Skip to main content

The development of new algorithms for remote sensing of snow conditions based on data from the catchment of Øvre Heimdalsvatn and the vicinity

  • Subalpine Lakes
  • Chapter
The subalpine lake ecosystem, Øvre Heimdalsvatn, and its catchment: local and global changes over the last 50 years

Part of the book series: Developments in Hydrobiology 211 ((DIHY,volume 211))

  • 217 Accesses

Abstract

The catchment of Øvre Heimdalsvatn and the surrounding area was established as a site for snow remote sensing algorithm development, calibration and validation in 1997. Information on snow cover and snowmelt are important for understanding the timing and scale of many lake ecosystem processes. Field campaigns combined with data from airborne sensors and spaceborne high-resolution sensors have been used as reference data in experiments over many years. Several satellite sensors have been utilised in the development of new algorithms, including Terra MODIS and Envisat ASAR. The experiments have been motivated by operational prospects for snow hydrology, meteorology and climate monitoring by satellite-based remote sensing techniques. This has resulted in new time-series multi-sensor approaches for monitoring of snow cover area (SCA) and snow surface wetness (SSW). The idea was to analyse, on a daily basis, a time series of optical and radar satellite data in multi-sensor models. The SCA algorithm analyses each optical and synthetic aperture radar (SAR) image individually and combines them into a day product based on a set of confidence functions. The SSW algorithm combines information about the development of the snow surface temperature and the snow grain size (SGS) in a time-series analysis. The snow cover algorithm is being evaluated for application in a global climate monitoring system for snow variables. The successful development of these algorithms has led to operational applications of snow monitoring in Norway and Sweden, as well as enabling the prediction of the spring snowmelt flood and thus the initiation of many lake production processes.

Guest editors: J. E. Brittain & R. Borgstrøm / The subalpine lake ecosystem, Øvre Heimdalsvatn, and its catchment: local and global changes over the last 50 years

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amlien, J., & R. Solberg, 2003. A comparison of temperature retrieval algorithms for snow covered surfaces. Proceedings of the International Geoscience and Remote Sensing Symposium, Toulouse, France, 21–25 July 2003.

    Google Scholar 

  • Andersen, T., 1982. Operational snow mapping by satellites. Proceedings of the Exeter Symposium, July 1982. IAHS publications 138: 149–154.

    Google Scholar 

  • Borgstrøm, R., J. Museth & J. E. Brittain, 2010. The brown trout (Salmo trutta) in the lake, Øvre Heimdalsvatn: long-term changes in population dynamics due to exploitation and the invasive species, European minnow (Phoxinus phoxinus). Hydrobiologia. doi:10.1007/s10750-010-0161-7.

  • Brittain, J. E., H. E. Bjørnstad, B. Salbu & D. H. Oughton, 1992. Winter transport of Chernobyl radionuclides from a montane catchment to an ice-covered lake. Analyst 117: 515–519.

    Article  CAS  PubMed  Google Scholar 

  • Brittain, J. E. & H. E. Bjørnstad, 2010. A long-term study of catchment inputs of 137Cs to a subalpine lake in the form of allochthonous terrestrial plant material. Hydrobiologia. doi:10.1007/s10750-010-0163-5.

  • Dozier, J., 1989. Spectral signature of alpine snow cover from the Landsat Thematic Mapper. Remote Sensing of Environment 28: 9–22.

    Article  Google Scholar 

  • Fily, M., B. Bourdelles, J. P. Dedieu & C. Sergent, 1997. Comparison of in situ and Landsat Thematic Mapper derived snow grain characteristics in the Alps. Remote Sensing of Environment 59: 452–460.

    Article  Google Scholar 

  • Green, R. O. & J. Dozier, 1995. Measurement of the spectral absorption of liquid water in melting snow with an imaging spectrometer. Summaries of the Fifth Annual JPL Airborne Earth Science Workshop, January 23–26, 1995, JPL Publication no. 95-1: 91–94.

    Google Scholar 

  • Guneriussen, T., H. Johnsen, R. Solberg & E. Volden, 1997. Snow monitoring using EMISAR and ERS-1 data within the European Multi-sensor Airborne Campaign EMAC-95. Proceedings of the International Geoscience and Remote Sensing Symposium, Singapore, 3–8 August 1997: 631–633.

    Google Scholar 

  • Key, J. R., J. B. Collins, C. Fowler & R. S. Stone, 1997. High-latitude surface temperature estimates from thermal satellite data. Remote Sensing of Environment 61: 302–309.

    Article  Google Scholar 

  • Koskinen, J., S. Metsämäki, J. Grandell, S. Jänne, L. Matikainen & M. Hallikainen, 1999. Snow monitoring using radar and optical satellite data. Remote Sensing of Environment 69: 16–29.

    Article  Google Scholar 

  • Kvambekk, Å. & K. Melvold, 2010. Long-term trends in water temperature and ice cover in the subalpine lake, Øvre Heimdalsvatn, and nearby lakes and rivers. Hydrobiologia. doi:10.1007/s10750-010-0158-2.

  • Larsson, P. & K. Tangen, 1975. The input and significance of particulate terrestrial organic carbon in a subalpine freshwater ecosystem. In Wielgolaski, F. E. (ed.), Fennoscandian Tundra Ecosystems, Part 1. Ecological Studies 16. Springer, New York: 351–359.

    Google Scholar 

  • Larsson, P., J. E. Brittain, L. Lien, A. Lillehammer & K. Tangen, 1978. The lake ecosystem of Øvre Heimdalsvatn. Holarctic Ecology 1: 304–320.

    Google Scholar 

  • Larsson, P., H. Hansen & L. K. Bjørnstad Helland, 2010. Between year variations in the development of crustacean zooplankton in the Norwegian subalpine lake, Øvre Heimdalsvatn. Hydrobiologia. doi:10.1007/s10750-010-0159-1.

  • Malnes, E. & T. Guneriussen, 2002. Mapping of snow covered area with Radarsat in Norway. Proceedings of the International Geoscience and Remote Sensing Symposium, 24–28 June 2002, Toronto, Canada: 683–685.

    Google Scholar 

  • Malnes E., R. Storvold & I. Lauknes, 2004. Near real time snow covered area mapping with Envisat ASAR wideswath in Norwegian mountainous areas. ESA ENVISAT & ERS Symposium 2004, Salzburg, Austria, 6–10 September 2004 (ESA SP-572, April 2005).

    Google Scholar 

  • Nagler, T. & H. Rott, 2000. Retrieval of wet snow by means of multitemporal SAR data. IEEE Transactions of Geoscience and Remote Sensing 38: 754–765.

    Article  Google Scholar 

  • Nolin, A. W. & J. Dozier, 1993. Estimating snow grain-size using AVIRIS data. Remote Sensing of Environment 44: 231–238.

    Article  Google Scholar 

  • Orthe, N. K., 2003. How to estimate snow covered area from a time series of Radarsat images. M.Sc.thesis, University of Oslo, Norway (in Norwegian).

    Google Scholar 

  • Østrem, G., T. Andersen & H. Ødegaard, 1979. Operational use of satellite data for snow inventory and runoff forecasting. Satellite Hydrology, Proceedings of the Pecora Symposium, American Water Resources Association: 230–234.

    Google Scholar 

  • Painter, T. H., D. A. Roberts, R. O. Green & J. Dozier, 1998. The effect of grain size on spectral mixture analysis of snow-covered area from AVIRIS data. Remote Sensing of Environment 65: 320–332.

    Article  Google Scholar 

  • Rosenthal, W., 1996. Estimating alpine snow cover with unsupervised spectral unmixing. Proceedings of the International Geoscience and Remote Sensing Symposium, 27–31 May 1996, Lincoln, Nebraska, USA: 2252–2254.

    Google Scholar 

  • Salbu, B., H. E. Bjørnstad & J. E. Brittain, 1992. Fractionation of Cs-isotopes and 90-Sr in snowmelt run-off and lake waters from a contaminated Norwegian mountain catchment. Journal of Radioanalytical and Nuclear Chemistry 156: 7–20.

    Article  CAS  Google Scholar 

  • Salomonson, V. V. & I. Appel, 2004. Estimating fractional snow cover from MODIS using the normalized difference snow index. Remote Sensing of Environment 89: 351–360.

    Article  Google Scholar 

  • Salomonson, V. V. & I. Appel, 2006. Development of the Aqua MODIS NDSI fractional snow cover algorithm and validation results. IEEE Transactions of Geoscience and Remote Sensing 44: 1747–1756.

    Article  Google Scholar 

  • Solberg, R. & T. Andersen, 1994. An automatic system for operational snow-cover monitoring in the Norwegian mountain regions. Proceedings of the International Geoscience and Remote Sensing Symposium, 8–12 August 1994, Pasadena, California, USA: 2084–2086.

    Google Scholar 

  • Solberg, R., J. Amlien, H. Koren, L. Eikvil, E. Malnes & R. Storvold, 2004. Multi-sensor/multi-temporal analysis of ENVISAT data for snow monitoring. ESA ENVISAT & ERS Symposium 2004, Salzburg, Austria, 6–10 September 2004 (ESA SP-572, April 2005).

    Google Scholar 

  • Solberg, R., J. Amlien, H. Koren, L. Eikvil, E. Malnes & R. Storvold, 2005. Multi-sensor/multi-temporal approaches for snow cover area monitoring. Proceedings of EARSeL LIS-SIG Workshop, Berne, February 21–23, 2005.

    Google Scholar 

  • Tait, A. B., D. K. Hall, J. L. Foster & R. L. Armstrong, 2000. Utilizing multiple datasets for snow-cover mapping. Remote Sensing of Environment 72: 111–126.

    Article  Google Scholar 

  • Vikhamar, D., 2003. Snow-cover mapping in forests by optical remote sensing. Ph.D. thesis, University of Oslo.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rune Solberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Solberg, R., Koren, H., Amlien, J., Malnes, E., Schuler, D.V., Orthe, N.K. (2010). The development of new algorithms for remote sensing of snow conditions based on data from the catchment of Øvre Heimdalsvatn and the vicinity. In: Brittain, J.E., Borgstrøm, R. (eds) The subalpine lake ecosystem, Øvre Heimdalsvatn, and its catchment: local and global changes over the last 50 years. Developments in Hydrobiology 211, vol 211. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9388-2_4

Download citation

Publish with us

Policies and ethics