Skip to main content

Chapter 19 C4 Species as Energy Crops

  • Chapter
  • First Online:
C4 Photosynthesis and Related CO2 Concentrating Mechanisms

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 32))

Summary

The cultivation and utilisation of energy crops has the potential to provide, in the coming decades, part of the solution to the twin issues of substituting for fossil fuels and protection from damaging climate change by reducing carbon emissions. The ideal energy crop should have sustained capacity to capture and convert solar energy into harvestable biomass with maximal efficiency and with minimal inputs and environmental impacts. C4 plants, and in particular rhizomatous perennial grasses (PRGs), have many of the characteristics of the ‘ideal’ energy crop. Herbaceous perennial species require far fewer energy and capital inputs than annual crops and they also sequester more carbon in the soil. C4 photosynthesis also allows greater efficiencies in the conversion of solar energy to biomass energy, and of nitrogen and water use. Currently the most important feedstocks for biofuels are maize in the USA and sugarcane in Brazil, both C4 species. In temperate climatic regions, where there is the greatest current demand for renewable energy, few naturally occurring species have C4 photosynthesis. However, there are some notable exceptions, such as Miscanthus and switchgrass (Panicum virgatum), which show significant cold tolerance and are currently being developed as energy crops. The unusual features of the C4 pathway in these species which appear to confer cold tolerance are reviewed. The recent drive to exploit the energy production and carbon emission mitigation potentials of C4 energy crops has been controversial because of the anticipated competition for use of land for food or fuel. Despite this, the yield benefits provided by C4 photosynthesis suggest that these species will make a significant contribution to bioenergy production over the near- and longer-terms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

LCA:

Life cycle analysis

LIHD:

Low input high diversity

NADP ME:

Nicatinamide adenine dinucleotide-malic enzyme

NEB:

Net energy balance

NUE:

Nitrogen use efficiency

PEP-CK:

Phosphoenolpyruvate carboxykinase

PNUE:

Photosynthetic nitrogen use efficiency

PPDK:

Pyruvate orthophosphate dikinase

PRG:

Perennial rhizomatous grasses

RUE:

Radiation use efficiency

SOC:

Soil organic carbon

WUE:

Water use efficiency

References

  • Ainsworth EA and Long SP (2005) What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol 165: 351–371

    CAS  Google Scholar 

  • Andrews M, James EK, Cummings SP, Zavalin AA, Vinogradova LV and McKenzie BA (2003) Use of nitrogen fixing bacteria inoculants as a substitute for nitrogen fertiliser for dryland graminaceous crops: progress made, mechanisms of action and future potential. Symbiosis 35: 209–229

    CAS  Google Scholar 

  • Beale CV and Long SP (1995) Can perennial C4 grasses attain high efficiencies of radiant energy conversion in cool climates? Plant Cell Environ 18: 641–650

    Article  Google Scholar 

  • Beale CV, Bint DA and Long SP (1996) Leaf photosynthesis in the C4-grass Miscanthus x giganteus, growing in the cool temperqte climate of southern England. J Exp Bot 47: 267–273

    Article  CAS  Google Scholar 

  • Beale CV and Long SP (1997) Seasonal dynamics of nutrient accumulation and partitoning in the perennial C4-grasses Miscanthus x giganteus and Spartina cynosuroides. Biomass Bioenergy 12: 419–428

    Article  Google Scholar 

  • Beale CV, Morison JIL and Long SP (1999) Water use efficiency of C4 perennial grasses in a temperate climate. Agric For Meteorol 96: 103–115

    Article  Google Scholar 

  • Begg JE and Turner NC (1976) Crop water deficits. Adv Agron 28: 161–216

    Article  Google Scholar 

  • Bransby DI, McLaughlin SB and Parrish DJ (1998) A review of carbon and nitrogen balances in Switchgrass grown for energy. Biomass Bioenergy 14: 379–384

    Article  CAS  Google Scholar 

  • Brown RH (1978) A difference in N use efficiency in C3 and C4 plants and its implications for adaptation and evolution. Crop Sci 18:93–98

    Article  CAS  Google Scholar 

  • Brown RA, Rosenberg NJ, Hays CJ, Easterling WE and Mearns LO (2000) Potential production and environmental effects of switchgrass and traditional crops under current and greenhouse-altered climate in the Central United States: a simulation study. Agric. Ecosystems and Environment 78: 31–47

    Article  Google Scholar 

  • Buchmann N, Brooks JR, Rapp KD and Ehleringer JR (1996) Carbon isotope composition of C4 grasses is influenced by light and water-supply. Plant Cell Environ 19: 392–402

    Article  CAS  Google Scholar 

  • Byrd GT and May PA (2000) Physiological comparisons of Switchgrass cultivars differing in transpiration efficiency. Crop Sci 40: 1271–1277

    Article  Google Scholar 

  • Carver P and Hocking TJ (2001) Photosynthetic responses of Miscanthus ecotypes. In: Bullard MJ, Christian DG, Knight JD, Lainsbury MA and Parker SP (eds) Biomass and Energy Crops II. Aspects of Applied Biology 65: 215–222 Warwickshire, UK: Association of Applied Biologists.

    Google Scholar 

  • Casler MD (2005) Ecotypic variation among Switchgrass populations from the Northern USA. Crop Sci 45: 388–398

    Article  Google Scholar 

  • Chen SL and Renvoize SA (2006) Miscanthus. Flora China 22: 581–583

    Google Scholar 

  • Christian DG and Riche AB (1998) Nitrate leaching losses under Miscanthus grass planted on a silty loam soil. Soil Use Manage 14: 131–135

    Article  Google Scholar 

  • Christian DG, Riche AB and Yates NE (2008) Growth, yield and mineral content of Miscanthus x giganteus grown as a biofuel for 14 successive harvests. Ind Crops Prod 28: 320–327

    Article  Google Scholar 

  • Clayton WD and Renvoize SA (1986) Genera graminum, grasses of the world. Kew Bull. Add. Ser. 13: 1–389

    Article  Google Scholar 

  • Clifton-Brown JC and Jones MB (1997) The thermal response of leaf extension rate in genotypes of the C4–grass Miscanthus: an important factor in determining the potential productivity of different genotypes. J. Exp Bot 48:1573–1581

    Google Scholar 

  • Clifton-Brown JC and Lewandowski I (2000) Overwintering problems of newly established Miscanthus plantations can be overcome by identifying genotypes with improved rhizome cold tolerance. New Phytol 148: 287–294

    Article  Google Scholar 

  • Clifton-Brown JC, Lewandowski I, Andersson B, Gottlieb B, Christian DG, Kjeldsen JB, Jorgensen U, Mortensen JV, Riche AB, Schwarz K-U, Tayebi K and Teixeira F (2001) Performance of 15 Miscanthus genotypes at five sites in Europe. Agron J 93: 1013–1019

    Article  Google Scholar 

  • Clifton-Brown JC, Neilson B, Lewandowski I and Jones MB (2000) The modelled productivity of Miscanthus x giganteus (Greef et Deu) in Ireland. Ind Crops Prod 12: 97–109

    Article  Google Scholar 

  • Clifton-Brown J C, Lewandowski I, Bangerth F and Jones MB (2002) Comparative responses to water stress in stay-green rapid- and slow senescing genotypes of the biomass crop, Miscanthus. New Phytol 154: 335–345

    Article  Google Scholar 

  • Clifton-Brown JC, Stampfl PF and Jones MB (2004) Miscanthus biomass production for energy in Europe and its potential contribution to decreasing fossil fuel carbon emissions. Global Change Biol 10: 509–518

    Article  Google Scholar 

  • Clifton-Brown JC, Breuer J and Jones MB (2007) Carbon mitigation by the energy crop, Miscanthus. Global Change Biol 13: 2296–2307

    Article  Google Scholar 

  • Clifton-Brown J, Chiang Y-C and Hodkinson TR (2008) Miscanthus: genetic resources and breeding potential to enhance bionergy production. In: Vermerris W (ed) Genetic Improvement of Bioenergy Crops. New York: Springer. pp 273–294

    Google Scholar 

  • Collins RP and Jones MB (1985) The influence of climatic factors on the distribution of C4 species in Europe. Vegetatio 64: 121–129

    Article  Google Scholar 

  • Crutzen PJ, Mosier JR, Smith KA and Winiwarter W (2007) N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmos. Chem. Phys. Discuss. 7: 11191–11205

    Article  Google Scholar 

  • De Leon N and Coors JG (2008) Genetic improvement of corn for lignocellulosic feedstock. In: Vermerris W (ed) Genetic Improvement of Bioenergy Crops. New York: Springer. pp 185–210

    Chapter  Google Scholar 

  • Dhugg KS (2007) Maize biomass yield and composition for biofuels. Crop Sci 47: 2211–2227

    Article  CAS  Google Scholar 

  • Doust AN, Kellogg EA, Devos KM and Bennetzen JL (2009) Foxtail Millet: a sequence-driven grass model system. Plant Physiol 149–141

    Google Scholar 

  • Downes RW (1969) Differences in transpiration rates between tropical and temperate grasses under controlled conditions. Planta 88: 261–273

    Article  Google Scholar 

  • Dubeux JCB, Sollenberger LE, Matthews BW, Scholberg JM and Santos H (2007) Nutrient cycling in warm-climate grasslands. Crop Sci. 47: 915–928

    Article  Google Scholar 

  • Dunn,R, Thomas SM, KeysAJ and Long SP (1987) A comparison of the growth of the C4 grass Spartina anglica and the C3 grass Lolium perenne at different temperatures. J Exp Bot 38: 433–446

    Article  Google Scholar 

  • Earnshaw MA, Carver KA, Gunn TC, Kerenga K, Harvey V, Griffiths H and Broadmeadow MSJ (1990) Photosynthetic pathway, chilling tolerance and cell sap osmotic potential values of grasses along an altitudinal gradient in Papua New Guinea. Oecologia 84: 280–288

    Google Scholar 

  • Edwards EJ and Still CJ (2008) Climate, phylogeny and the ecological distribution of C4 grasses. Ecol Lett 11: 266–276

    Article  PubMed  Google Scholar 

  • El Bassam N (2008) Bioenergy Crops: Development Guide and Species Reference. London: Earthscan

    Google Scholar 

  • Farage PK, Blowers D, Long, SP and Baker NR (2006) Low growth temperatures modify the efficiency of light use by photosystem II for CO2 assimilation in leaves of two chilling-tolerant C4 species, Cyperus longus L. and Miscanthus x giganteus. Plant Cell Environ 29: 720–728

    Article  PubMed  CAS  Google Scholar 

  • Fargione J, Hill J, Tilman D, Polasky S and Hawthorne P (2008) Land clearing and the biofuel carbon debt. Science 319: 1235–1238

    Article  PubMed  CAS  Google Scholar 

  • Farrell AD, Clifton-Brown JC. Lewandowski I and Jones MB (2006) Genotypic variation in cold tolerance influences the yield of Miscanthus. Ann Appl Biol 149: 337–345

    Article  Google Scholar 

  • Farrell AE, Plevin RJ, Turner BT, Jones AD, O’Hare M and Kammen DM (2006) Ethanol can contribute to energy and environmental goals. Science 311: 506–508

    Article  PubMed  CAS  Google Scholar 

  • Field CB, Campbell JE and Lobell DB (2007) Biomass energy: the scale of the potential resource. Trends Ecol Evol 23: 65–72

    Article  Google Scholar 

  • Foereid B, de Neergaard A and Hogh-Jensen H (2004) Turnover of organic matter in a Miscanthus field: effect of time in Miscanthus cultivation and inorganic nitrogen supply. Soil Biol Biochem 36: 1075–1085

    Article  CAS  Google Scholar 

  • Formara DA and Tilman D (2008) Plant functional composition influences rates of soil carbon and nitrogen accumulation. J Ecol 96: 314–322

    Article  CAS  Google Scholar 

  • Frank AB, Berdahl JD, Hanson JD, Liebeg MA and Johnson HA (2004) Biomass and carbon partitioning in switchgrass. Crop Sci 44: 1391–1396

    Article  CAS  Google Scholar 

  • Gibbs HK, Johnson M, Foley JA, Holloway T, Monfreda C, Raman Kutty N and Zaks D (2008) Carbon payback times for crop-based biofuel expansion in the tropics: the effects of changing yield and technology. Environ Res Lett. 3: 1–10

    Article  Google Scholar 

  • Gomez LD, Steele-King CG and McQueen-Mason SJ (2008) Sustainable liquid biofuels from biomass: the writing’s on the walls. New Phytol 178: 473–485

    Article  PubMed  CAS  Google Scholar 

  • Graham RL, Nelson R, Sheehan J, Perlack RD and Wright LL (2007) Current and potential US corn stover supplies. Agron. J. 99: 1–11

    Article  PubMed  CAS  Google Scholar 

  • Groom MJ, Gray EM and Townsend PA (2008) Biofuels and biodiversity: principles for creating better policies for biofuel production. Conserv Biol 22: 602–609

    Article  PubMed  Google Scholar 

  • Hamelinck CN, van Hooijdonk G and Faaij APC (2005) Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle - and long-term. Biomass Bioenergy 28: 384–410

    Article  CAS  Google Scholar 

  • Hansen EM, Christensen BT, Jensen LS and Kristensen K (2004) Carbon sequestration in soil beneath long-term Miscanthus plantations as determined by C-13 abundance. Biomass Bioenergy 26: 97–105

    Article  CAS  Google Scholar 

  • Haughton AJ, Bond AJ, Lovett AA, Dockerty T, Sunnenberg G, Clark SJ, Bohan DA, Sage RB, Mallott MD, Mallott VE, Cunningham MD, Riche AB, Shield IF, Finch JW, Turner MM, Karp A (2009) A novel, integrated approach to assessing social, economic and environmental implications of changing rural land-use: a case study of perennial biomass crops. J Appl Ecol 46: 315–322

    Article  Google Scholar 

  • Heaton EA, Clifton-Brown JC, Voigt TB, Jones MB and Long SP (2004a) Miscanthus for renewable energy generation: European Union experience and projections for Illinois. Mitig Adapt Strateg Glob Change 9: 433–451

    Article  Google Scholar 

  • Heaton E, Voigt T and Long SP (2004b) A quantitative review comparing the yields of two candidate C4 perennial biomass crops in relation to nitrogen, temperature and water. Biomass Bioenergy 27: 21–30

    Article  Google Scholar 

  • Heaton E, Dohleman FG and Long SP (2008a) Meeting US biofuel goals with less land: the potential of Miscanthus. Global Change Biol 14: 2000–2014

    Article  Google Scholar 

  • Heaton EA, Flavell RB, Mascia PN, Thomas SR, Dohleman FG and Long SP (2008b) Herbaceous energy crop development: recent progress and future prospects. Curr Opin Biotechnol 19: 202–209

    Article  PubMed  CAS  Google Scholar 

  • Hill J, Nelson E, Tilman D, Polasky S and Tiffany D (2006) Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc Natl Acad Sci USA 103: 11206–11210

    Article  PubMed  CAS  Google Scholar 

  • Himmel ME, Ding S-Y, Johnson DK, Adney WS, Nimlos MR, Brady JW and Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuel production. Science 315: 804–807

    Article  PubMed  CAS  Google Scholar 

  • Hirel B, Le Gouis J, Ney B and Gallais A (2007) The challenge of improving the nitrogen use efficiency in crop plants: towards a more central role for genetic variability and quantitative genetics within integrated approaches. J Exp Bot 58: 2369–2387

    Article  PubMed  CAS  Google Scholar 

  • Hodkinson TR, Chase MW, Lledo MD, Salamin N and Renevoize SA (2002a) Phylogenetics of Miscanthus, Saccharum and related genera (Saccharinae, Andropogoneae, Poaceae) based on DNA sequences from ITS nuclear ribosomal DNA and plastid trnL and trnL-F intergenic spacers. J Plant Res 115: 381–392

    Article  PubMed  CAS  Google Scholar 

  • Hodkinson TR, Chase MW and Renvoize SA (2002b) Characterization of a genetic resource collection for Miscanthus (Saccharubae, Andropogoneae, Poaceae) using AFLP and ISSR PCR. Ann Bot 89: 627–636

    Article  PubMed  CAS  Google Scholar 

  • Hodkinson TR, Chase MW, Takahashi C, Leitch IJ, Bennett MD and Renvoize SA (2002c) The use of DNA sequencing (ITS0 and trnL-F), AFLP, and fluorescent in situ hybridization to study allopolyploid Miscanthus (Poaceae). Am J Bot 89: 279–286

    Article  PubMed  CAS  Google Scholar 

  • Hodkinson TR, Renvoize SA and Chase MW (1997) Systematics in Miscanthus. Aspect. Appl. Biol. 49: 189–198

    Article  PubMed  CAS  Google Scholar 

  • Huang S, Su X, Haselkorn R and Gornicki P (2003) Evolution of switchgrass (Panicum virgatum L.) based on sequences of the nuclear gene encoding plastid acetyl-CoA carboxylase. Plant Sci 164: 43–49

    Article  CAS  Google Scholar 

  • IEA (2007) The International Energy Agency http://www.ies.org/statistics/

    Article  Google Scholar 

  • IPCC (2007) Changes in atmospheric constituents and in radiative forcing. In: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds. Solomon S, Quin D, Manning M et al.) Cambridge, UK/New York, NY: Cambridge University Press

    Article  Google Scholar 

  • Jones MB and Muthuri FM (1997) Standing biomass and carbon distribution in a papyrus (Cyperus papyrus L) swamp on Lake Naivasha, Kenya. J Trop Ecol 13: 347–356

    Article  Google Scholar 

  • Jones MB and Donnelly A (2004) Carbon sequestration in temperate grassland ecosystems and the influence of management, climate and elevated CO2. New Phytol 164: 423–459

    Article  Google Scholar 

  • Jones MB and Walsh M (eds) (2001) Miscanthus for Energy and Fibre. James & James, London

    Google Scholar 

  • Jones MB, Hannon GE and Coffey MD (1981) C4 photosynthesis in Cyperus longus L, a species occurring in temperate climates. Plant Cell Environ 4: 161–168

    Article  CAS  Google Scholar 

  • Jorgensen RN, Jorgensen BJ, Nielson NE, Maag M and Lind A-M (1997) N2O emission from energy crop fields of Miscanthus “Giganteus” and winter rye. Atmos Environ 31: 2899–2904

    Article  CAS  Google Scholar 

  • Jorgensen U and Schwarz K-U (2000) Why do basic research? A lesson from commercial exploitation of Miscanthus. New Phytol 148: 190–193

    Article  Google Scholar 

  • Jorgensen U, Mortensen J and Ohlsson C (2003) Light interception and dry matter conversion efficiency of Miscanthus genotypes estimated from spectral reflectance measurements. New Phytol 157: 262–270

    Article  Google Scholar 

  • Kahle P, Beuch S, Boelcke B, Leinweber P and Schulten H-R (2001) Cropping of Miscanthus in central Europe: biomass production and influence on nutrients and soil organic matter. Eur J Agron 15: 171–184

    Article  CAS  Google Scholar 

  • Karp A and Shield I (2008) Bioenergy from plants and the sustainable yield challenge. New Phytol 179: 15–32

    Article  PubMed  Google Scholar 

  • Kebrom TH and Brutnell TP (2007) The molecular analysis of the shade avoidance syndrome in the grasses has begun. J Exp Bot 58: 3079–3089

    Article  PubMed  CAS  Google Scholar 

  • King JA, Bradley RI, Harrison R and Carter AD (2004) Carbon sequestration and saving potential associated with changes in the management of agricultural soils in England. Soils Use Manage 20: 394–402

    Article  Google Scholar 

  • Kiniry JR, Tischler CR and van Esbroeck GA (1999) Radiation use efficiency and leaf CO2 exchange for diverse C4 grasses. Biomass Bioenergy 17: 95–112

    Article  Google Scholar 

  • Kiniry, JR, Cassida, KA, Hussey MA, Muir JP, Ocumpaugh WR, Read JC, reed RL, Sanderson MA, Venuto BC and Williams JR (2005) Switchgrass simulation by the ALMANAC model at diverse sites in the southern US. Biomass Bioenergy 29: 419–425

    Article  Google Scholar 

  • Koh LP and Ghazoul J (2008) Biofuels, biodiversity and people: Understanding the conflicts and finding opportunities. Biol Conserv. 141: 2450–2460

    Article  Google Scholar 

  • Koonin SE (2006) Getting serious about biofuels. Science 311: 435

    Article  PubMed  CAS  Google Scholar 

  • Lemus R, Brummer EC, Moore KJ, Molstad NE, Burras CL and Barker MF (2002) Biomass yield and quality of 20 switchgrass populations in southern Iowa, USA. Biomass Bioenergy 23:433–442

    Article  CAS  Google Scholar 

  • Lemus R and Lal R (2005) Bioenergy crops and carbon sequestration. Crit. Rev. Plant Sci 24: 1–21

    Article  CAS  Google Scholar 

  • Lewandowski I, Clifton-Brown JC, Scurlock JM) and Huisman W (2000) Miscanthus: European experience with a novel energy crop. Biomass Bioenergy 19: 209–227

    Article  CAS  Google Scholar 

  • Lewandowski I, Clifton-Brown JC, Andersson B, Basch G, Christian DG, Jorgensen U, Jones MB, Riche AB, SchwartzKU, Tayebi K and Tiexeira F (2003a) Environment and harvest time affects the combustion qualities of Miscanthus genotypes. Agron J 95: 1274–1280

    Article  Google Scholar 

  • Lewandowski I, Scurlock JMO, Lindvall E and Chritou M (2003b) The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass Bioenergy 25: 335–361

    Article  Google Scholar 

  • Lewandowski I and Schmidt U (2006) Nitrogen, energy and land use efficiencies of miscanthus, reed canary grass and triticale as determined by the boundary line approach. Agric Syst Environ 112: 335–346

    Article  Google Scholar 

  • Lobell DB and Field CB (2007) Global scale climate-crop yield relationships and the impacts of recent warming. Environmental Research Letters 2 doi:10.1088/1748-93626/2/1/014002

    Google Scholar 

  • Long SP (1983) C4 photosynthesis at low temperatures. Plant Cell Environ 4:161—168

    Google Scholar 

  • Long SP (1991) Modification of the response of photosynthetic productivity to rising temperature by atmospheric CO2 concentration: Has its importance been underestimated? Plant Cell Environ 14: 729–739

    Article  CAS  Google Scholar 

  • Long SP (1999) Environmental responses. In: Sage RF and Monson RK (eds) C4 Plant Biology. San Diego, CA: Academic. pp 215–249

    Chapter  Google Scholar 

  • Long SP, Incoll LD and Woolhouse HW (1975) C4 photosynthesis in plants from cool temperate regions, with particular reference to Spartina townsendii. Nature 257:662–664

    Article  Google Scholar 

  • Long SP and Beale CV (2001) Resource capture by Miscanthus. In: Jones MB and Walsh M (eds) Miscanthus for Energy and Fibre. London: James & James. pp 10–20

    Google Scholar 

  • Long SP, Zhu X-G, Naidu SL and Ort DR (2006) Can improvement in photosynthesis increase crop yields? Plant Cell Environ 29: 315–330

    Article  PubMed  CAS  Google Scholar 

  • Ma Z, Wood CW and Bransby DI (2000) Soil management impacts on soil carbon sequestration by switchgrass. Biomass Bioenergy 18: 469–477

    Article  Google Scholar 

  • Madakadze IC, Stewart K, Peterson PR, Coulman BE, Samson R and Smith DL (1998) Light interception, use-efficiency and energy yield of switchgrass (Panicum virgatum L.) grown in a short season area. Biomass Bioenergy 15: 475–482

    Article  Google Scholar 

  • McLaughlin SB and Kszos (2005) Development of switchgrass (Panicum virgatum) as a bioenery feedstock in the United States. Biomass Bioenergy 28: 515–535

    Article  Google Scholar 

  • Meidema P (1982) The effect of low temperatures on Zea mays. Adv. Agron 35: 93–128

    Article  Google Scholar 

  • Miguez FE, Villamil MB, Long SP and Bollero GA (2008) Meta-analysis of the effects of management factors on Miscanthus x giganteus growth and biomass production. Agric For Meteorol 148:1280–1292

    Article  Google Scholar 

  • Milliken J, Joseck F, Wang M and Yuzugullu E (2007) The advanced energy initiative. J Power Sources 172: 121–131

    Article  Google Scholar 

  • Moore PH, Botha FC, Furbank R and Grof C (1997) Potential for overcoming physio-chemical limits to sucrose accumulation. In: Keating BA and Wilson JR (eds) Intensive Sugarcane Production: Meeting the Challenges Beyond 2000. CAB Int. Wallingford, UK pp. 141–155

    Article  Google Scholar 

  • Monteith JL (1977) Climate and the efficiency of crop production in Britain. Phil Trans R Soc Lond 281: 277–294

    Article  Google Scholar 

  • Morison, JIL, Piedade MTF, Müller E, Long SP, Junk WJ and Jones MB (2000) Very high productivity of the C4 aquatic grass Echinochloa polystachya in the Amazon floodplain confirmed by net ecosystem CO2 flux measurements. Oecologia 125:400–411

    Article  Google Scholar 

  • Mrini M, Senhaji F and Pimentel D (2001) Energy analysis of sugarcane production in Morocco. Environ. Develop. Sustain. 3: 109–126

    Article  Google Scholar 

  • Muchow RC, Spilman MF, Wood WW and Thomas MR (1994) Radiation interception and biomass accumulation in a sugarcane crop under irrigated tropical conditions. Aus. J. Agr. Res. 45: 3–49

    Article  Google Scholar 

  • Murray LD, Best LB, Jacobsen TJ and Braster ML (2003) Potential effects on grassland birds of converting marginal cropland to switchgrass biomass production. Biomass Bioenergy 25: 167–175

    Article  Google Scholar 

  • Muthuri FM, Jones MB and Imbamba SK (1989) Primary productivity of Papyrus (Cyperus papyrus) in a tropical swamp; Lake Naivasha, Kenya. Biomass 18: 1–14

    Article  Google Scholar 

  • Naidu S, Moose SP, Al-Shoaibi AK, Raines CA and Long SP (2003) Cold tolerance of C4 photosynthesis in Miscanthus x giganteus: Adaptation in amounts and sequence of C4 photosynthetic enzymes. Plant Physiol 132: 1688–1697

    Article  PubMed  CAS  Google Scholar 

  • Naidu SL and Long SP (2004) Potential mechanisms of low-temperature tolerance of C4 photosynthesis in Miscanthus x giganteus: an in vivo analysis. Planta 220: 145–155

    Article  PubMed  CAS  Google Scholar 

  • Nie G-Y, Long SP and Baker NR (1992) The effects of development at suboptimal growth temperatures on photosynthetic capacity and susceptibility to chilling-dependent photoinhibition in Zea mays. Physiol Plant. 85: 554–560

    Article  CAS  Google Scholar 

  • Nie G-Y, Robertson EJ, Fryer MJ, Leach RM and Baker NR (1995) Response of the photosynthetic apparatus in maize leaves grown at low temperature on transfer to normal growth temperature. Plant Cell Environ 18: 1–12

    Article  CAS  Google Scholar 

  • Parrish DJ and Fike JH (2005) The biology and agronomy of switchgrass for biofuels. Crit Rev Plant Sci 24: 423–459

    Article  Google Scholar 

  • Piedade MTF, Junk WJ and Long SP (1991) The productivity of the C4 grass Echinochloa polystachia on the Amazon. Ecology 72: 1456–1463

    Article  Google Scholar 

  • Pittermann J and Sage RF (2000) Photosynthetic performance at low temperature of Bouteloua gracilis Lag., a high-altitude C4 grass from the Rocky Mountains, USA. Plant Cell Environ 243: 811–823

    Article  Google Scholar 

  • Potvin C (1987) Differences in photosynthetic characteristics among northern and southern C4 plants. Physiol Plant. 85: 659–64

    Article  Google Scholar 

  • Prendergast HDV, Hattersley PW and Stone NE (1987) New structural/biochemical associations in leaf blades of C4 grasses (Poaceae) Aust. J. Plant Phys. 14: 403–420

    Google Scholar 

  • Press MC, Scholes JD and Barker MG (1999) Physiological Plant Ecology. Oxford: Blackwell Science

    Google Scholar 

  • Price L, Bullard M, Lyons H, Anthony S and Nixon P (2004) Identifying the yield potential of Miscanthus x giganteus: an assessment of the spatial and temporal variability of M. x giganteus biomass productivity across England and Wales. Biomass Bioenergy 26: 3–13

    Article  Google Scholar 

  • Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Ackert CA, Frederick WJ, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Temple R and Tschaplinski T (2006) The path forward for biofuel and biomaterials. Science 311: 484–489

    Article  PubMed  CAS  Google Scholar 

  • Raghavendra AS and Das VSR (1978) The occurrence of C4-photosynthesis: A supplementary list of C4 plants reported during late 1974-mid. 1977. Photosynthetica 12: 200–2008

    Article  PubMed  CAS  Google Scholar 

  • Raghu S, Anderson RC, Daehler CC, Davis AS, Wiedenmann RN, Simberloff D and Mack RN (2006) Adding biofuels to the invasive species fire? Science 313: 1742

    Article  PubMed  CAS  Google Scholar 

  • Righelato R and Spacklen DV (2007) Carbon mitigation by biofuels or by saving and restoring forests. Nature 317: 902

    CAS  Google Scholar 

  • Roman-Leshkov Y, Barrett CJ, Liu ZH and Dumesic JA (2007) Production of dimethyl furan for liquid fuels from biomass-derived carbohydrates. Nature 447: 992–986

    Article  CAS  Google Scholar 

  • Rowe RL, Street NR and Taylor G (2007) Identifying potential environmental impacts of large-scale development of dedicated bioenergy crops in the UK. Renew Sustain Energy Rev. doi:10.101b/jrser 2007.07.008

    Google Scholar 

  • Royal Society (2008) Sustainable biofuels: prospects and challenges. Science Policy Section. London: The Royal Society

    Google Scholar 

  • Rubin EM (2008) Genomics of cellulosic biofuels. Nature 454: 841–845

    Article  PubMed  CAS  Google Scholar 

  • Saballos A (2008) Development and utilization of sorghum as a bioenergy crop. In: Vermerris W (ed) Genetic Improvement of Bioenergy Crops. New York: Springer. pp 211–248

    Chapter  Google Scholar 

  • Sage RF, Pearcy RW and Seemann JR (1987) The nitrogen use efficiency of C3 and C4 plants. III Leaf nitrogen effects on the activity of carboxylating enzymes in Chenopodium album (L) and Amaranthus retroflexus (L). Plant Physiol 85: 355–359

    Article  PubMed  CAS  Google Scholar 

  • Sage RF and Kubien D (2007) The temperature response of C3 and C4 photosynthesis. Plant Cell Environ 30, 1086–1106

    Article  PubMed  CAS  Google Scholar 

  • Sage RF, Wedin DA and Li M (1999) The biogeography of C4 photosynthesis. In: Sage RF and Monson RK (eds) pp. 313–373 Academic Press, San Diego, CA, USA

    Article  PubMed  CAS  Google Scholar 

  • Samson R, Mani S, Boddy R, Sokhansanj S, Quesada D, Urquiaga S, Reis V and Ho Lem C (2005) The potential of C4 perennial grasses for developing a global bioheat industry. Crit Rev Plant Sci 24: 461–495

    Article  Google Scholar 

  • Scharlemann JP and Laurance WF (2008) How green are biofuels? Science 319: 43–44

    Article  PubMed  CAS  Google Scholar 

  • Schmer MR, Vogel KP, Mitchell RB and Perrin RK (2008) Net energy of cellulosic ethanol from switchgrass. Proc Natl Acad Sci USA 105: 464–469

    Article  PubMed  CAS  Google Scholar 

  • Schneckenberger K and Kuzyakor Y (2007) Carbon sequestration under Miscanthus in sandy and loamy soils estimated by natural 13C abundance. J Plant Nutr Soil Sci 170: 538–542

    Article  CAS  Google Scholar 

  • Searchinger T, Heimlich R, Houghton RA, Dong F, Elobeid A, Fabiosa J, Tokgoz S, Hayes D and Yu T-H (2008) Use of US croplands for biofuels increases greenhouse gases through emissions from land-use changes. Science 319: 1238–1240

    Article  PubMed  CAS  Google Scholar 

  • Semere T and Slater FM (2007) Invertebrate populations in miscanthus (Miscanthus x gigantieus) and reed canary-grass (Phalaris arundinacea) fields. Biomass Bioenergy 31: 30–39

    Article  Google Scholar 

  • Sims REH, Hastings A, Schlamadinger B, Taylor G and Smith P (2006) Energy crops: current status and future prospects. Global Change Biol 12: 2054–2076

    Article  Google Scholar 

  • Smith BN and Brown WV (1973) The Kranz syndrome in the Gramineae as indicated by carbon isotope ratios. Amer J. Bot. 60: 505–513

    Article  PubMed  CAS  Google Scholar 

  • Smith P, Martino D, Cai Z, Gawry D, Janzen H, Kumar P, McCari B, Ogle S, O’Mara, F, Rice, C Scholes B and Sirotenko O (2007) Agriculture: In: Metz B, Davidson OR, Bosch PR, Dave R, Meyer LA (eds) Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press

    Google Scholar 

  • Somerville C (2007) Biofuels. Curr Biol 17: R115–R119

    Article  PubMed  CAS  Google Scholar 

  • Stampfl PF, Clifton-Brown JC and Jones M (2007) ­European-wide GIS-based modelling system for quantifying the feedstock from Miscanthus and the potential contribution to renewable energy targets. Global Change Biol 13: 2283–2295

    Article  Google Scholar 

  • Styles D and Jones MB (2008) Miscanthus and willow heat production – an effective land-use strategy for greenhouse emission avoidance in Ireland? Energy Policy 36: 97–107

    Article  Google Scholar 

  • Teeri JA and Stowe LG (1976) Climatic patterns and the distribution of C4 grasses in North America. Oecologia 23: 1–12

    Google Scholar 

  • Tew LT and Cobill RM (2008) Genetic improvement of sugarcane (Saccharum spp.) as an energy crop. In: Vermerris W (ed) Genetic Improvement of Bioenergy Crops. New York: Springer. pp 249–272

    Google Scholar 

  • Tillman DA (2000) Biomass cofiring: the technology, the experience, the combustion consequences. Biomass Bioenergy 19: 365–384

    Article  Google Scholar 

  • Tillman D, Hill J and Lehman C (2006) Carbon-negative biofuels from low-input high-diversity grassland biomass. Science 314: 1598–1600

    Article  CAS  Google Scholar 

  • U.S. DOE (2006) Breaking the biological barriers to cellulosic ethanol: a joint research agenda. DOE/SC-0095, US Department of Energy Office of Science and Office of Energy Efficiency and Renewable Energy (www.doegenomestolife.org/biofuels/)

  • van Esbroeck GA, Hussey MA and Sanderson MA (2003) Variation between Alamo and Cave-in-Rock Switchgrass in response to photoperiod extension. Crop Sci 43: 639–643

    Google Scholar 

  • Vargas LA, Anderson MN, Jensen CR and Jorgensen U (2002) Estimation of leaf area index, light interception and biomass accumulation of Miscanthus sinensis ‘Goliath’ from radiation measurements. Biomass Bioenergy 22: 1–14

    Article  Google Scholar 

  • Venendaal R, Jorgensen U and Foster CA (1997) European energy crops: a synthesis. Biomass Bioenergy 13: 147–185

    Article  Google Scholar 

  • Vermerris W (ed) (2008) Genetic Improvement of Bioenergy Crops. New York: Springer

    Google Scholar 

  • Wang DF, Portis AR, Moose SP and Long SP (2008) Cool C4 photosynthesis: Pyruvate Pi dikinase expression and activity corresponds to the exceptional cold tolerance of carbon assimilation in Miscanthus x giganteus. Plant Physiol 148: 557–567

    Article  PubMed  CAS  Google Scholar 

  • Warner DA and Edwards GE (1993) Effects of polyploidy on photosynthesis. Photosynthesis Res. 35: 135–147

    Article  PubMed  CAS  Google Scholar 

  • Warner DA, Ku MSB and Edwards GE (1987) Photosynthesis, leaf anatomy, and cellular constituents in the polyploid C4 grass Panicum virgatum. Plant Physiol 84: 461–466

    Article  PubMed  CAS  Google Scholar 

  • Wullschleger SD, Sanderson MA, McLaughlin SB, Birader DP and Royburn AL (1996) Photosynthetic rates and ploidy levels among populations of switchgrass. Crop Sci. 36: 306–312

    Article  PubMed  CAS  Google Scholar 

  • Wynn JG and Bird MI (2007) C4-derived soil organic carbon decomposes faster than its C3 counterpart in mixed C3/C4 soils. Global Change Biol 13: 2206–2217

    Article  Google Scholar 

  • Yuan JS, Tiller KH, Al-Ahmed H, Stewart NR and Stewart CN (2008) Plants to power: bioenergy to fuel the future. Trends Plant Sci 13: 421–429

    Article  PubMed  CAS  Google Scholar 

  • Yazaki Y, Mariko S and Koizum H (2004) Carbon dynamics and budget in a Miscanthus sinesis grassland in Japan. Ecol Res 19: 511–520

    Article  Google Scholar 

  • Zhu X-G, Long SP and Ort DR (2008) What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? Curr Opin Biotechnol 19: 153–159

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael B. Jones .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Netherlands

About this chapter

Cite this chapter

Jones, M.B. (2010). Chapter 19 C4 Species as Energy Crops. In: Raghavendra, A., Sage, R. (eds) C4 Photosynthesis and Related CO2 Concentrating Mechanisms. Advances in Photosynthesis and Respiration, vol 32. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9407-0_19

Download citation

Publish with us

Policies and ethics