Sampled Analog Signal Processing: From Software-Defined to Software Radio

  • François Rivet
  • André Mariano
  • Yann Deval
  • Dominique Dallet
  • Jean-Baptiste Begueret
  • Didier Belot
Chapter
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 66)

Abstract

Wireless communication systems are faced with the emergence of various standards dedicated to voice transmission, data transfer and localization. The past decade has seen a fast evolution regarding the standards. Data rates have been increased. Carrier frequencies are higher. Modulations are more complex. Considering these changes, conventional architectures cannot challenge the multimedia convergence in the case of mobile terminals. Thus, new architectures are to be studied in order to respond to mobile terminal constraints. This chapter presents an overview of new solutions to overcome technological matters.

Keywords

Signal Envelope Defense Advance Research Project Agency Software Radio Receiver Architecture Digital Receiver 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    R. Schiphorst, F.W. Hoeksema, C.H. Slump, The front end of software-defined radio: Possibilities and challenges, in Proceedings of the Annual CTIT Workshop on Mobile Communications, 2001Google Scholar
  2. 2.
    R. Walden, Performance trends for analog to digital converters. Commun. Mag. IEEE 37(2), 96–101 (Feb 1999)CrossRefGoogle Scholar
  3. 3.
    P. Seen, Radio logicielle dans les terminaux: quels impacts technologiques ? 2007Google Scholar
  4. 4.
    A.E. Cosand, J.F. Jensen, H.C. Choe, C.H. Fields, IF-sampling fourth-order Bandpass ΔΣ modulator for digital receiver applications. IEEE J. Solid-State Circ. 39, 1633–1639 (2004)CrossRefGoogle Scholar
  5. 5.
    J.A. Cherry, W.M. Snelgrove, Continuous-Time Delta-Sigma Modulators for High-Speed A/D Conversion (Kluwer, Boston, MA, 2000) ISBN: 0-7923-8625-6Google Scholar
  6. 6.
    A. Jayaraman, P. Asbeck, K. Nary, S. Beccue, K.C. Wang, Bandpass delta-sigma modulator with 800MHz center frequency, in GaAs IC Symposium, 1997, pp. 95–98Google Scholar
  7. 7.
    W. Gao, J.A. Cherry, W.M. Snelgrove, A 4GHz fourth-order SiGe HBT band pass ΔΣ modulator, in VLSI Circuits Symposium, 1998, pp. 174–175Google Scholar
  8. 8.
    R. Schreier, W.M. Snelgrove, Decimation for bandpass sigma-delta analog-to-digital conversion. IEEE Int. Symp. Circ. Syst. 3, 1801–1804 (1990)CrossRefGoogle Scholar
  9. 9.
    T. Salo, S. Lindfors, K.A.I. Halonen, A 80-MHz bandpass ΔΣ modulator for 100-MHz IF receiver. J. Solid State Circ. 37, 798–808 (2002)CrossRefGoogle Scholar
  10. 10.
    U.V. Koc, J. Lee. Direct RF sampling continuous-time bandpass Delta-Sigma A/D converter design for 3G wireless applications, in IEEE Internatinal Symposium on Circuits and Systems, 2004, pp. 409–412Google Scholar
  11. 11.
    T. Salo, S.J. Lindfors, K.A.I. Halonen, 80-MHz bandpass ΔΣ modulators for multimode digital IF receivers. J. Solid State Circ. 38(3), 464–474 (2003)CrossRefGoogle Scholar
  12. 12.
    O. Shoaei, W.M. Snelgrove, A multi-feedback design for LC bandpass Delta-Sigma modulators. Int. Symp. Circ. Syst. 1, 171–174 (1995)CrossRefGoogle Scholar
  13. 13.
    R. Gray, Oversampled Sigma-Delta modulation. IEEE Trans. Commun. 35, 481–489 (1987)CrossRefMATHGoogle Scholar
  14. 14.
    A. Mariano, D. Dallet, Y. Deval, J.B. Begueret, VHDL-AMS behavioral modeling of high-speed continuous-time Delta-Sigma modulator, in IWADC – International Workshop on ADC Modelling and Testing, Sept 2007, pp. 118–121Google Scholar
  15. 15.
    F Rivet, Y Deval, J-B Bégueret, D Dallet, D Belot, A disruptive software-defined radio receiver architecture based on sampled analog signal processing, IEEE Radio Frequency Integrated Circuits Symposium (RFIC’07), Honolulu, USA, June 3–5, 2007Google Scholar
  16. 16.
    F. Rivet, Y. Deval, J.-B. Begueret, D. Dallet, P. Cathelin, D. Belot, A disruptive receiver architecture dedicated to software defined radio, IEEE Transactions on Circuits and Systems (TCAS-II), Software Defined Radio Special Issue, Apr 2008, pp. 344–348Google Scholar
  17. 17.
    E. Swartzlander, W. Young, S. Joseph, A radix 4 delay commutator for fast fourier transform processor implementation. IEEE J. Solid-State Circ. 19, 702–709 (Oct. 1984)CrossRefGoogle Scholar
  18. 18.
    A. El-Khashab, Modular pipeline fast fourier transform algorithm, Ph.D. dissertation, University of Texas at Austin, 2003Google Scholar
  19. 19.
    E. Monastra, J. Huah, Pipelined fast fourier transform processor, US Patent number 5.038.311Google Scholar
  20. 20.
    S. Sayegh, A pipeline processor for mixed-size FFT’s. IEEE Trans. Signal Process. 40, 1892–1900 (Aug. 1992)CrossRefMATHGoogle Scholar
  21. 21.
    F. Rivet, Y. Deval, J.-B. Begueret, D. Dallet, P. Cathelin, D. Belot, From software-defined to software radio: Analog signal processor features, IEEE Radio and Wireless Symposium (RWS’09), San Diego, USA, January 18–22, 2009Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • François Rivet
    • 1
  • André Mariano
    • 2
  • Yann Deval
    • 2
  • Dominique Dallet
    • 2
  • Jean-Baptiste Begueret
    • 2
  • Didier Belot
    • 3
  1. 1.IMS LabFrançois RIVET IC Design teamTalenceFrance
  2. 2.University of BordeauxBordeauxFrance
  3. 3.STMicroelectronics CrollesCrollesFrance

Personalised recommendations