Methanogens and Methylotrophs

  • G. N. Cohen


The Italian physicist Volta must be credited for observation that the bubbles arising at the surface of Lago Maggiore were inflammable (1776). Thirty years later, this combustible air was identified as methane (CH4), whose microbial origin was established only in 1868.


Anaerobic Oxidation Formyl Group Methanol Dehydrogenase Methanosarcina Barkeri Methylococcus Capsulatus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Selected References


  1. Wolfe, R. S. “An historical overview of methanogenesis,” In: J. G. Ferry (ed.), Methanogenesis, ecology, physiology, biochemistry, and genetics, pp. 1–32, Chapman and Hall, New York. (1993)Google Scholar
  2. Wasserfallen, A. and R. S. WolfeIn: Proc. Royal Swed. Acad. Sci. Nobel Symposium, Vol. 1991, pp. 145–155 (1994)Google Scholar
  3. Mukhopadhyay, B., E. F. Johnson & R. S. Wolfe Appl. Environ. Microbiol., 65: 5059–5065 (1999)PubMedGoogle Scholar

Biosynthesis of the Methanogenic Cofactors

  1. R.H.White, Vitam Horm., 61, 299–337 (2001)PubMedCrossRefGoogle Scholar

Biosynthesis of Methanofuran

  1. R.H.White, Biochemistry, 27, 4415–4420 (1988)PubMedCrossRefGoogle Scholar
  2. A.Gorkovenko, M.F.Roberts and R.H.White, Appl Environ Microbiol., 60, 1249–1253 (1994)PubMedGoogle Scholar

Biosynthesis of Methanopterin

  1. R.H.White, Biochemistry, 35, 3447–3456 (1996)PubMedCrossRefGoogle Scholar

Biosynthesis of Coenzyme M

  1. M. Graupner, H. Xu and R.H. White, J.Bacteriol., 182, 4862–4867 (2000)PubMedCrossRefGoogle Scholar
  2. D.E.Graham, M.Graupner, H.Xu and R. H.White, Eur.J.Biochem., 268, 5176–5188 (2001)PubMedCrossRefGoogle Scholar
  3. E. L. Wise, D. E. Graham, R. H. White and I. Rayment, J Biol Chem., 278, 45858–4586363 (2003)PubMedCrossRefGoogle Scholar

Biosynthesis of 7-Mercaptoheptanoylthreoninephosphate (Coenzyme B)

  1. D.M.Howell, K.Harich, H.Xu and R.H.White, Biochemistry. 37, 10108–10117 (1988)CrossRefGoogle Scholar
  2. B.Solow and R.H.White, Arch Biochem Biophys. 345, 299–304 (1997)PubMedCrossRefGoogle Scholar

Biosynthesis of Coenzyme F420

  1. M.Graupner and R.H.White, Biochemistry. 40, 10859–10872 (2001)PubMedCrossRefGoogle Scholar
  2. M.Graupner, H.Xu and R.H. White, Biochemistry,41,3754–3761 (2002)PubMedCrossRefGoogle Scholar
  3. D.E.Graham, M.Graupner and R. H.White, Arch Microbiol, 180, 455–464 (2003)PubMedCrossRefGoogle Scholar
  4. M.Graupner, H.Xu and R.H. White, Biochemistry, 42, 9771–9778 (2003)PubMedCrossRefGoogle Scholar
  5. F.Forouhar, M.Abashidze, H.Xu, L.L. Grochowski, J. Seetharaman, M.Hussain, A. Kuzin, Y.Chen, W. Zhou, R. Xiao,T.B. Acton, G.T Montelione, A. Galinier, R.H. White and L.Tong, J Biol Chem., 283, 11832–11840 (2008)PubMedCrossRefGoogle Scholar

Biosynthesis of Factor F430

  1. A.Pfaltz, A.Kobelt, R.Hüster and R.K.Thauer, Eur J Biochem., 170, 459–467 (1987)PubMedCrossRefGoogle Scholar

Anaerobic Oxidation of Methane

  1. E.J.Beal, C.H.House and V.J.Orphan, Science, 325,184–187(2009)PubMedCrossRefGoogle Scholar
  2. A.A.Raghoebarsing, A.Pol,K.T.van de Pas-Schoonen, A.J.Smolders, K.F.Ettwig,W.I.Rijpstra,S.Schouten, J.S.Damsté, H.J. Op den Camp, M.S. Jetten and M.Strous, Nature. 440, 918–921 (2006)PubMedCrossRefGoogle Scholar


  1. H. Cypionka and O. Meyer, Arch. Microbiol 135: 293–298 (1983)CrossRefGoogle Scholar
  2. J.G.Ferry, Ann.Rev.Biochem., 49, 305–333 (1995)Google Scholar
  3. A. M.Henstra, J.Sipma, A.Rinzema and A.J.M.Stams, Current Opinion in Biotechnology, 18, 200–206 (2007)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Netherlands 2010

Authors and Affiliations

  1. 1.Institut PasteurParisFrance

Personalised recommendations