossRefGoogle Scholar
  148. Lee, K.M., Lee, K.Y., Choi, H.W., Cho, M.Y., Kwon, T.H., Kawabata, S. and Lee, B.L. (2000) Activated phenoloxidase from Tenebrio molitor larvae enhances the synthesis of melanin by using a vitellogenin-like protein in the presence of dopamine. Eur. J. Biochem. 267: 3695–3703.PubMedCrossRefGoogle Scholar
  149. Lee, K.P., Cory, J.S., Wilson, K., Raubenheimer, D. and Simpson, S.J. (2006) Flexible diet choice offsets protein costs of pathogen resistance in a caterpillar. Proc. Biol. Sci. 273: 823–829.PubMedCrossRefGoogle Scholar
  150. Lee, M., Yoon, C.S., Yi, J., Cho, J.R. and Kim, H.S. (2005) Cellular immune responses and FAD-glucose dehydrogenase activity of Mamestra brassicae (Lepidoptera: Noctuidae) challenged with three species of entomopathogenic fungi. Physiol. Entomol. 30: 287–292.CrossRefGoogle Scholar
  151. Lee, Y.S., Yun, E.K., Jang, W.S., Kim, I., Lee, J.H., Park, S.Y., Ryu, K.S., Seo, S.J., Kim, C.H. and Lee, I.H. (2004) Purification, cDNA cloning and expression of an insect defensin from the great wax moth, Galleria mellonella. Insect Mol. Biol. 13: 65–72.PubMedCrossRefGoogle Scholar
  152. Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J.M. and Hoffmann, J.A. (1996) The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86: 973–983.PubMedCrossRefGoogle Scholar
  153. Lemaitre, B., Reichhart, J.M. and Hoffmann, J.A. (1997) Drosophila host defense: differential induction of antimicrobial peptide genes after infection by various classes of microorganisms. Proc. Natl. Acad. Sci. U.S.A. 94: 14614–14619.PubMedCrossRefGoogle Scholar
  154. Levashina, E.A., Ohresser, S., Lemaitre, B. and Imler, J.L. (1998) Two distinct pathways can control expression of the gene encoding the Drosophila antimicrobial peptide metchnikowin. J. Mol. Biol. 278: 515–527.PubMedCrossRefGoogle Scholar
  155. Lord, J.C. and Fukuda, T., 1988. An ultrastructural study of the invasion of Culex quinquefasciatus larvae by Leptolegnia chapmanii (Oomycetes: Saprolegniales). Mycopathology 104: 67–73.Google Scholar
  156. Lowenberger, C. (2001) Innate immune response of Aedes aegypti. Insect Biochem. Mol. Biol. 31: 219–229.PubMedCrossRefGoogle Scholar
  157. Manners, J.G. (1966) Assessment of germination, In: M.F. Madelin (ed.) The Fungus Spore. Butterworths, London, pp. 165–174.Google Scholar
  158. Marmaras, V.J., Charalambidis, N.D. and Zervas, C.G. (1996) Immune response in insects: the role of phenoloxidase in defense reactions in relation to melanization and sclerotization. Arch. Insect Biochem. Physiol. 31: 119–133.PubMedCrossRefGoogle Scholar
  159. Meekes, E.T.M., van Voorst, S., Joosten, N.N., Fransen, J.J. and van Lenteren, J.C. (2000) Persistence of the fungal whitefly pathogen, Aschersonia aleyrodis, on three different plant species. Mycol. Res. 104: 1234–1240.CrossRefGoogle Scholar
  160. Meikle, W.G., Mercadier, G., Holst, N., Nansen, C. and Girod, V. (2007) Duration and spread of an entomopathogenic fungus, Beauveria bassiana (Deuteromycota: Hyphomycetes), used to treat Varroa mites (Acari: Varroidae) in honey bee (Hymenoptera: Apidae) hives. J. Econ. Entomol. 100: 1–10.PubMedCrossRefGoogle Scholar
  161. Metheniti, A., Paraskevopoulou, N., Lambropoulou, M. and Marmaras, V.J. (2001) Involvement of FAK/Src complex in the processes of Escherichia coli phagocytosis by insect hemocytes. FEBS Lett. 496: 55–59.PubMedCrossRefGoogle Scholar
  162. Mewis, I., Ulrich, C. and Schnitzler, W.H. (2002) The role of glucosinolates and their hydrolysis products in oviposition and host-plant finding by cabbage webworm, Hellula undalis. Entomol. Exp. Appl. 105: 129–139.CrossRefGoogle Scholar
  163. Mikunthan, G. and Manjunatha, M. (2006) Fusarium semitectum, a potential mycopathogen against thrips and mites in chilli, Capsicum annuum. Commun. Agric. Appl. Biol. Sci. 71: 449–463.PubMedGoogle Scholar
  164. Miller, C.D., Rangel, D., Braga, G.U., Flint, S., Kwon, S.I., Messias, C.L., Roberts, D.W. and Anderson, A.J. (2004) Enzyme activities associated with oxidative stress in Metarhizium anisopliae during germination, mycelial growth, and conidiation and in response to near-UV irradiation. Can. J. Microbiol. 50: 41–49.PubMedCrossRefGoogle Scholar
  165. Miller, J.S., Howard, R.W., Rana, R.L., Tunaz, H. and Stanley, D.W. (1999) Eicosanoids mediate nodulation reactions to bacterial infections in adults of the cricket, Gryllus assimilis. J. Insect. Physiol. 45: 75–83.PubMedCrossRefGoogle Scholar
  166. Modgil, R. and Mehta, U. (1997) Effect of Callosobruchus chinensis (Bruchid) infestation on antinutritional factors in stored legumes. Plant. Foods Hum. Nutr. 50: 317–323.PubMedCrossRefGoogle Scholar
  167. Morrow, B.J., Boucias, D.G. and Heath, M.A. (1989) Loss of virulence in an isolate of an entomopathogenic fungus, Nomuraea rileyi after serial in vitro passage. J. Econ. Entomol. 82: 404–407.Google Scholar
  168. Moshitzky, P., Fleischmann, I., Chaimov, N., Saudan, P., Klauser, S., Kubli, E. and Applebaum, S.W. (1996) Sex-peptide activates juvenile hormone biosynthesis in the Drosophila melanogaster corpus allatum. Arch. Insect Biochem. Physiol. 32: 363–374.PubMedCrossRefGoogle Scholar
  169. Muerrle, T.M., Neumann, P., Dames, J.F., Hepburn, H.R. and Hill, M.P. (2006) Susceptibility of adult Aethina tumida (Coleoptera: Nitidulidae) to entomopathogenic fungi. J. Econ. Entomol. 99: 1–6.PubMedCrossRefGoogle Scholar
  170. Murad, A.M., Laumann, R.A., Lima Tde, A., Sarmento, R.B., Noronha, E.F., Rocha, T.L., Valadares-Inglis, M. C. and Franco, O. L. (2006) Screening of entomopathogenic Metarhizium anisopliae isolates and proteomic analysis of secretion synthesized in response to cowpea weevil (Callosobruchus maculatus) exoskeleton. Comp. Biochem. Physiol. C. Toxicol. Pharmacol. 142: 365–370.PubMedCrossRefGoogle Scholar
  171. Nadeau, M.P., Dunphy, G.B. and Boisvert, J.L. (1996) Development of Erynia conica (Zygomycetes: Entomophthorales) on the cuticle of the adult black flies Simulium rostratum and Simulium decorum (Diptera: Simuliidae). J. Invertebr. Pathol. 68: 50–58.PubMedCrossRefGoogle Scholar
  172. Nahar, P., Ghormade, V. and Deshpande, M.V. (2004) The extracellular constitutive production of chitin deacetylase in Metarhizium anisopliae: possible edge to entomopathogenic fungi in the biological control of insect pests. J. Invertebr. Pathol. 85: 80–88.PubMedCrossRefGoogle Scholar
  173. Nam, K.S., Jo, Y.S., Kim, Y.H., Hyun, J.W. and Kim, H.W. (2001) Cytotoxic activities of acetoxyscirpenediol and ergosterol peroxide from Paecilomyces tenuipes. Life Sci. 69: 229–237.PubMedCrossRefGoogle Scholar
  174. Nappi, A.J. and Ottaviani, E. (2000) Cytotoxicity and cytotoxic molecules in invertebrates. Bioessays 22: 469–80.PubMedCrossRefGoogle Scholar
  175. Nelson, D.R. (1993) Methyl-branched lipids in insects, In: D.R. Nelson and D.W. Stanley-Samuelson (eds.) Lipids: Chemistry, Biochemistry and Biology. University of Nebraska Press, Lincoln, pp. 271–316.Google Scholar
  176. Nielsen, C., Keena, M. and Hajek, A.E. (2005) Virulence and fitness of the fungal pathogen Entomophaga maimaiga in its host Lymantria dispar, for pathogen and host strains originating from Asia, Europe, and North America. J. Invertebr. Pathol. 89: 232–242.PubMedCrossRefGoogle Scholar
  177. Onfore, B.S., Gonzalez, P.R., Messias, C.L., Azevedo, J.L. and de Barros, N.M. (2002) LC50 of the peptide produced by the entomopathogenic fungus Nomuraea rileyi (Farlow) Samson active against third instar larvae of Anticarsia gemmatalis (Lep.: Noctuidae). Brazilian Arch. Biol. Technol. 45: 269–275.Google Scholar
  178. Palli, S.R., Ladd, T.R., Tomkins, W.L., Shu, S., Ramaswamy, S.B., Tanaka, Y., Arif, B. and Retnakaran, A. (2000) Choristoneura fumiferana entomopoxvirus prevents metamorphosis and modulates juvenile hormone and ecdysteroid titers. Insect Biochem. Mol. Biol. 30: 869–876.PubMedCrossRefGoogle Scholar
  179. Pendland, J.C. and Boucias, D.G. (1998) Characterization of monoclonal antibodies against cell wall epitopes of the insect pathogenic fungus, Nomuraea rileyi: differential binding to fungal surfaces and cross-reactivity with host hemocytes and basement membrane components. Eur. J. Cell Biol. 75: 118–127.PubMedCrossRefGoogle Scholar
  180. Pendland, J.C. and Boucias, D.G. (2000) Comparative analysis of the binding of antibodies prepared against the insect Spodoptera exigua and against the mycopathogen Nomuraea rileyi. J. Invertebr. Pathol. 75: 107–116.PubMedCrossRefGoogle Scholar
  181. Pendland, J.C., Hung, S.Y. and Boucias, D.G. (1993) Evasion of host defense by in vivo-produced protoplast-like cells of the insect mycopathogen Beauveria bassiana. J. Bacteriol. 175: 5962–5969.PubMedGoogle Scholar
  182. Poprawski, T.J. and Jones, W.J. (2001) Host plant effects on activity of the mitosporic fungi Beauveria bassiana and Paecilomyces fumosoroseus against two populations of Bemisia whiteflies (Homoptera: Aleyrodidae). Mycopathologia 151: 11–20.PubMedCrossRefGoogle Scholar
  183. Poprawski, T.J., Greenberg, S.M. and Ciomperlik, M.A. (2000) Effect of host plant on Beauveria bassiana- and Paecilomyces fumosoroseus-induced mortality of Trialeurodes vaporariorum (Homoptera: Aleyrodidae). Environ. Entomol. 29: 1048–1053.CrossRefGoogle Scholar
  184. Posada, F. and Vega, F.E. (2005) Establishment of the fungal entomopathogen Beauveria bassiana (Ascomycota: Hypocreales) as an endophyte in cocoa seedlings (Theobroma cacao). Mycologia. 97: 1195–1200.PubMedCrossRefGoogle Scholar
  185. Posada, F., Aime, M.C., Peterson, S.W., Rehner, S.A. and Vega, F.E. (2007) Inoculation of coffee plants with the fungal entomopathogen Beauveria bassiana (Ascomycota: Hypocreales). Mycol. Res. 111: 748–757.PubMedCrossRefGoogle Scholar
  186. Purwar, J.P. and Sachan, G.C. (2006) Synergistic effect of entomogenous fungi on some insecticides against Bihar hairy caterpillar Spilarctia obliqua (Lepidoptera: Arctiidae). Microbiol. Res. 161: 38–42.PubMedCrossRefGoogle Scholar
  187. Qazi, S.S. and Khachatourians, G.G. (2008) Addition of exogenous carbon and nitrogen sources to aphid exuviae modulates synthesis of proteases and chitinase by germinating conidia of Beauveria bassiana. Arch. Microbiol. 189, 589–596.PubMedCrossRefGoogle Scholar
  188. Qin, H., Welker, D.L. and Youssef, N.N. (1993) Isolation and characterization of a linear plasmid from the entomopathogenic fungus Ascosphaera apis. Plasmid 29: 19–30.PubMedCrossRefGoogle Scholar
  189. Quesada-Moraga, E. and Vey, A. (2004) Bassiacridin, a protein toxic for locusts secreted by the entomopathogenic fungus Beauveria bassiana. Mycol. Res. 108: 441–452.PubMedCrossRefGoogle Scholar
  190. Ramoska, W.A. and Todd, T. (1985) Variation in efficacy and viability of Beauveria bassiana in the chinch bug (Hemiptera: Lygaeidae) as a result of feeding on selected host plants. Environ. Entomol. 14: 146–148.Google Scholar
  191. Rao, Y.K., Tsou, C.H. and Tzeng, Y.M. (2006) Antioxidants enhanced production of destruxin E from cultivation of Metarhizium anisopliae. App. Microbiol. Biotechnol. 73: 519–524.CrossRefGoogle Scholar
  192. Renwick, J.A.A., Radke, C.D., Sachdev-Gupta, K. and Städler, E. (1992) Leaf surface chemicals stimulating oviposition by Pieris rapae (Lepidoptera: Pieridae) on cabbage. Chemoecology 3: 33–38.CrossRefGoogle Scholar
  193. Renwick, J., Daly, P., Reeves, E.P. and Kavanagh, K. (2006) Susceptibility of larvae of Galleria mellonella to infection by Aspergillus fumigatus is dependent upon stage of conidial germination. Mycopathologia 161: 377–384.PubMedCrossRefGoogle Scholar
  194. Roberts, D.W., Gupta, S. and St.Leger, R.J. (1992) Metabolite production by entomopathogenic fungi. Pesquisa agropecuária Brasileira 27: 325–347.Google Scholar
  195. Roda, A.L., Oldham, N.J., Svatos, A. and Baldwin, I.T. (2003) Allometric analysis of the induced flavonols on the leaf surface of wild tobacco (Nicotiana attenuata). Phytochem. 62: 527–536.CrossRefGoogle Scholar
  196. Roditakis, E., Couzin, I.D., Franks, N.R. and Charnley, A.K. (2008) Effects of Lecanicillium longisporum infection on the behaviour of the green peach aphid Myzus persicae. J. Insect Physiol. 54: 128–136.PubMedCrossRefGoogle Scholar
  197. Rosengaus, R.B., Cornelisse, T., Guschanski, K. and Traniello, J.F. (2007) Inducible immune proteins in the dampwood termite Zootermopsis angusticollis. Naturwissenschaften. 94: 25–33.PubMedCrossRefGoogle Scholar
  198. Rosenheim, J.A. (1998) Higher-order predators and the regulation of insect herbivore populations. Annu. Rev. of Entomol. 43: 421–447.CrossRefGoogle Scholar
  199. Roxstrom-Lindquist, K., Terenius, O. and Faye, I. (2004) Parasite-specific immune response in adult Drosophila melanogaster: a genomic study. EMBO Rep. 5: 207–212.PubMedCrossRefGoogle Scholar
  200. Roy, H.E. and Pell, J.K. (2000) Interactions between entomopathogenic fungi and other natural enemies: Implications for biological control. Biocontrol Sci. Technol. 10: 737–752.CrossRefGoogle Scholar
  201. Roy, H.E., Pell, J.K., Clark, S.J. and Alderson, P.G. (1998) Implications of predator foraging on aphid pathogen dynamics. J. Invertebr. Pathol. 71: 236–247.PubMedCrossRefGoogle Scholar
  202. Roy, H.E., Pell, J.K. and Alderson, P.G. (2001) Targeted dispersal of the aphid pathogenic fungus Erynia neoaphidis by the aphid predator Coccinella septempunctata. Biocontrol. Sci. Technol. 11, 99–110.CrossRefGoogle Scholar
  203. Roy, H.E., Pell, J.K. and Alderson, P.G. (2002) Effect of Erynia neoaphidis infection and coccinellid foraging on the spatial distribution of aphids on plants. J. Invertebr. Pathol. 81: 127–129.PubMedCrossRefGoogle Scholar
  204. Roy, H.E., Steinkraus, D.C., Eilenberg, J., Hajek, A.E. and Pell, J.K. (2006) Bizarre interactions and endgames: entomopathogenic fungi and their arthropod hosts. Annu. Rev. Entomol. 51: 331–357.PubMedCrossRefGoogle Scholar
  205. Rozas-Dennis, G.S. and Cazzaniga, N.J. (2000) Effects of Triatoma virus (TrV) on the fecundity and moulting of Triatoma infestans (Hemiptera: Reduviidae). Ann. Trop. Med. Parasitol. 94: 633–641.PubMedGoogle Scholar
  206. Safavi, S.A., Shah, F.A., Pakdel, A.K., Reza Rasoulian, G., Bandani, A.R. and Butt, T.M. (2007) Effect of nutrition on growth and virulence of the entomopathogenic fungus Beauveria bassiana. FEMS Microbiol Lett. 270: 116–23.PubMedCrossRefGoogle Scholar
  207. Salehzadeh, A., Tavacol, P. and Mahjub, H. (2007) Bacterial, fungal and parasitic contamination of cockroaches in public hospitals of Hamadan, Iran. J. Vector Borne Dis. 44: 105–110.PubMedGoogle Scholar
  208. Samson, R.A. (1974) Paecilomyces and some allied hyphomycetes. Stud. Mycol. 6: 80–85.Google Scholar
  209. Samuels, R.I. and Paterson, I.C. (1995) Cuticle degrading proteases from insect moulting fluid and culture filtrates of entomopathogenic fungi. Comp. Biochem. Physiol. Biochem. Mol. Biol. 110: 661–669.CrossRefGoogle Scholar
  210. Santos, A.V., de Oliveira, B.L. and Samuels, R.I. (2007) Selection of entomopathogenic fungi for use in combination with sub-lethal doses of imidacloprid: perspectives for the control of the leaf-cutting ant Atta sexdens rubropilosa Forel (Hymenoptera: Formicidae). Mycopathologia 163: 233–240.PubMedCrossRefGoogle Scholar
  211. Satoh, D., Horii, A., Ochiai, M. and Ashida, M. (1999) Prophenoloxidase-activating enzyme of the silkworm, Bombyx mori. Purification, characterization, and cDNA cloning. J. Biol. Chem. 274: 7441–7453.PubMedCrossRefGoogle Scholar
  212. Schmid-Hempel, P. (2005) Evolutionary ecology of insect immune defenses. Annu. Rev. Entomol. 50: 529–551.PubMedCrossRefGoogle Scholar
  213. Scholte, E.J., Knols, B.G., Samson, R. A. and Takken, W. (2004) Entomopathogenic fungi for mosquito control: a review. J. Insect Sci. 4, 19–43.PubMedGoogle Scholar
  214. Scholte, E. J., Knols, B. G. and Takken, W. (2006) Infection of the malaria mosquito Anopheles ga­mbiae with the entomopathogenic fungus Metarhizium anisopliae reduces blood feeding and fecundity. J. Invertebr. Pathol. 91: 43–49.PubMedCrossRefGoogle Scholar
  215. Schuhmann, B., Seitz, V., Vilcinskas, A. and Podsiadlowski, L. (2003) Cloning and expression of g­allerimycin, an antifungal peptide expressed in immune response of greater wax moth larvae, Galleria mellonella. Arch. Insect Biochem. Physiol. 53: 125–133.PubMedCrossRefGoogle Scholar
  216. Screen, S.E., Hu, G. and St.Leger, R.J. (2001) Transformants of Metarhizium anisopliae sf. anisopliae overexpressing chitinase from Metarhizium anisopliae sf. acridum show early induction of native chitinase but are not altered in pathogenicity to Manduca sexta. J. Invertebr. Pathol. 78: 260–266.PubMedCrossRefGoogle Scholar
  217. Seibt, U., Kasang, G. and Wickler, W. (2000) Suggested pharmacophagy of the African bushhopper Phymateus leprosus (Fabricius) (Pyrgomorphidae, Orthoptera). Z Naturforsch [C] 55: 442–448.Google Scholar
  218. Shah, F.A., Wang, C.S. and Butt, T.M. (2005) Nutrition influences growth and virulence of the insect-pathogenic fungus Metarhizium anisopliae. FEMS Microbiol. Lett. 251: 259–266.PubMedCrossRefGoogle Scholar
  219. Shah, P.A. and Pell, J.K. (2003) Entomopathogenic fungi as biological control agents. Appl. Microbiol. Biotechnol. 61: 413–423.PubMedGoogle Scholar
  220. Shapiro, D.I., Jackson, M., Reilly, C.C. and Hotchiss, M.W. (2004) Effects of combining ento­mopathogenic fungi or bacterium with entomopathogenic nematodes on mortality of Curculio caryae (Coleoptera: Curculionidae). Biol. Control. 30, 119–126.CrossRefGoogle Scholar
  221. Sharma, P.R., Sharma, O.P. and Saxena, B.P. (2007) Effect of sweet flag rhizome oil (Acorus calamus) on hemogram and ultrastructure of hemocytes of the tobacco armyworm, Spodoptera litura (Lepidoptera: Noctuidae). Micron 39: 544–551.PubMedCrossRefGoogle Scholar
  222. Shikata, M., Shibata, H., Sakurai, M., Sano, Y., Hashimoto, Y. and Matsumoto, T. (1998) The ec­dysteroid UDP-glucosyltransferase gene of Autographa californica nucleopolyhedrovirus alters the moulting and metamorphosis of a non-target insect, the silkworm, Bombyx mori (Lepidoptera, Bombycidae). J. Gen. Virol. 79: 1547–1551.PubMedGoogle Scholar
  223. Shim, S.H., Swenson, D.C., Gloer, J.B., Dowd, P.F. and Wicklow, D.T. (2006) Penifulvin A: a se­squiterpenoid-derived metabolite containing a novel dioxa[5,5,5,6]fenestrane ring system from a fungicolous isolate of Penicillium griseofulvum. Org. Lett. 8: 1225–1228.PubMedCrossRefGoogle Scholar
  224. Shin, S.W., Bian, G. and Raikhel, A.S. (2006) A toll receptor and a cytokine, Toll5A and Spz1C, are involved in toll antifungal immune signaling in the mosquito Aedes aegypti. J. Biol. Chem. 281: 39388–39395.PubMedCrossRefGoogle Scholar
  225. Sideri, M., Tsakas, S., Markoutsa, E., Lampropoulou, M. and Marmaras, V.J. (2007) Innate immunity in insects: surface-associated dopa decarboxylase-dependent pathways regulate phagocytosis, nodulation and melanization in medfly haemocytes. Immunology 123: 528–537.PubMedCrossRefGoogle Scholar
  226. Smith, K.E., Wall, R. and French, N.P. (2000) The use of entomopathogenic fungi for the control of parasitic mites, Psoroptes spp. Vet Parasitol. 92: 97–105.PubMedCrossRefGoogle Scholar
  227. Smith-Kielland, I., Dornish, J.M., Malterud, K.E., Hvistendahl, G., Rùmming, C., Bùckman, O.C., Kolsaker, P., Stenstrùm, Y. and Nordal, A. (1996) Cytotoxic triterpenoids from the leaves of Euphorbia pulcherrima. Planta Medica. 64: 322–325.CrossRefGoogle Scholar
  228. Solter, L.F., Siegel, J.P., Pilarska, D.K. and Higgs, M.C. (2002) The impact of mixed infection of three species of microsporidia isolated from the gypsy moth, Lymantria dispar L. (Lepidoptera: Lymantriidae). J. Invertebr. Pathol. 81: 103–113.PubMedCrossRefGoogle Scholar
  229. Sosa-Gomez, D.R., Boucias, D.G. and Nation, J.L. (1997) Attachment of Metarhizium anisopliae to the southern green stink bug Nezara viridula cuticle and fungistatic effect of cuticular lipids and aldehydes. J. Invertebr. Pathol. 69: 31–39.PubMedCrossRefGoogle Scholar
  230. Staudt, M. and Lhoutellier, L. (2007) Volatile organic compound emission from holm oak infested by gypsy moth larvae: evidence for distinct responses in damaged and undamaged leaves. Tree Physiol. 27: 1433–1440.PubMedCrossRefGoogle Scholar
  231. Steinkraus, D.C. (2006) Factors affecting transmission of fungal pathogens of aphids. J. Invertebr. Pathol. 92, 125–131.PubMedCrossRefGoogle Scholar
  232. St.Leger, R.J., Cooper, R.M. and Charnley, A.K. (1987) Distribution of chymoelastases and trypsin-like enzymes in five species of entomopathogenic deuteromycetes. Arch. Biochem. Biophys. 258: 123–131.PubMedCrossRefGoogle Scholar
  233. St.Leger, R.J., Cooper, R.M. and Charnley, A.K. (1993) Analysis of aminopeptidase and dipeptidylpeptidase IV from the entomopathogenic fungus Metarhizium anisopliae. J. Gen. Microbiol. 139: 237–243.PubMedGoogle Scholar
  234. St.Leger, R.J., Joshi, L., Bidochka, M.J., Rizzo, N.W. and Roberts, D.W. (1996) Biochemical characterization and ultrastructural localization of two extracellular trypsins produced by Metarhizium anisopliae in infected insect cuticles. Appl. Environ. Microbiol. 62: 1257–1264.PubMedGoogle Scholar
  235. St.Leger, R.J., Joshi, L. and Roberts, D.W. (1997) Adaptation of proteases and carbohydrates of sa­prophytic, phytopathogenic and entomopathogenic fungi to the requirements of their ecological niches. Microbiol. 143: 1983–1992.CrossRefGoogle Scholar
  236. St.Leger, R.J., Joshi, L. and Roberts, D. (1998) Ambient pH is a major determinant in the expr­ession of cuticle-degrading enzymes and hydrophobin by Metarhizium anisopliae. Appl. Environ. Microbiol. 64: 709–713.PubMedGoogle Scholar
  237. Strack, D., Fester, T., Hause, B., Schliemann, W. and Walter, M.H. (2003) Arbuscular mycorrhiza: biological, chemical and molecular aspects. J. Chem. Ecol. 29: 1955–1979.PubMedCrossRefGoogle Scholar
  238. Sung, G.-H., Hywel-Jones, N.L., Sung, J.-M., Luangsa-ard, J.J., Shrestha, B., Spatafora, J.W. (2007). Phylogenetic classification of Cordyceps and the clavicipitaceous fungi. Studies in Mycology 57: 5–59.PubMedCrossRefGoogle Scholar
  239. Suzuki, M. and Tanaka, T. (2007) Development of Meteorus pulchricornis and regulation of its no­ctuid host, Pseudaletia separata. J. Insect Physiol. 53: 1072–1078.PubMedCrossRefGoogle Scholar
  240. Talaei-Hassanloui, R., Kharazi-pakdel, A., Goettel, M. S., Little, S. and Mozaffari, J. (2007) G­ermination polarity of Beauveria bassiana conidia and its possible correlation with virulence. J. Invertebr. Pathol. 94: 102–107.PubMedCrossRefGoogle Scholar
  241. Tanaka, H., Yamamoto, M., Moriyama, Y., Yamao, M., Furukawa, S., Sagisaka, A., Nakazawa, H., Mori, H. and Yamakawa, M. (2005) A novel Rel protein and shortened isoform that differentially regulate antibacterial peptide genes in the silkworm Bombyx mori. Biochem. Biophys. Acta. 1730: 10–21.PubMedCrossRefGoogle Scholar
  242. Teetor-Barsch, G.H. and Roberts, D.W. (1983) Entomogenous Fusarium species. Mycopathologia 84: 3–16.PubMedCrossRefGoogle Scholar
  243. Thomas, M B. and Read, A.F. (2007) Can fungal biopesticides control malaria? Nat. Rev. Microbiol. 5: 377–383.PubMedCrossRefGoogle Scholar
  244. Thompson, S.R., Brandenburg, R.L. and Roberson, G.T. (2007) Entomopathogenic fungi detection and avoidance by mole crickets (Orthoptera: Gryllotalpidae). Environ. Entomol. 36: 165–172.PubMedCrossRefGoogle Scholar
  245. Tian, L. and Feng, M.G. (2006) Evaluation of the time-concentration-mortality responses of Plutella xylostella larvae to the interaction of Beauveria bassiana with a nereistoxin analogue insecticide. Pest Manag. Sci. 62: 69–76.PubMedCrossRefGoogle Scholar
  246. Toister-Achituv, M. and Faktor, O. (1997) Transcriptional analysis and promoter activity of the Spodoptera littoralis multicapsid nucleopolyhedrovirus ecdysteroid UDP-glucosyltransferase gene. J. Gen. Virol. 78: 487–491.PubMedGoogle Scholar
  247. Ton, J., D’Alessandro, M., Jourdie, V., Jakab, G., Karlen, D., Held, M., Mauch-Mani, B. and Turlings, T.C. (2007) Priming by airborne signals boosts direct and indirect resistance in maize. Plant J. 49: 16–26.PubMedCrossRefGoogle Scholar
  248. Torrado-Leon, E., Montoya-Lerma, J. and Valencia-Pizo, E. (2006) Sublethal effects of Beauveria bassiana (Balsamo) Vuillemin (Deuteromycotina: Hyphomycetes) on the whitefly Bemisia tabaci (Ge­nnadius) (Hemiptera: Aleyrodidae) under laboratory conditions. Mycopathologia 162: 411–419.PubMedCrossRefGoogle Scholar
  249. Tounou, A.K., Kooyman, C., Douro-Kpindou, O.K. and Poehling, H.M. (2008) Interaction between Paranosema locustae and Metarhizium anisopliae var. acridum, two pathogens of the desert locust, Schistocerca gregaria under laboratory conditions. J. Invertebr. Pathol. 97: 203–210.PubMedCrossRefGoogle Scholar
  250. Traniello, J.F., Rosengaus, R.B. and Savoie, K. (2002) The development of immunity in a social insect: evidence for the group facilitation of disease resistance. Proc. Natl. Acad. Sci. U.S.A. 99: 6838–6842.PubMedCrossRefGoogle Scholar
  251. Tunaz, H. (2006) Eicosanoid biosynthesis inhibitors influence mortality of Pieris brassicae larvae co-injected with fungal conidia. Arch. Insect Biochem. Physiol. 63: 93–100.PubMedCrossRefGoogle Scholar
  252. van Dam, N.M. and Poppy, G.M. (2008) Why plant volatile analysis needs bioinformatics-detecting signal from noise in increasingly complex profiles. Plant Biol. (Stuttg.) 10: 29–37.CrossRefGoogle Scholar
  253. van den Ende, G. and Linskens, H.F. (1974) Cutinolytic Enzymes in Relation to Pathogenesis. Annu. Rev. Phytopathol. 12, 247–258CrossRefGoogle Scholar
  254. van Frankenhuyzen, K., Nystrom, C. and Liu, Y. (2007) Vertical transmission of Nosema fumiferanae (Microsporidia: Nosematidae) and consequences for distribution, post-diapause emergence and dispersal of second-instar larvae of the spruce budworm, Choristoneura fumiferana (Clem.) (Lepidoptera: Tortricidae). J. Invertebr. Pathol. 96: 173–182.PubMedCrossRefGoogle Scholar
  255. Vass, E., Nappi, A.J. and Carton, Y. (1993) Alterations in the activities of tyrosinase, N-acetyltransferase, and tyrosine aminotransferase in immune reactive larvae of Drosophila melanogaster. Dev. Comp. Immunol. 17: 109–118.PubMedCrossRefGoogle Scholar
  256. Vega, F.E., Dowd, P.F., McGuire, M.R., Jackson, M.A. and Nelsen, T.C. (1997) In vitro effects of secondary plant compounds on germination of blastospores of the entomopathogenic fungus Paecilomyces fumosoroseus (Deuteromycotina: Hyphomycetes). J. Invertebr. Pathol. 70: 209–213.PubMedCrossRefGoogle Scholar
  257. Vega, F.E., Posada, F., Catherine Aime, M., Pava-Ripoll, M., Infante, F. and Rehner, S.A. (2008) Entomopathogenic fungal endophytes. Biol. Control. 46: 72–82.CrossRefGoogle Scholar
  258. Venugopal, K.J., Janarthanan, S. and Ignacimuthu, S. (2000) Resistance of legume seeds to the bruchid, Callosobruchus maculatus: metabolites relationship. Indian J. Exp. Biol. 38: 471–46.PubMedGoogle Scholar
  259. Vey, A., Matha, V. and Dumas, C. (2002) Effects of the peptide mycotoxin destruxin E on insect haemocytes and on dynamics and efficiency of the multicellular immune reaction. J. Invertebr. Pathol. 80: 177–187.PubMedCrossRefGoogle Scholar
  260. Vilcinskas, A., Jegorov, A., Landa, Z., Gotz, P. and Matha, V. (1999) Effects of beauverolide L and cyclosporin A on humoral and cellular immune response of the greater wax moth, Galleria mellonella. Comp. Biochem. Physiol. C. Pharmacol. Toxicol. Endocrinol. 122: 83–92.PubMedCrossRefGoogle Scholar
  261. Vu, V.H., Hong, S.I. and Kim, K. (2007) Selection of entomopathogenic fungi for aphid control. J. Biosci Bioeng. 104: 498–505.PubMedCrossRefGoogle Scholar
  262. Wang, C. and St Leger, R.J. (2006) A collagenous protective coat enables Metarhizium anisopliae to evade insect immune responses. Proc. Natl. Acad. Sci. U.S.A. 103: 6647–6652.PubMedCrossRefGoogle Scholar
  263. Wang, C. and St.Leger, R.J. (2007) A scorpion neurotoxin increases the potency of a fungal insecticide. Nat. Biotechnol. 25: 1455–1456.PubMedCrossRefGoogle Scholar
  264. Wang, C., Typas, M.A. and Butt, T.M. (2002) Detection and characterisation of pr1 virulent gene deficiencies in the insect pathogenic fungus Metarhizium anisopliae. FEMS Microbiol. 213: 251–255.CrossRefGoogle Scholar
  265. Wang, C., Skrobek, A. and Butt, T.M. (2003) Concurrence of losing a chromosome and the ability to produce destruxins in a mutant of Metarhizium anisopliae. FEMS Microbiol. Lett. 226: 373–378.PubMedCrossRefGoogle Scholar
  266. Wang, C., Skrobek, A., and Butt, T. M. (2004) Investigations on the destruxin production of the entomopathogenic fungus Metarhizium anisopliae. J. Invertebr. Pathol. 85: 168–174.PubMedCrossRefGoogle Scholar
  267. Wang, L., Huang, J., You, M., Guan, X. and Liu, B. (2007) Toxicity and feeding deterrence of crude toxin extracts of Lecanicillium (Verticillium) lecanii (Hyphomycetes) against sweet potato whitefly, Bemisia tabaci (Homoptera: Aleyrodidae). Pest. Manag. Sci. 63: 381–387.PubMedCrossRefGoogle Scholar
  268. Watts, P., Kittakoop, P., Veeranondha, S., Wanasith, S., Thongwichian, R., Saisaha, P., Intamas, S. and Hywel-Jones, N. L. (2003) Cytotoxicity against insect cells of entomopathogenic fungi of the genera Hypocrella (anamorph Aschersonia): possible agents for biological control. Mycol. Res. 107: 581–586.PubMedCrossRefGoogle Scholar
  269. Wei, J., Wang, L., Zhu, J., Zhang, S., Nandi, O.I. and Kang, L. (2007) Plants attract parasitic wasps to defend themselves against insect pests by releasing hexenol. PLoS One 2: 852–859.CrossRefGoogle Scholar
  270. Weissenberg, M., Levy, A., Svoboda, J.A. and Ishaaya, I. (1998) The effect of some Solanum steroidal alkaloids and glycoalkaloids on larvae of the red flour beetle, Tribolium castaneum, and the tobacco hornworm, Manduca sexta. Phytochem. 47: 203–209.CrossRefGoogle Scholar
  271. Wilson, R., Chen, C. and Ratcliffe, N.A. (1999) Innate immunity in insects: the role of multiple, endogenous serum lectins in the recognition of foreign invaders in the cockroach, Blaberus discoidalis. J. Immunol. 162: 1590–1596.PubMedGoogle Scholar
  272. Wink, M. (2003) Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochem. 64: 3–19.CrossRefGoogle Scholar
  273. Wood, W. and Jacinto, A. (2007) Drosophila melanogaster embryonic haemocytes: masters of multitasking. Nat. Rev. Mol. Cell. Biol. 8: 542–551.PubMedCrossRefGoogle Scholar
  274. Wraight, S.P., Carruthers, R.I., Bradley, C.A., Jaronski, S.T., Lacey, L.A., Wood, P. and Galaini-Wraight, S. (1998) Pathogenicity of the entomopathogenic fungi paecilomyces spp. and Beauveria bassiana against the silverleaf whitefly, Bemisia argentifolii. J. Invertebr. Pathol. 71: 217–226.PubMedCrossRefGoogle Scholar
  275. Xu, W., Huang, F.S., Hao, H.X., Duan, J.H. and Qiu, Z.W. (2006) Two serine proteases from Anopheles dirus haemocytes exhibit changes in transcript abundance after infection of an incompatible rodent malaria parasite, Plasmodium yoelii. Vet. Parasitol. 139: 93–101.PubMedCrossRefGoogle Scholar
  276. Yamakawa, M. and Tanaka, H. (1999) Immune proteins and their gene expression in the silkworm, Bombyx mori. Dev. Comp. Immunol. 23: 281–289.PubMedCrossRefGoogle Scholar
  277. Yanagawa, A., Yokohari, F. and Shimizu, S. (2008) Defense mechanism of the termite, Coptotermes formosanus Shiraki, to entomopathogenic fungi. J. Invertebr. Pathol. 97: 165–170.PubMedCrossRefGoogle Scholar
  278. Zattau, W.C. and McInnis, T., Jr. (1987) Life cycle and mode of infection of Leptolegnia chapmanii (Oomycetes) parasitizing Aedes aegypti. J. Invertebr. Pathol. 50: 134–145.PubMedCrossRefGoogle Scholar
  279. Zayed, A., Omayma, K. and Abol-Ela, S.M. (2002) Enzymatic changes and cytotoxic effects of Metarhizium anisopliae fungal extracts on the Egyptian cotton leaf worm Spodoptera littoralis (SL 96) cell line. J. Egypt. Soc. Parasitol. 32: 855–865.PubMedGoogle Scholar
  280. Zhioua, E., Browning, M., Johnson, P. W., Ginsberg, H. S. and LeBrun, R. A. (1997) Pathogenicity of the entomopathogenic fungus Metarhizium anisopliae (Deuteromycetes) to Ixodes scapularis (Acari: Ixodidae). J. Parasitol. 83: 815–818.PubMedCrossRefGoogle Scholar
  281. Zhu, Y., Johnson, T.J., Myers, A.A. and Kanost, M.R. (2003a) Identification by subtractive suppression hybridization of bacteria-induced genes expressed in Manduca sexta fat body. Insect Biochem. Mol. Biol. 33: 541–559.PubMedCrossRefGoogle Scholar
  282. Zhu, Y., Wang, Y., Gorman, M.J., Jiang, H. and Kanost, M.R. (2003b) Manduca sexta serpin-3 regulates prophenoloxidase activation in response to infection by inhibiting prophenoloxidase-activating proteinases. J. Biol. Chem. 278: 46556–46564.PubMedCrossRefGoogle Scholar
  283. Zuckerman, B.M., Dicklow, M.B., Coles, G.C. and Marban-Mendoza, N. (1989) Loss of virulence of the endoparasitic fungus Drechmeria coniospora in culture. J. Nematol. 21: 135–137.PubMedGoogle Scholar
  284. Zufelato M.S., Lourenco, A.P., Sioes, Z.L.P., Jorge, J.A. and Bitondi, M.M.G. (2004) Phenoloxidase activity in Apis mellifera honey bee pupae, and ecdysteroid-dependent expression of the prophenoloxidase mRNA. Insect Biochem. Mol. Biol. 34: 1257–1268.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Shalom W. Applebaum
    • 1
  • Dana Ichelczik
    • 1
  • Richard A. Humber
    • 2
  1. 1.Laboratory of Insect PhysiologyHebrew UniversityRehovotIsrael
  2. 2.ARS Biological Integrated Management Research UnitUSDAIthacaUSA

Personalised recommendations