Skip to main content

Testing in Aquatic Ecotoxicology: What Are the Scientific Conditions for the ‘3R’ Concept?

  • Chapter
  • First Online:
Book cover Regulating Chemical Risks

Abstract

In this chapter, we will evaluate how and if a 3R based approach can be applied in testing of ecotoxicity of chemicals. The 3R approach (reduce-refine-replace) is a strategy to reduce or totally abolish the use of experimental animals in favour of alternative methods. We review the current status of alternatives in aquatic ecotoxicology and how well they perform in comparison with current in vivo methods. We will conclude that theoretically can alternative methods and approaches replace animal based testing but the way to reach this goal is long. A strong development of more sophisticated alternative methods is needed focusing on specific and physiologically/toxicologically relevant ­endpoints. We underline the importance to gain more information on toxic mechanisms of chemicals. New exciting biochemical techniques are waiting around the corner, e.g. in the genomics area and they need to be integrated in future test paradigms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackermann, G.E., Brombacher, E. & Fent, K. (2002) Development of a fish reporter gene system for the assessment of estrogenic compounds and sewage treatment plant effluents. Environmental Toxicology and Chemistry 21: 1864–1875.

    Article  CAS  Google Scholar 

  • Barron M.G., Raimondo S., Russom C., Vivian D.N. & Yee S.H. (2008) Accuracy of chronic aquatic toxicity estimates determined from acute toxicity data and two time–response models. Environmental Toxicology and Chemistry 27: 2196–2205.

    Article  CAS  Google Scholar 

  • Becerril, C., Ferrero, M., Sanz, F. & Castaño, A. (1999) Detection of mitomycin c- induced genetic damage in fish cells by use of RAPDs. Mutagenesis 14: 449–456.

    Article  CAS  Google Scholar 

  • Bengtsson B.-E. (1974) The effect of zinc on the mortality and reproduction of the minnow, Phoxinus phoxinus L. Archives of Environmental Contamination and Toxicology 2: 342–355.

    Article  CAS  Google Scholar 

  • Braunbeck T., Böttcher M., Hollert H., Kosmehl T., Lammer E., Leist E., Rudolf M. & Seitz N. (2005) Towards and alternative for the acute fish LC-50 test in chemical assessment: the fish embryo toxicity test goes multispecies – un update. ALTEX 22: 87–102.

    Google Scholar 

  • Castaño, A. & Becerril, C. (2004) In vitro assessment of DNA damage after short and long-term exposure to benzo(a)pyrene using RAPD and the RTG-2 fish cell line. Mutation Research 552: 141–151.

    Article  Google Scholar 

  • Castaño A. & Gómez-Lechón M.J. (2005) Comparison of basal cytotoxicity data between mammalian and fish cell lines: A literature survey. Toxicology In Vitro 19: 695–705.

    Article  Google Scholar 

  • Castaño, A., Cantarino, M.J., Catillo, P. & Tarazona, J.V. (1996) Correlations between RTG-2 cytotoxicity test EC-50 and in vivo LC-50 rainbow trout bioassay. Chemosphere 32: 2141–2157.

    Article  Google Scholar 

  • Castaño, A., Carballo, M., Llorente, M., De la Torre, A. & Muñoz, M.J. (2000) Evaluation of complex mixtures of fish populations using alternatives systems. The Science of the Total Environment 247: 337–348.

    Article  Google Scholar 

  • Castaño A., Bols N., Braunbeck T., Dierickx P., Halder M., Isomaa B., Kawahara K., Lee L.E.J., Mothersill C., Pärt P., Repetto G., Riego Sintes J., Ruffli H., Smith R., Wood C.M. & Segner H. (2003) The use of fish cells in ecotoxicology. ATLA 31: 317–351.

    Google Scholar 

  • ECETOC (2005) Alternative testing approaches in environmental safety assessment. Technical Report No. 97. European Centre for Ecotoxicology and Toxicology of Chemicals, Brussels, pp. 1–182.

    Google Scholar 

  • Eriksson K. (2007) Method development: Embryo testing with the three-spined stickleback (Gasterosteus aculeatus). Diploma work at the Department of Applied Environmental Science, Stockholm University, Stockholm, Sweden.

    Google Scholar 

  • Hornung, M.W., Ankley, G.T. & Schmeider, P.K. (2003) Induction of an estrogen-responsive reporter gene in rainbow trout hepatoma cells (RTH 149) at 11° or 18°C. Environmental Toxicolology and Chemistry 22: 866–871.

    Article  CAS  Google Scholar 

  • Hutchinson T.H., Barrett S., Buzby M., Constable D., Hartmann A., Hayes E., Huggett D., Laenge R., Lillicrap A.D., Straub J.O. & Thompson R.S. (2003) A strategy to reduce the numbers of fish used in acute ecotoxicity testing of pharmaceuticals. Environmental Toxicology and Chemistry 22: 3031–3036.

    Article  CAS  Google Scholar 

  • Huuskonen, S.E., Tuvikene, A., Trapido, M., Fent, K. & Hahn, M.E. (2000) Cytochrome P4501A induction and porphyrin accumulation in PLHC-1 fish cells exposed to sediment and oil shale extracts. Archieves of Environmental Contamination and Toxicology 38: 59–69.

    Article  CAS  Google Scholar 

  • Jeram S., Riego Sintes J.M., Halder M., Fentanes J.B., Sokull-Kluttgen B. & Hutchinson T.H. (2005) A strategy to reduce the use of fish in acute ecotoxicity testing of new chemical substances notified in the European Union. Regulatory Toxicology and Pharmacology 42: 218–224.

    Article  CAS  Google Scholar 

  • Ji K., Kim Y., Oh S., Ahn B., Jo H. & Choi K. (2008) Toxicity of perfluorooctane sulfonic acid and perfluorooctanoic acid on freshwater macroinvertebrates (Daphnia magna and Moina macrocopa) and fish (Oryzia latipes). Environmental Toxicology and Chemistry 27: 2159–2168.

    Article  CAS  Google Scholar 

  • Lammer E., Carr G.J., Wendeler K., Rawlings J.M., Belanger S.E. & Braunbeck T. (2009) Is the Fish Embryo Toxicity test (FET) with the zebrafish (Danio rerio) potential alternative for the fish acute toxicity test? Comparative Biochemistry and Physiolology C 149: 196–209.

    CAS  Google Scholar 

  • Lee, L., Dayeh, V., Schirmer, K. & Bols, N. (2009) Application and potential uses of fish gill cell lines: examples with Rtgill-W1. In vitro Cellular and Developmental Biology (Animal) 45: 127–134.

    Article  CAS  Google Scholar 

  • Mount D.I. (1968) Chronic toxicity of copper to fathead minnows (Pimephales promelas, Rafinesque). Water Research 2: 215–223.

    Article  Google Scholar 

  • Mount D.I. & Stephan C.E. (1967) A method for establishing acceptable toxicant limits for fsih- malathion and butoxyethanol ester of 2,4-D. Transactions of the American Fisheries Society 96: 185–193.

    Article  CAS  Google Scholar 

  • Mount D.I. & Stephan C.E. (1969) Chronic toxicity of copper to fathead minnow (Pimephales promelas) in soft water. Journal of the Fisheries Research Board of Canada 26: 2449–2457.

    Article  CAS  Google Scholar 

  • Nagel R. (2002) DarT: The embryotest with the zebrafish Danio rerio – a general model in ecotoxicology and toxicology. ALTEX 19: 38–48.

    Google Scholar 

  • Oaks L.J., Gilbert M., Virani M.Z., Watson R.T., Meteyer C.U., Rideout B.A., Shivaprasad H.L., Ahmed S., Chaudry M.J.I., Arshad M., Mahmood S., Ali A. & Khan A.A. (2004). Diclofenac residues as the cause of vulture population decline in Pakistan. Nature 427: 630–634.

    Article  CAS  Google Scholar 

  • OECD (2004) Detailed review paper on fish screening assay for the detection of endocrine active chemicals. Organisation for Economic Co-operation and Development, Paris, France.

    Google Scholar 

  • OECD 203 (1992a) OECD guidlines for testing of chemicals. 203. Fish acute toxicity test. Organisation for Economic Co-operation and development, Paris, France.

    Google Scholar 

  • OECD 204 (1984) OECD guidlines for testing of chemicals. 204. Fish prolonged toxicity test: 14 day study. Organisation for Economic Co-operation and Development, Paris, France.

    Google Scholar 

  • OECD 210 (1992b) OECD guidlines for testing of chemicals. 210. Fish, early-life stage toxicity test. Organisation for Economic Co-operation and Development, Paris, France.

    Google Scholar 

  • OECD 212 (1998) OECD guidlines for testing of chemicals. 212. Fish, early-life stage toxicity test on embryo and sac-fry stages, last updated 21st September 1998. Organisation for Economic Co-operation and Development, Paris, France.

    Google Scholar 

  • OECD 215 (2000) OECD guidlines for testing of chemicals. 215. Fish, juvenile growth test. Organisation for Economic Co-operation and Development, Paris, France.

    Google Scholar 

  • OECD 305 (1996) OECD guidlines for testing of chemicals. 305. Bioconcentration: Flow-through fish test, last updated 14th June 1996. Organisation for Economic Co-operation and Development, Paris, France.

    Google Scholar 

  • OECD 17 (2010). Short guidance on the threshold approach for acute toxicity. ENV/JM/MONO 17. 31-May-2010. Organization for Economic Co-operation and Development. Paris. France.

    Google Scholar 

  • Pärt P. & Wood C.M. (2003) Cultured epithelia from fish gills. In C. Mothersill & B. Austin (Eds.), In Vitro methods in aquatic toxicology (pp. 35–52). United Kingdom: Springer-Chichester.

    Google Scholar 

  • Pesonen M. & Andersson T. B. (1997) Fish primary hepatocyte culture; an important model for xenobiotic metabolism and toxicity studies. Aquatic Toxicology 37: 253–267.

    Article  CAS  Google Scholar 

  • Raimondo S., Montague B.J. & Barron M.G. (2007) Determinants of variability in acute to chronic toxicity ratios for aquatic invertebrates and fish. Environmental Toxicology and Chemistry 26: 2019–2023.

    Article  CAS  Google Scholar 

  • Russel W.M.S. & Burch R.L. (1959) The principles of humane experimental techniques. London: Methuen.

    Google Scholar 

  • Sánchez, P., Llorente, M.T. & Castaño, A. (2000) Flow cytometric detection of micronuclei and cell cycle alterations in fish derived cells after exposure to three model genotoxic agents: Mitomicyn C, Vincristine and Benzo(a)pyrene. Mutation Research 465: 113–122.

    Article  Google Scholar 

  • Schirmer K. (2006) Proposal ro improve vertebrate cell cultures to establish them as substitutes for regulatory testing of chemicals and effluents using fish. Toxicology 224: 163–183.

    Article  CAS  Google Scholar 

  • Scholz S., Fisher S., Gundel U., Kuster E., Luckenbach T. &Voelker D. (2008) The zebra fish embryo model in environmental risk assessment – application beyond acute toxicity testing. Environmental Science and Pollution Research International 15: 394–404.

    Article  CAS  Google Scholar 

  • Schulte C. & Nagel R. (1994) Testing acute toxicity in the embryo of zebrafish, Brachydanio rero, as an alternative to acute fish test: preliminary results. ATLA 22: 12–19.

    Google Scholar 

  • Segner H. (2004) Cytotoxicity assays with fish cells as an alternative to the acute lethality test with fish. ATLA 32: 375–382.

    CAS  Google Scholar 

  • Segner H. & Cravedi J.-P. (2001) Metabolic activity in primary cultures of fish hepatocytes. ATLA 29: 251–257.

    CAS  Google Scholar 

  • US EPA (1986) Fish life cycle toxicity test. EPA 540/9-86-137 United States Environment Protection Agency, Office of research and Development, Washington DC, USA

    Google Scholar 

  • Wolf K. & Quimby M.C. (1969) Fish cell and tissue culture. In W.S. Hoar & D.J. Randall (Eds.), Fish Physiology (pp. 253–305). New York: Academic.

    Google Scholar 

  • Wood C.M. & Pärt P. (1997) Cultured branchial epithelia from freshwater fish gills. Journal of Experimental Biology 200: 1047–1059.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Pärt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Pärt, P., Castaño, A., Bengtsson, BE. (2010). Testing in Aquatic Ecotoxicology: What Are the Scientific Conditions for the ‘3R’ Concept?. In: Eriksson, J., Gilek, M., Rudén, C. (eds) Regulating Chemical Risks. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9428-5_7

Download citation

Publish with us

Policies and ethics