Parasitism is a Strong Force Shaping the Fungus-Growing Ant–Microbe Symbiosis

Chapter
Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE, volume 17)

Abstract

Parasitism is a biological stress that is relevant to organisms in every niche ­imaginable. There is ample evidence documenting the effects parasites have on individual hosts and on host populations, yet there has been little work done to review the importance or frequency of how a parasite influences the organisms it’s host interacts with – it’s host’s immediate community. There is, however, a shift occurring in the way scientists think about mutualisms, and people are beginning to move away from considering interactions that occur in isolation, or strictly a binary manner and toward considering symbioses as interactions embedded in a more complex community (Althoff et al., 2004, 2005; Currie et al., 1999a, b; Little and Currie, 2008). In this chapter, I discuss parasitic and mutualistic symbioses as important determinants of organismal diversity, radiation, and fitness, and I use the fungus-growing ant–microbe symbiosis as a model system in which to study ways that parasites shape the ecological and evolutionary dynamics of mutualistic organisms. I conclude with the hypothesis that mutualism may be a viable solution to parasitism and, in turn, discuss the possibility that parasitism may in fact contribute to evolutionary stability of persistent mutualisms.

Keywords

Natural Enemy Fungus Garden Black Yeast Mutualistic Bacterium Nectar Robber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Agrios, G.N. (1997) Plant Pathology, Academic Press, San Diego, CA.Google Scholar
  2. Althoff, D.M., Segraves, K.A. and Sparks, J.P. (2004) Characterizing the interaction between the bogus yucca moth and yuccas: do bogus yucca moths impact yucca reproductive success? Oecologia 140: 321–327.PubMedCrossRefGoogle Scholar
  3. Althoff, D.M., Segraves, K.A. and Pellmyr, O. (2005) Community context of an obligate mutualism: pollinator and florivore effects on Yucca filamentosa. Ecology 86: 905–913.CrossRefGoogle Scholar
  4. Axelrod, R. and Hamilton, W.D. (1981) The evolution of cooperation. Science 211: 1390–1396.PubMedCrossRefGoogle Scholar
  5. Bronstein, J.L. (2001) The exploitation of mutualisms. Ecol. Lett. 4: 277–287.CrossRefGoogle Scholar
  6. Buchholz, R. (1995) Female choice, parasite load and male ornamentation in wild turkeys. Animal Behav. 50: 929–943.CrossRefGoogle Scholar
  7. Bull, J.J. and Rice, W.R. (1991) Distinguishing mechanisms for the evolution of cooperation. J. Theor. Biol. 149: 63–74.PubMedCrossRefGoogle Scholar
  8. Cavanaugh, C.M. (1983) Symbiotic chemoautotrophic bacteria in marine invertebrates from sulphide-rich habitats. Nature 302: 58–61.CrossRefGoogle Scholar
  9. Cavanaugh, C.M., Levering, P.R., Maki, J.S., Mitchell, R. and Lidstrom, M.E. (1987) Symbiosis of methylotrophic bacteria and deep-sea mussels. Nature 325: 346–348.CrossRefGoogle Scholar
  10. Compton, S. G., and Ware, A.B. (1991) Ants disperse the elaiosome-bearing eggs of an African stick insect. Psyche 98: 207–213.CrossRefGoogle Scholar
  11. Currie, C.R. (2001a) A community of ants, fungi, and bacteria: a multilateral approach to studying symbiosis. Annu. Rev. Microbiol. 55: 357–380.PubMedCrossRefGoogle Scholar
  12. Currie, C.R. (2001b) Ants, agriculture, and antibiotics: a quadripartite system, In: J. Seckbach (ed.) Symbiosis: Mechanism and Model Systems. Kluwer, Dordrecht, pp. 685–699.Google Scholar
  13. Currie, C.R. (2001c) Prevalence and impact of a virulent parasite on a tripartite mutualism. Oecologia 128: 99–106.CrossRefGoogle Scholar
  14. Currie, C.R. and Stuart, A.E. (2001) Weeding and grooming of pathogens in agriculture by ants. Proc. R. Soc. London Ser. B, Biol. 268: 1033–1039.CrossRefGoogle Scholar
  15. Currie, C.R., Mueller, U.G. and Malloch, D. (1999a) The agricultural pathology of ant fungus gardens. Proc. Natl. Acad. Sci. U.S.A. 96: 7998–8002.PubMedCrossRefGoogle Scholar
  16. Currie, C.R., Scott, J.A., Summerbell, R.C. and Malloch, D. (1999b) Fungus-growing ants use antibiotic-producing bacteria to control garden parasites. Nature 398: 701–704.CrossRefGoogle Scholar
  17. Currie, C.R., Bot, A.N.M. and Boomsma, J.J. (2003a) Experimental evidence of a tripartite mutualism: bacteria protect ant fungus gardens from specialized parasites. Oikos 101: 91–102.CrossRefGoogle Scholar
  18. Currie, C.R., Wong, B., Stuart, A.E., Schultz, T.R., Rehner, S.A., Mueller, U.G., Sung, G.H., Spatafora, J.W. and Straus, N.A. (2003b) Ancient tripartite coevolution in the attine ant-microbe symbiosis. Science 299: 386–388.PubMedCrossRefGoogle Scholar
  19. Currie, C.R., Poulsen, M., Mendenhall, J., Boomsma, J.J. and Billen, J. (2006) Coevolved crypts and exocrine glands support mutualistic bacteria in fungus-growing ants. Science 311: 81–83.PubMedCrossRefGoogle Scholar
  20. de Hoog, G.S., Guarro, J., Gene, J. and Figueras, M.J. (2000) Atlas of Clinical Fungi. Centraalbureau voor Schimmelcultures, Urecht, The Netherlands.Google Scholar
  21. Fernandez-Marin, H., Zimmerman, J.K., Wcislo, W.T. and Rehner, S.A. (2005) Colony foundation, nest architecture and demography of a basal fungus-growing ant, Mycocepurus smithii (Hymenoptera, Formicidae). J. Nat. Hist. 39: 1735–1743.CrossRefGoogle Scholar
  22. Gerardo, N.M., Mueller, U.G. and Currie, C.R. (2006) Complex host-pathogen coevolution in the Apterostigma fungus-growing ant-microbe symbiosis. BMC Evol. Biol. 6: 88.PubMedCrossRefGoogle Scholar
  23. Hamilton, W.D. 1980. Sex versus non-sex versus parasite. Oikos 35: 282–290.CrossRefGoogle Scholar
  24. Hamilton, W.D. and Zuk, M. (1982) Heritable true fitness and bright birds – a role for parasites. Science 218: 384–387.PubMedCrossRefGoogle Scholar
  25. Hart, A.G. and Ratnieks, F.L.W. (2001) Task partitioning, division of labour and nest compartmentalisation collectively isolate hazardous waste in the leafcutting ant Atta cephalotes. Behav. Ecol. Sociobiol. 49: 387–392.CrossRefGoogle Scholar
  26. Hart, A.G. and Ratnieks, F.L.W. (2002) Waste management in the leaf-cutting ant Atta colombica. Behav. Ecol. 13: 224–231.CrossRefGoogle Scholar
  27. Hölldobler, B. and Wilson, E.O. (1990) The Ants, Belknap, Harvard University Press, Cambridge, MA.Google Scholar
  28. Hooper, L.V. (2004) Bacterial contributions to mammalian gut development. Trends Microbiol. 12: 129–134.PubMedCrossRefGoogle Scholar
  29. Hooper, L.V., Midtvedt, T. and Gordon, J.I. (2002) How host-microbial interactions shape the nutrient environment of the mammalian intestine. Ann. Rev. Nutr. 22: 283–307.CrossRefGoogle Scholar
  30. Horiike, T., Hamada, K., Kanaya, S. and Shinozawa, T. (2001) Origin of eukaryotic cell nuclei by symbiosis of Archaea in bacteria is revealed by homology-hit analysis. Nat. Cell. Biol. 3: 210–214.PubMedCrossRefGoogle Scholar
  31. Inouye, D.W. (1980) The ecology of nectar robbing, In: B. Bentley and T.S. Elias (eds.) The Biology of Nectaries. Columbia University Press, New York, pp. 153–174.Google Scholar
  32. Janeway, C.A., Travers, P., Walport, M. and Shlomchik, M. (2004) Immunobiology: The Immune System in Health and Disease. Garland Science, New York.Google Scholar
  33. Letourneau, D.K. (1990) Code of ant-plant mutualism broken by parasite. Science 248: 215–217.PubMedCrossRefGoogle Scholar
  34. Li, J.Y. and Wu, C.F. (2005) New symbiotic hypothesis on the origin of eukaryotic flagella. Naturwissenschaften 92: 305–309.PubMedCrossRefGoogle Scholar
  35. Little, A.E.F. (2007) Parasitism as a selective force shaping the ecology and evolution of an ancient ant-fungal-bacterial mutualism. Bacteriology. University of Wisconsin-Madison, Madison, WI, pp. 130.Google Scholar
  36. Little, A.E.F. and Currie, C.R. (2007) Symbiotic complexity: discovery of a fifth symbiont in the attine ant–microbe symbiosis. Biol. Lett. 3: 501–504.PubMedCrossRefGoogle Scholar
  37. Little, A.E.F. and Currie, C.R. (2008) Black yeast symbionts compromise the efficiency of antibiotic defenses in fungus-growing ants. Ecology 89: 1216–1222.PubMedCrossRefGoogle Scholar
  38. Little, A.E.F., Murakami, T., Mueller, U.G. and Currie, C.R. (2003) The infrabuccal pellet piles of fungus-growing ants. Naturwissenschaften 90: 558–562.PubMedCrossRefGoogle Scholar
  39. Little, A.E.F., Murakami, T., Mueller, U.G. and Currie, C.R. (2006) Defending against parasites: fungus-growing ants combine specialized behaviours and microbial symbionts to protect their fungus gardens. Biol. Lett. 2: 12–16.PubMedCrossRefGoogle Scholar
  40. Mailton, W.D. (1980) Sex versus non-sex versus parasite. Oikos 35: 282–290.CrossRefGoogle Scholar
  41. Margulis, L., and Fester, R. (1991) Symbiosis as a Source of Evolutionary Innovation, MIT Press, Cambridge, MA.Google Scholar
  42. Margulis, L., and Sagan, D. (2002) Acquiring Genomes: A Theory of the Origins of Species, Basic Books, New York.Google Scholar
  43. Margulis, L., Dolan, M.F. and Guerrero, R. (2000) The chimeric eukaryote: origin of the nucleus from the karyomastigont in amitochondriate protists. Proc. Natl. Acad. Sci. U.S.A. 97: 6954–6959.PubMedCrossRefGoogle Scholar
  44. Marr, D.L., Brock, M.T. and Pellmyr, O. (2001) Coexistence of mutualists and antagonists: exploring the impact of cheaters on the yucca-yucca moth mutualism. Oecologia 128: 454–463.CrossRefGoogle Scholar
  45. McFall-Ngai, M.J. (2002) Unseen forces: the influence of bacteria on animal development. Dev. Biol. 242: 1–14.PubMedCrossRefGoogle Scholar
  46. Mereschowsky, C. (1905) Uber Natur und Ursprung der Chromatophoren im Pflanzenreiche. Europ. J. Phycol. 34: 287–295.Google Scholar
  47. Moran, N.A. and Telang, A. (1998) The evolution of bacteriocyte-associated endosymbionts in insects. Bioscience 48: 295–304.CrossRefGoogle Scholar
  48. Mueller, U.G., Rehner, S.A. and Schultz, T.R. (1998) The evolution of agriculture in ants. Science 281: 2034–2038.PubMedCrossRefGoogle Scholar
  49. Mueller, U.G., Schultz, T.R., Currie, C.R., Adams, R.M.M. and Malloch, D. (2001) The origin of the attine ant-fungus mutualism. Quart. Rev. Biol. 76: 169–197.PubMedCrossRefGoogle Scholar
  50. Munkacsi, A.B., Pan, J.J., Villesen, P., Mueller, U.G., Blackwell, M. and McLaughlin, D.J. (2004) Convergent coevolution in the domestication of coral mushrooms by fungus-growing ants. Proc. R. Soc. London, Ser. B, Biol. Sci. 271: 1777–1782.CrossRefGoogle Scholar
  51. Palmer, T.M., Stanton, M.L., Young, T.P., Goheen, J.R., Pringle, R.M. and Karban, R. (2008) Breakdown of an ant-plant mutualism follows the loss of large herbivores from an African savanna. Science 319: 192–195.PubMedCrossRefGoogle Scholar
  52. Pirozynski, K.A., and Malloch, D.W. (1975) The origin of land plants: a matter of mycotrophism. BioSystems 6: 153–164.PubMedCrossRefGoogle Scholar
  53. Poulsen, M., Bot, A.N.M., Currie, C.R. and Boomsma, J.J. (2002) Mutualistic bacteria and a possible trade-off between alternative defence mechanisms in Acromyrmex leaf-cutting ants. Insectes Sociaux 49: 15–19.CrossRefGoogle Scholar
  54. Poulsen, M., Bot, A.N.M., Currie, C.R., Nielsen, M.G. and Boomsma, J.J. (2003) Within-colony transmission and the cost of a mutualistic bacterium in the leaf-cutting ant Acromyrmex octospinosus. Funct. Ecol. 17: 260–269.CrossRefGoogle Scholar
  55. Rakoff-Nahoum, S., Paglino, J., Eslami-Varzaneh, F., Edberg, S. and Medzhitov, R. (2004) Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 118: 229–241.PubMedCrossRefGoogle Scholar
  56. Reynolds, H.T. and Currie, C.R. (2004) Pathogenicity of Escovopsis weberi: The parasite of the attine ant-microbe symbiosis directly consumes the ant-cultivated fungus. Mycologia 96: 955–959.PubMedCrossRefGoogle Scholar
  57. Taerum, S.J., Cafaro, M.J., Little, A.E., Schultz, T.R. and Currie, C.R. (2007) Low host-pathogen specificity in the leaf-cutting ant-microbe symbiosis. Proc. Biol. Sci. 274: 1971–1978.PubMedCrossRefGoogle Scholar
  58. Thompson, J.N. (1994) The Coevolutionary Process, The University of Chicago Press, Chicago, IL.Google Scholar
  59. Van der Heijden, M.G.A., Klironomos, J.N., Ursic, M., Moutoglis, P., Streitwolf-Engel, R., Boller, T., Wiemken, A., and Sanders, I.R. (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396: 69–72.CrossRefGoogle Scholar
  60. Weber, N.A. (1972) Gardening Ants: The Attines, American Philosophical Society, Philadelphia, PA.Google Scholar
  61. Wilson, E.B. (1928) The Cell in Development and Heredity, Macmillan, New York.Google Scholar
  62. Wilson, E.O. (1971) The Insect Societies, Belknap, Harvard University Press, Cambridge, MA.Google Scholar
  63. Yu, D.W. and Pierce, N.E. (1998) A castration parasite of an ant-plant mutualism. Proc. R. Soc. London, Ser. B, Biol. Sci. 265: 375–382.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Intellectual Property GroupQuarles and Brady LLPMadisonUSA

Personalised recommendations