Advertisement

Translator’s Introduction

  • Stephen Pollard
Chapter
Part of the The Western Ontario Series in Philosophy of Science book series (WONS, volume 83)

Abstract

When Professor Pasch of Giessen retired at the age of 67, state regulations barred him from teaching or taking any part in university governance: activities that had hitherto consumed much of his time. The result was a burst of scholarly productivity remarkable for a man of ever more advanced years, with nearly half his published output appearing after his 68th birthday. Mentally sharp until the end, he might have done even more had his eyesight not failed.

Keywords

Initial Segment Prime Divisor Specification Specification Identity Criterion Peano Arithmetic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Avigad, Jeremy. 2006. Methodology and metaphysics in the development of Dedekind’s theory of ideals. In The architecture of modern mathematics, ed. José Ferreirós and Jeremy Gray, 159–186. New York, NY: Oxford University Press.Google Scholar
  2. 2.
    Dehn, Max. 1934. Pasch’ wissenschaftliche Leistungen. Jahresbericht der Deutschen Mathematiker-Vereinigung 44:124–142.Google Scholar
  3. 3.
    Edwards, Harold M. 1977. Fermat’s last theorem: A genetic introduction to algebraic number theory. New York, NY: Springer-Verlag.Google Scholar
  4. 4.
    Engel, Friedrich. 1934. Pasch in Giessen. Jahresbericht der Deutschen Mathematiker-Vereinigung 44:120–124.Google Scholar
  5. 5.
    Frege, Gottlob. 1980. Philosophical and mathematical correspondence, ed. G. Gabriel, et al., (trans: Kaal, H.) Chicago, IL: University of Chicago Press.Google Scholar
  6. 6.
    Frege, Gottlob. 1980. The foundations of arithmetic (trans: Austin, J.L.) Evanston, IL: Northwestern University Press.Google Scholar
  7. 7.
    Gandon, Sébastien. 2005. Pasch entre Klein et Peano: empirisme et idéalité en géométrie. Dialogue 44:653–692.CrossRefGoogle Scholar
  8. 8.
    Hazen, A.P. 1991. Small sets. Philosophical Studies 63:119–123.CrossRefGoogle Scholar
  9. 9.
    Mirimanoff, Dimitry. 1917. Les antinomies de Russell et de Burali-Forti et le problème fondamental de la théorie des ensembles. L’Enseignement Mathématique 19:37–52.Google Scholar
  10. 10.
    Schlimm, Dirk. 2010. Pasch’s philosophy of mathematics. Review of Symbolic Logic 3:93–118.CrossRefGoogle Scholar
  11. 11.
    Weyl, Hermann. 1949. Philosophy of mathematics and natural science. Princeton, NJ: Princeton University Press.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Dept. Philosophy & ReligionTruman State UniversityKirksvilleUSA

Personalised recommendations