Biosynthesis of Aromatic Amino Acids and Its Regulation

  • G. N. Cohen


Glucose is an aliphatic substance, and so the synthesis of phenylalanine, tyrosine and tryptophan from it presents the biochemist with the problem of the biosynthesis of the aromatic nucleus.


Shikimic Acid Tryptophan Biosynthesis Chorismate Mutase Shikimate Dehydrogenase Shikimate Kinase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Selected References

The Common Pathway

  1. See the reviews by K. M. Herrmann and J. Pittard, pp. 301–350 in Amino acids: Biosynthesis and Genetic Regulation (K. M. Herrmann and R. Somerville, eds.) 453pp. Addison-Wesley Publishing Company, Reading, Mass. USA (1983).Google Scholar
  2. B. D. Davis, Adv. Enzymol., 16, 247–312 (1955).Google Scholar
  3. D. B. Sprinson, Adv. Carbohydrate Chem., 15, 235–270 (1961).CrossRefGoogle Scholar
  4. R. Jossek, J. Bongaerts and G. A. Sprenger, FEMS Microbiol. Lett., 202, 145–148 (2001).PubMedGoogle Scholar
  5. M. Hartmann, T. R. Schneider, A. Pfeil, G. Heinrich, W. N. Lipscomb and G. H. Braus, Proc. Natl. Acad. Sci. USA, 100, 862–867 (2003).PubMedCrossRefGoogle Scholar
  6. J. Benach, I. Lee, W. Edstrom, A. P. Kuzin, Y. Chiang, T. B. Acton, G. T. Montelione, and J. F. Hunt, J. Biol. Chem., 278, 19176–19182 (2003).Google Scholar

Biosynthesis of Phenylalanine and Tyrosine

  1. D. Christendat and J. Turnbull, Biochemistry, 35, 4468–4479 (1996).PubMedCrossRefGoogle Scholar
  2. G. Pohnert, S. Zhang, A. Husain, D. B. Wilson and B. Ganem, Biochemistry, 38, 12212–12217 (1999).PubMedCrossRefGoogle Scholar

DKFP Pathway: Aspartate as a Precursor of Aromatic Amino Acids

  1. R. H. White, Biochemistry, 43, 7618–7627(2004).PubMedCrossRefGoogle Scholar
  2. I. Porat, M. Sieprawska-Lupa, Q. Teng, F. J. Bohanon, R. H. White and W. B. Whitman, Molecular Microbiology, 62, 1117–1131 (2006).PubMedCrossRefGoogle Scholar


  1. M. P. Dixon, R. N. Pau, G. J. Howlett, D. E. Dunstan, W. H. Sawyer and B. E. Davidson, J. Biol. Chem., 277, 23186–23192 (2002).PubMedCrossRefGoogle Scholar

Tryptophan Synthesis

  1. C. Yanofsky, Bioessays., 6, 133–137 (1987).PubMedCrossRefGoogle Scholar
  2. M. Wilmanns, J. P. Priestle, T. Niermann and J. N. Jansonius, J. Mol Biol., 223, 477–507 (1992).PubMedCrossRefGoogle Scholar
  3. E. W. Miles, Methods in Enzymology, 49, 127–186 (1979).Google Scholar
  4. E. W. Miles, Methods in Enzymology, 64, 93–172 (1991).Google Scholar
  5. C. G. Hyde, S. A. Ahmed, E. A. Padlan, E. W. Miles and D. R. Davies, J. Biol. Chem., 263, 17857–17871 (1988).Google Scholar
  6. V. Kulik, M. Weyand, R Seidel, D. Niks, D. Arac, M. F. Dunn and I. Schlichting, J. Mol. Biol., 324, 677–690 (2002).PubMedCrossRefGoogle Scholar

Tryptophan Repressor: Functional Aspects

  1. G. N. Cohen and F. Jacob, Compt. Rend., 248, 3490–3492 (1959).Google Scholar
  2. G. Zubay D. E. Morse, W. J. Schrenk and J. H. M. Miller, Proc. Natl. Acad. Sci. USA, 69, 1100–1103 (1972).PubMedCrossRefGoogle Scholar
  3. P. H. Pouwels and J. Van Rotterdam, Proc. Natl. Acad. Sci. USA, 69, 1786–1790 (1972).PubMedCrossRefGoogle Scholar
  4. J. K. Rose and C. Yanofsky, Proc. Natl. Acad. Sci. USA, 71, 3134–3138 (1974).PubMedCrossRefGoogle Scholar


  1. F. Lingens and W. Goebel, Hoppe-Seylers Z. Physiol. Chem., 342, 1–12 (1965).PubMedCrossRefGoogle Scholar
  2. J. Liu, N. Quinn, G. A. Berchtold and C. T. Walsh, Biochemistry, 29, 1417–1425 (1990).PubMedCrossRefGoogle Scholar
  3. F. Rusznak, J. Liu, N. Quinn, G. A. Berchtold and C. T. Walsh, Biochemistry, 29, 1425–1435 (1990).CrossRefGoogle Scholar
  4. M. S. Nahlik, T. J. Brickman. A. Ozenberger and M. A. McIntosh, J. Bacteriol., 171, 184–190 (1989).Google Scholar
  5. C. A. Shaw-Reid, N. L. Kelleher, H. C. Losey, A. M. Gehring, C. Berg and C. T. Walsh, Chem.Biol., 6, 385–400 (1999).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Netherlands 2010

Authors and Affiliations

  1. 1.Institut PasteurParisFrance

Personalised recommendations