Advertisement

Independent-Double-Gate FINFET SRAM Cell for Drastic Leakage Current Reduction

  • Kazuhiko Endo
  • Shin-ichi O’uchi
  • Yuki Ishikawa
  • Yongxun Liu
  • Takashi Matsukawa
  • Kunihiro Sakamoto
  • Meishoku Masahara
  • Junichi Tsukada
  • Kenichi Ishii
  • Eiichi Suzuki
Chapter
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 66)

Abstract

The decreased feature size of metal-oxide-semiconductor (MOS) devices in ultra-large-scale-integrated circuits (ULSIs) requires the nano-scale complementary MOS (CMOS) fabrication technology. As silicon devices are scaled down to the nanometer regime, the device technology is facing to several difficulties. Standby power consumption in CMOS devices is now one of the most serious problem and becoming a limiting factor in MOSFET scaling [1]. Short channel effects (SCEs) such as threshold voltage (V th ) roll off and sub-threshold slope (S-factor) degradation causes significant increased in power consumption. Catastrophic increase in static power consumption due to shot channel effects (SCEs) becomes the serious problem in future VLSI circuits. Especially, the leakage current in the SRAM array is the most critical issue for a low-power SoC because it occupies the considerable part of LSIs.

Keywords

Leakage Current Control Gate SRAM Cell CMOS Inverter Drain Induce Barrier Lowering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement The author would like to thank Ms. Yuki Ishikawa, Dr. Yongxun Liu, Dr. Takashi Matsukawa, Dr. Shin-ichi O’uch, Dr. Meishoku Masahara, Mr. Junichi Tsukada, Mr. Kenichi Ishii, Ms. Hiromi Yamauchi, and Dr. Eiichi Suzuki for their support and helpful discussions.This work was supported in part by the Innovation Research Project on Nanoelectronics Materials and Structures t from the METI.

References

  1. 1.
    D.J. Frank, Tech. Digest Int. Elec. Dev. Meeting, 643–646 (2002)Google Scholar
  2. 2.
    T. Sekigawa, Y. Hayashi, Solid State Electron. 27, 827 (1984)CrossRefGoogle Scholar
  3. 3.
    D. Hisamoto, W. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, E. Anderson, T. King, J. Bokor, C. Hu, IEEE Trans. Electr. Dev. 47, 2320 (2000)CrossRefGoogle Scholar
  4. 4.
    H. Kawasaki, K. Okano, A. Kaneko, Y. Yagishita, T. Izumida, T. Kanemura, K. Kasai, T. Ishida, T. Sasaki, Y. Takeyama, N. Aoki, N. Ohtsuka, K. Suguri, K. Eguchi, Y. Tsunashima, S. Inaba, K. Ishimaru, H. Ishiuchi, Digest of Technical Papers, IEEE VLSI Technology Symposium (2006), p. 86–87Google Scholar
  5. 5.
    A. Dixit, K.G. Anil, E. Baravelli, P. Roussel, A. Mercha, C. Gustin, M. Bamal, E. Grossar, R. Rooyackers, E. Augendre, M. Jurczak, S. Biesemans, K. De Meyer, Tech. Digest Int. Elec. Dev. Meeting (2006), pp. 709–712Google Scholar
  6. 6.
    A. Bansal, S. Mukhopadhyay, K. Roy, IEEE Trans. Electr. Dev. 47, 1409 (2007)CrossRefGoogle Scholar
  7. 7.
    P. Francis, A. Terao, D. Flandre, F. Van de Wiele, IEEE Trans. Electr. Dev. 41, 715 (1994)CrossRefGoogle Scholar
  8. 8.
    Y. Liu, M. Masahara, K. Ishii, T. Sekigawa, H. Takashima, H. Yamauchi, E. Suzuki, IEEE Electr. Dev. Lett. 25, 510 (2004)CrossRefGoogle Scholar
  9. 9.
    D.M. Fried, J.S. Duster, K.T. Kornegay, IEEE Electr. Dev. Lett. 24, 59 (2003)CrossRefGoogle Scholar
  10. 10.
    L. Mathew, Y. Du, S. Kalpat, M. Sadd, M. Zavala, T. Stephens, R. Mora, R. Rai, S. Becker, C. Parker, D. Sing, R. Shimer, J. Sanez, A.V.-Y. Thean, L. Prabhu, M. Moosa, B.-Y. Nguyen, J. Mogab, G.Workman, A. Vandooren, Z. Shi, M. Chowdhury, W. Zhang, J. Fossum, Digest of Technical Papers, IEEE VLSI Technology Symposium (2005), pp. 200– 201Google Scholar
  11. 11.
    L. Mathew, Y. Du, A. Thean, M. Sadd, A. Vandooren, C. Parker, T. Stephens, R. Mora, R. Rai, M. Zavala, D. Sing, S. Kalpat, J. Hughes, R. Shimer, S. Jallepalli, G. Workman, W. Zhang, J. Fossom, B. White, B. Nguyen, J. Mogab, in Proceedings of the IEEE SOI Conference (2004), p. 187Google Scholar
  12. 12.
    S. O’uchi, M. Masahara, K. Endo, Y.X. Liu, T. Matsukawa, K. Sakamoto, T. Sekigawa, H. Koike, E. Suzuki, ICICE Trans. E91-C, 534 (2008).Google Scholar
  13. 13.
    K. Endo, M. Masahara, Y.X. Liu, T. Matsukawa, K. Ishii, E. Sugimata, H. Takashima, H. Yamauchi, E. Suzuki, Jpn. J. Appl. Phys 45, 3097 (2006)CrossRefGoogle Scholar
  14. 14.
    M. Koh-Masahara, K. Esuga, H. Furumoto, T. Shirahata, E. Seo, K. Shibahara, S. Yokoyama, M. Hirose, Jpn. J. Appl. Phys 38, 2324 (1999)CrossRefGoogle Scholar
  15. 15.
    M. Togo, T. Fukai, Y. Nakahara, S. Koyama, M. Makabe, E. Hasegawa, M. Nagase, T. Matsuda, K. Sakamoto, S. Fujiwara, Y. Goto, T. Yamamoto, T. Mogami, M. Ikeda, Y. Mamagata and K. Imai, Digest of Technical Papers, IEEE VLSI Technology Symposium, 2004, p. 88Google Scholar
  16. 16.
    M. Masahara, Y. Liu, K. Sakamoto, K. Endo, T. Matsukawa, K Ishii, T. Sekigawa, H. Yamauchi, H Tanoue, S. Kanemaru, H. Koike and E. Suzuki, IEEE Trans. Electron Devices 52, 2046 (2005).CrossRefGoogle Scholar
  17. 17.
    Y.X. Liu, S. Kijima, E. Sugimata, M. Masahara, K. Endo, T. Matsukawa, K. Ishii, K. Sakamoto, T. Sekigawa, H. Yamauchi, Y. Takanashi, E. Suzuki, IEEE Trans. Nanotechnology 5, 201 (2007)Google Scholar
  18. 18.
    M. Masahara, R. Surdeanu, L. Witters, G. Doornbos, V.H. Nguyen, G. Van den Bosch, C. Vrancken, K. Devriendt, F. Neuilly, E. Kunnen, M. Jurczak, S. Biesemans, IEEE Electron Device Lett. 28, 217 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Kazuhiko Endo
    • 1
  • Shin-ichi O’uchi
    • 1
  • Yuki Ishikawa
    • 1
  • Yongxun Liu
    • 1
  • Takashi Matsukawa
    • 1
  • Kunihiro Sakamoto
    • 1
  • Meishoku Masahara
    • 1
  • Junichi Tsukada
    • 1
  • Kenichi Ishii
    • 1
  • Eiichi Suzuki
    • 1
  1. 1.National Institute of AISTTsukubaJapan

Personalised recommendations