Adriano DC (1986) Trace elements in the terrestrial environment. Springer-Verlag, New York, pp 105–123
Google Scholar
Adriano DC (2001) Trace elements in terrestrial environments. Biochemistry, Alburry, Australia, pp 1–16
Google Scholar
Alaoui-Sosse B, Genet P, Vinit-Dunand F, Toussaint ML, Epron D, Badot PM (2004) Effect of copper on growth in cucumber plants (Cucumis sativus) and its relationships with carbohydrate accumulation and changes in ion contents. Plant Sci 166:1213–1218
CAS
Google Scholar
Alcantara E, Romera FJ, Canete M, De la Guardia MD (1994) Effects of heavy metals on both induction and function of root Fe(III) reductase in Fe deficient cucumber (Cucumis sativus L.) plants. J Exp Bot 45:1893–18 98
CAS
Google Scholar
Ali MB, Vajpayee P, Tripathi RD, Rai UN, Singh SN, Singh SP (2003) Phytoremediation of lead, nickel and copper by Salix acmophylla Boiss.: Role of antioxidant enzymes and antioxidant substances. B Environ Contam Toxicol 70:462–469
CAS
Google Scholar
Anderson AJ, Meyer DR, Mayer FK (1972) Heavy metal toxicities: Levels of nickel, cobalt and chromium in the soil and plants associated with visual symptoms and variation in growth of an oat crop. Aust J Agric Res 24:557–71
Google Scholar
Aora AS, Saxena S, Sharma DK (2006) Tolerance and phytoaccumulation of chromium by three Azolla species. World J Microbiol Biotechnol 22:97–100
Google Scholar
Assche F Van, Clijsters H (1990) Effect of metals on enzyme activity in plants. Plant Cell Environ 13:195–206
Google Scholar
Baker AJM, Walker PL (1989) Physiological responses of plants to heavy metals and the quantitificatioin of tolerance and toxicity. Chem Spec Biovail 1:7–17
CAS
Google Scholar
Baker AJM, Reeves RD, Hajar ASM (1994) Heavy metal accumulation and tolerance in British population of the metallophyte Thalaspi caerulesens J. and C. Presl (Brassicaeae). New Phytol 127:61–68
CAS
Google Scholar
Barcelo J, Poschenriender C, Ruano A, Gunse B (1985) Leaf water potential in Cr(VI) treated bean plants (Phaseolus vulgaris L). Plant Physiol Suppl 77:163–4
Google Scholar
Barcelo J, Poschenrieder C, Gunse B (1986) Water relations of chromium VI treated bush bean plants (Phaseolus vulgaris L. cv. Contender) under both normal and water stress conditions. J Exp Bot 37:178–187
CAS
Google Scholar
Barcelo J, Poschenrieder CH (1990) Plant water relations as affected by heavy metal stress: a review. J Plant Nutr 13:1–37
CAS
Google Scholar
Barcelo J, Poschenrieder C, Vazquez MD, Gunse B, Vernet JP (1993) Beneficial and toxic effects of chromium in plants: Solution culture, pot and field studies. Studies in Environmental Science No. 55, Paper Presented at the 5th International Conference on Environmental Contamination. Morges, Switzerland
Google Scholar
Barcelo J, Poschenrieder C, Lombini A, Llugany M, Bech J, Dinelli E (2001) Mediterranean plant species for phytoremediation. In: Abstracts costs action 837 WG2 workshop on phytoremediation of trace elements in contaminated soils and waters (with special emphasis on Zn, Cd, Pb and As), Madrid, 5–7 April, p 23
Google Scholar
Bartisz G (1997) Oxidative stress in plants. Acta Physiol Plant 19:47–64
Google Scholar
Barton LL, Johnson GV, O’Nan AG, Wagener BM (2000) Inhibition of ferric chelate reductase in alfalfa roots by cobalt, nickel, chromium, and copper. J Plant Nutr 23:1833–1845
CAS
Google Scholar
Becquer T, Quantin C, Sicot M, Boudot JP (2003) Chromium availability in ultramafic soils from New Caledonia. Sci Total Environ 301:251– 261
PubMed
CAS
Google Scholar
Belimov AA, Safronova VI, Tsyganov VE, Borisov AY, Kozhemyakov AP, Stepanok VV, Martenson AM, Gianinazzi-Pearson V, Tikhonovich IA (2003) Genetic variability in tolerance to cadmium and accumulation of heavy metals in pea (Pisum sativum L.). Euphytica 131(1):25–35
CAS
Google Scholar
Bera AK, Kanta-Bokaria AK, Bokaria K (1999) Effect of tannery effluent on seed germination, seedling growth and chloroplast pigment content in mungbean (Vigna radiata L. Wilczek). Environ Ecol 17(4):958–961
Google Scholar
Bertrand M, Poirier I (2005) Photosynthetic organisms and excess of metals. Photosynthetica 43(3):345–353
CAS
Google Scholar
Bishnoi NR, Chugh LK, Sawhney SK (1993a) Effect of chromium on photosynthesis, respiration and nitrogen fixation in pea (Pisum sativum L) seedlings. J Plant Physiol 142:25–30
CAS
Google Scholar
Bishnoi NR, Dua A, Gupta VK, Sawhney SK (1993b) Effect of chromium on seed germination, seedling growth and yield of peas. Agric Ecosyst Environ 47:47–57
CAS
Google Scholar
Blaylock JM, Huang JW (2000) Phytoextraction of metals; In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: Using plants to clean up the environment. Wiley, New York
Google Scholar
Boonyapookana B, Upatham ES, Kruatrachue M, Pokethitiyook P, Singhakaew S (2002) Phytoaccumulation and phytotoxicity of cadmium and chromium in duckweed Wolffia globosa. Int J Phytoremed 4:87–100
CAS
Google Scholar
Booth B (2005) The added danger of counterfeit cigarettes. Environ Sci Technol 39:34A
PubMed
CAS
Google Scholar
Bowen JE (1987) Physiology of genotyping differences in zinc and copper uptake in rice and tomato. Plant Soil 99:115–125
CAS
Google Scholar
Brooks RR (1998) Plants that hyperaccumulate heavy metals. Cambridge University Press, New York
Google Scholar
Brown SL, Chaney RL, Angle JS, Baker AJM (1994) Phytoremediation potential of Thlaspi caerulescens and Bladder campion for zinc- and cadmium contaminated soil. J Environ Qual 23:1151–1157
CAS
Google Scholar
Cataldo DA, Garland TR, Wildung RE (1983) Cadmium uptake kinetics in intact soybean plants. Plant Physiol 73:844–848
PubMed
CAS
Google Scholar
Cary EE, Allaway WH, Olson OE (1977) Control of Cr concentrations in food plants. 1. Absorption and translocation of Cr by plants. J Agric Food Chem 25(2):300–304
PubMed
CAS
Google Scholar
Cavallini A, NataliL, Durante M Maserti B (1999) Mercury uptake, distribution and DNA affinity in durum wheat (Triticum durum Desf.) plants. Sci Total Environ 243/244:119–127
CAS
Google Scholar
Cervantes C, Campos-Garcia J, Devars S, Gutiérrez-Corona F, Loza-Tavera H, Torres-Guzmàn JC, Moreno-Sànchez R (2001) Interactions of chromium with microorganisms and plants. FEMS Microbiol Rev 25:335–347
PubMed
CAS
Google Scholar
Chaney RL (1980) Health risks associated with toxic metals in municipal sludge. In: Britton G (ed) Sludge: health risks of land application. Ann Arbor Science Publications, Ann Arbor, Michigan, pp 58–83
Google Scholar
Chaney RL (1983a) Potential effects of waste constituents on the food chain. In: Parr J, Marsh PB, Kla JM (eds) Land treatment of hazardous wastes. Noyes Data Corporation, New Jersey, pp 152–240
Google Scholar
Chaney RL (1983b) Plant uptake of inorganic waste constituents. In: Parr J, Marsh PB, Kla JM. (eds) Land treatment of hazardous wastes. Noyes Data Corporation, New Jersey, pp 50–76
Google Scholar
Chatterjee J, Chatterjee C (2000) Phytotoxicity of cobalt, chromium and copper in cauliflower. Environ Pollut 109:69–74
PubMed
CAS
Google Scholar
Chang AC, Page AL, Warneke JE (1987) Long-term sludge application on cadmium and zinc accumulation in Swiss chard and radish. J Environ Qual 16:217–221
CAS
Google Scholar
Chugh LK, Sawhney SK (1999) Photosynthetic activities of Pisum sativum seedlings grown in the presence of cadmium. Plant Physiol Biochem 37(4):297–303
CAS
Google Scholar
Clarkson DT, Luttage U (1989) Mineral nutrition. Divalent cations, transport and compartmentalization. Prog Bot 51:93–112
Google Scholar
Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88:1707–1719
PubMed
CAS
Google Scholar
Clijsters H, Cuypers A, Vangronsveld J (1999) Physiological responses to heavy metals in plants; defense against oxidative stress. Zeitschrift fur Naturforsch 54c:730–734
Google Scholar
Crowley DE, Wang YC, Reid CP, Szaniszlo PJ (1991) Mechanisms of iron acquisition from siderophores by microorganisms and plants. Plant Soil 130:179–198
CAS
Google Scholar
Cunningham SD (1995) In proceedings/abstracts of the fourteenth annual symposium, current topics in plant biochemistry, physiology, and molecular biology columbia, April 19–22, pp 47–48
Google Scholar
Cunningham SD, Berti WR (1993) Remediation of contaminated soils with green plants: An overview. In Vitro Cell Dev Biol 29P:207–212
Google Scholar
Dahmani-Muller H, van Oort F, Gelie B, Balabane M (2000) Strategies of heavy metal uptake by three plant species growing near a metal smelter. Environ Pollut 109:231–238
PubMed
CAS
Google Scholar
Das P, Samantaray S, Rout GR (1997) Studies on cadmium toxicity in plants: a review. Environ Pollut 98:29–36
PubMed
CAS
Google Scholar
Davies FT, Puryear JD, Newton RJ, Egilla JN, Grossi JAS (2002) Mycorrhizal fungi increase chromium uptake by sunflower plants: influence on tissue mineral concentration, growth, and gas exchange. J Plant Nutr 25:2389– 407
CAS
Google Scholar
Deng H, Ye ZH ZH, Wong MH (2006) Lead and zinc accumulation and tolerance in populations of six wetland plants. Environ Pollut 141:69–80
PubMed
CAS
Google Scholar
Dixit V, Pandey V, Shyam R (2002) Chromium ions inactivate electron transport and enhance superoxide generation in vivo in pea (Pisum sativum L. cv. Azad) root mitochondria. Plant Cell Environ 25:687–690
CAS
Google Scholar
Dong J, Wu F, Zhang G (2005) Effect of cadmium on growth and photosynthesis of tomato seedlings. J Zhejiang Univ Sci 10:974–980
Google Scholar
Dražić G, Mihailovič N, Lojić M (2006) Cadmium accumulation in Medicago sativa seedlings treated with salicylic acid. Biol Plant 50:239–244
Google Scholar
Du ShH, Fang ShC (1982) Uptake of elemental mercury vapour by C3 and C4 species. Environ Exp Bot 22:437–443
CAS
Google Scholar
El-Nady FE Atta MM (1996) Toxicity and bioaccumulation of heavy metals to some marine biota from the Egyptian coastal waters. J Environ Sci Health A 31(7):1529–1545
Google Scholar
Fargaŝvá A (1994) Effect of Pb, Cd, Hg, As, and Cr on germination and root growth of Sinapis alba seeds. Bull Environ Contam Toxicol 52:452–456
Google Scholar
Fargaŝvá A (1998) Root growth inhibition, photosynthetic pigments production, and metal accumulation in Sinapis alba as the parameters for trace metals effect determination. Bull Environ Contam Toxicol 61:762–769
Google Scholar
Fiskesjo G (1997) Alium test for screening chemicals; evaluation of cytological parameters. In; Wang W, Gorsuch JW, Hughes JS (eds) Plants for environmental studies. Lewis Publ., Boca Raton, pp 307–333
Google Scholar
Foy CD, Chaney RL, White MC (1978) The physiology of metal toxicity in plants. Ann Rev Plant Physiol 29:511
CAS
Google Scholar
Fuhrer J (1988) Ethylene biosynthesis and cadmium toxicity in leaf tissue of beans Phaseolus vuglaris L. Plant Physiol 70:162–167
Google Scholar
Garbisu C, Alkorta I (2001) Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment. Biores Technol 77:229–236
CAS
Google Scholar
Goldbold DL, Huttermann A (1985) Effect of zinc, cadmium and mercury on root elongation of P. abies (Karst) seedling and the significance of these metals to forest dieback. Environ Pollut 38:375–381
Google Scholar
Golovatyj SE, Bogatyreva EN, Golovatyi SE (1999) Effect of levels of chromium content in a soil on its distribution in organs of corn plants. Soil Res Fert 197–204
Google Scholar
Greger M (1997) Willow as phytoremediator of heavy metal contaminated soil. Proceedings of the 2nd international conference on element cycling in the environment. Warsaw, pp 167–172
Google Scholar
Greger M, Brammer E, Lindberg S, Larson G, Ildestan-Almquist J (1991) Uptake and physiological effects of cadmium in sugar beet (Beta vulgaris) related to mineral provision. J Exp Bot 42:729–737
CAS
Google Scholar
Guliev NM, Bairamov SM, Aliev DA (1992) Functional organization of carbonic anhydrae in higher plants. Sov Plant Physiol 39:537–544
Google Scholar
Gupta S, Nayek S, Saha N, Satpati S (2008) Assessment of heavy metal accumulation in macrophyte, agricultural soil and crop plants adjacent to discharge zone of sponge iron factory. Environ Geol 55:731–739
CAS
Google Scholar
Gwozdz EA, Przymusinski R, Rucinska R, Deckert J (1997) Plant cell responses to heavy metals molecular and physiological aspects. Acta Physiol Plant 19:459–65
CAS
Google Scholar
Hagemeyer J, Breckle SW (1996) Growth under trace element stress. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant root: the hidden half, 2nd edn. Dekker, New York, pp 415–433
Google Scholar
Hagemeyer J, Breckle SW (2002) Trace element stresses in roots. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant root: the hidden half, 3rd edn. Decker, New York, pp 763–785
Google Scholar
Haghiri FE (1974) Plant uptake of cadmium as influenced by cation exchange capacity, organic matter, zinc and soil temperature. J Environ Qual 3:180–183
CAS
Google Scholar
Han FX, Maruthi SBB, Monts DL, Su Y (2004) Phytoavailability and toxicity of trivalent and hexavalent chromium to Brassica juncea. New Phytol 162:489–499
CAS
Google Scholar
Han YL, Yuan HY, Huang SZ, Guo Z, Xia B, Gu J (2007) Cadmium tolerance and accumulation by two species of Iris. Ecotoxicology 16:557–563
PubMed
CAS
Google Scholar
Hanus J, Tomas J (1993) An investigation of chromium content and its uptake from soil in white mustard. Acta Fytotech 48:39–47
Google Scholar
Hegedüs A, Erdei S, Janda T, Toth E, Horvath G, Dubits D (2004) Transgenic tobacco plants over producing alfafa aldose/aldehyde reductase show higher tolerance to low temperature and cadmium stress. Plant Sci 166:1329–1333
Google Scholar
Henry JR (2000) In an overview of phytoremediation of lead and mercury. NNEMS Report Washington, pp 3–9
Google Scholar
Hernández LE, Carpena-Rutz R, Garate A (1996) Alterations in the mineral nutrition of pea seedlings exposed to cadmium. J Plant Nutr 19:1581–1598
Google Scholar
Hirsch RE, Lewis BD, Spalding EP, Sussman MR (1998) A role for the AKT1 potassium channel in plant nutrition. Science 280:918–921
PubMed
CAS
Google Scholar
Jain R, Srivastava S, Madan VK, Jain R (2000) Influence of chromium on growth and cell division of sugarcane. Indian J Plant Physiol 5:228–231
CAS
Google Scholar
Joseph GW, Merrilee RA, Raymond E (1995) Comparative toxicities of six heavy metals using root elongation and shoot growth in three plant species. The symposium on environmental toxicology and risk assessment, Atlanta, pp 26–9
Google Scholar
Karunyal S, Renuga G, Paliwal K (1994) Effects of tannery effluent on seed germination, leaf area, biomass and mineral content of some plants. Bioresour Technol 47:215–218
CAS
Google Scholar
Kabata-Pendias A, Pendias H (2001) Trace elements in soils and plants. CRC Press, Boca Raton
Google Scholar
Kinnersely AM (1993) The role of Phytochelates in plant growth and productivity. Plant Grow Regul 12:207–217
Google Scholar
Kirkham MB (2006) Cadmium in plants on polluted soils: effects of soil factors, hyperaccumulation, and amendments. Geoderma 137:19–32
CAS
Google Scholar
Krishnamurthy S, Wilkens MM (1994) Environmental chemistry of Cr. Northeastern Geol 16(1):14–17
Google Scholar
Khale H (1993) Response of roots of trees to heavy metals. Environ Exp Bot 33:99–119
Google Scholar
Khan S, Ullah SM, Sarwar KS (2001) Interaction of chromium and copper with nutrient elements in rice (Oryza sativa cv BR-11). Bull Inst Trop Agric Kyushu Univ 23:35–9
Google Scholar
Kneer R, Zenk MH (1992) Phytochelatins protect plant enzymes from heavy metal poisoning. Phytochemistry 31:2663
CAS
Google Scholar
Kocik K, Ilavsky J (1994) Effect of Sr and Cr on the quantity and quality of the biomass of field crops. Production and utilization of agricultural and forest biomass for energy: Proceedings of a seminar held at Zvolen, Slovakia, pp 168–78
Google Scholar
Kopyra M, Gwόźdź EA (2004) The role of nitric oxide in plant growth regulation and responses to abiotic stresses. Acta Physiol Plant 26:459–472
CAS
Google Scholar
Kramer PJ, Boyer JS (1995) Water relations of plants and soils. Academic Press, San Diego, p 495
Google Scholar
Krupa Z, Baszynski T (1995) Some aspects of heavy metals toxicity towards photosynthetic apparatus – Direct and indirect effects on light and dark reactions. Acta Physiol Plant 17:177–190
CAS
Google Scholar
Kumar P, Dushenkov V, Motto H, Raskin I (1995) Phytoextraction: the use of plants to remove heavy metals from soils. Environ Sci Technol 29:1232–1238
PubMed
CAS
Google Scholar
Le Faucheur S, Schildknecht F, Behra R, Sigg L (2006) Thiols in Scenedesmus vacuolatus upon exposure to metals and metalloids. Aquat Toxicol 80:355–361
PubMed
Google Scholar
Lindberg SE, Meyers TP, Taylor Jr GE, Turner RR, Schroeder WH (1992) Atmosphere-surface exchange of mercury in a forest: results of modeling and gradient approached. J Geophys Res 97:2519–2528
CAS
Google Scholar
Linger P, Ostwald A, Haensler J (2005) Cannabis sativa L. growing on heavy metal contaminated soil: growth, cadmium uptake and photosynthesis. Biol Plant 49(4):567–576
CAS
Google Scholar
Liphadzi MS, Kirkham MB (2006) Chelate-assisted heavy metal removal by sunflower to improve soil with sludge. J Crop Improv 16:153–172
CAS
Google Scholar
Liu DH, Jiang WS, Gao XZ (2003/2004). Effects of cadmium on root growth, cell division and nucleoli in root tip cells of garlic. Biol Plant 47(1):79–83
Google Scholar
Liu DH, Wang M, Zou JH, Jiang WS (2006) Uptake and accumulation of cadmium and some nutrient ions by roots and shoots of maize (Zea mays L.). Pak J Bot 38(3):701–709
Google Scholar
Logan TJ, Chaney RL (1983) Metals. In: Page AL (ed) Utilization of municipal wastewater and sludge on land. University of California, Riverside, pp 235–326
Google Scholar
Lombi E, Zhao FJ, Dunham SJ, McGrath SP (2001) Phytoremediation of heavy metal, contaminated soils, natural hyperaccumulation versus chemically enhanced phytoextraction. J Environ Qual 30:1919–1926
PubMed
CAS
Google Scholar
Lunáčková L, Masarovičová E, Kráľová K, Streško V (2003) Response of fast growing woody plants from family Salicaceae to cadmium treatment. B Environ Contam Toxicol 70:576–585
Google Scholar
Maksymiec W, Baszyński T (1996) Different susceptibility of runner bean plants to excess copper as a function of growth stages of primary leaves. J Plant Physiol 149:217–221
CAS
Google Scholar
Maksymiec W, Baszyński T (1988) The effect of Cd2+ on the release of proteins from thylakoid membranes of tomato leaves. Acta Soc Bot Pol 57:465–474
CAS
Google Scholar
Ma LQ, Komar KM, Kennelley ED (2001) Methods for removing pollutants from contaminated soil materials with a fern plant. Document type and number: United States Patent 6280500. http://www.freepatentsonline.com/6280500.html
Mahmood T, Islam KR, Muhammad S (2007) Toxic effects of heavy metals on early growth and tolerance of cereal crops. Pak J Bot 39(2):451–462
Google Scholar
Markert B (1993) Plants as Biomonitors-Indicators of Heavy Metals in the Terrestrial Environment. VCH Publishers, Germany, p 644
Google Scholar
Mathys W (1975) Enzymes of heavy metal resistant and non-resistant populations of Silene cucubalus and their interactions with some heavy metals in vitro and in vivo. Physiol Plant 33:161–165
CAS
Google Scholar
Marschner H (1995) Mineral nutrition of higher plants. Academic Press, Cambridge
Google Scholar
Martin HW, Kaplan DI (1998) Temporal changes in cadmium, thallium and vanadium mobility in soil and phytoavailability under field conditions. Water Air Soil Pollut 101:399–410
CAS
Google Scholar
McGrath SP (1995) Chromium and nickel. In: Alloway BJ (ed) Heavy metal in soils, 2nd edn. Chapman and Hall, Great Britain, pp 152–178
Google Scholar
McGrath SW, Zhao FJ, Lombi E (2001) Plant and rhizosphere processes involved in phytoremediation of metal-contaminated soils. Plant Soil 232:207–214
CAS
Google Scholar
Mokgalaka-Matlala NS, Flores-Tavizön E, Castillo-Michel H, Peralta-Videa JR, Gardea-Torresdey JL (2008) Toxicity of arsenic (III) and (V) on plant growth, element uptake, and total amylolytic activity of mesquite (Prosopis juliflora x p. velutina). Int J Phytoremed 10:47–60
CAS
Google Scholar
Misra SG, Mani D (1991) Soil pollution. Ashish Publishing House, 8/81, Punjabi Bagh
Google Scholar
Montes-Holguin MO, Peralta-Videa JR, Meitzner G, Martinez A, Rosa G, Castillo-Michel H, Gardea-Torresdey JL (2006) Biochemical and spectroscopic studies of the response of Convolvulus arvensis L. to chromium (III) and chromium (VI) stress. Environ Toxicol Chem 25(1):220–226
PubMed
CAS
Google Scholar
Moral R, Pedreno JN, Gomez I, Mataix J (1995) Effects of chromium on the nutrient element content and morphology of tomato. J Plant Nutr 18:815–822
CAS
Google Scholar
Moral R, Gomez I, Pedreno JN, Mataix J (1996) Absorption of Cr and effects on micronutrient content in tomato plant (Lycopersicon esculentum M). Agrochimica 40:132–138
CAS
Google Scholar
Moreno JL, Hernandez T, Garcia C (1999) Effects of a cadmium-containing sewage sludge compost on dynamics of organic matter and microbial activity in an arid soils. Biol Fert Soils 28:230–237
Google Scholar
Moya JL, Ros R, Picazo I (1993) Influence of cadmium and nickel on growth, net photosynthesis and carbohydrate distribution on rice plants. Photosynth Res 36:75–80
CAS
Google Scholar
McGrath SP (1982) The uptake and translocation of tri- and hexavalent chromium and effects on the growth of oat in flowing nutrient solution and in soil. New Phytol 92:381–390
CAS
Google Scholar
Nichols PB, Couch JD, Al Hamdani SH (2000) Selected physiological responses of Salvinia minima to different chromium concentrations. Aquat Bot 68:313– 319
CAS
Google Scholar
Nordberg G (2003) Cadmium and human health: a perspective based on recent studies in China. J Trace Elem Exp Med 16:307–319
CAS
Google Scholar
Nussbaum S, Schmutz D, Brunold C (1988) Regulation of assimimilatory sulfate reduction by cadmium in Zea mays L. Plant Physiol 88:1407–1410
PubMed
CAS
Google Scholar
Odjegba VJ, Fasidi IO (2004) Accumulation of trace elements by Pistia stratiotes: Implications for phytoremediation. Ecotoxicology 13:637–646
PubMed
CAS
Google Scholar
Ozturk M, Yucel E, Gucel S, Sakcali S, Aksoy A (2008) Plants as biomonitors of trace elements pollution in soil. In: Prasad MNV (eds) Trace elements: environmental contamination, nutritional benefits and health implications, Chap. 28, Wiley, New York, pp 723–744
Google Scholar
Päivöke AEA, Simola LK (2001) Arsenate toxicity to Pisum sativum: Mineral nutrients, chlorophyll content and phytase activity. Ecotoxicol Environ Safety 49:111–121
PubMed
Google Scholar
Parr PD, Taylor FG Jr. (1982) Germination and growth effects of hexavalent chromium in Orocol TL (a corrosion inhibitor) on Phaseolus vulgaris. Environ Int 7:197–202
CAS
Google Scholar
Panda SK, Patra HK (2000) Nitrate and ammonium ions effect on the chromium toxicity in developing wheat seedlings. Proc Natl Acad Sci India B, 70:75–80
CAS
Google Scholar
Pandey V, Dixit V, Shyam R (2005) Antioxidative responses in elation to growth of mustard (Brassica juncea cv. Pusa Jai Kisan) plants exposed to hexavalent chromium. Chemosphere 61:40–47
PubMed
CAS
Google Scholar
Pedreno NJI, Gomez R, Moral G, Palacios J, Mataix J (1997) Heavy metals and plant nutrition and development. Recent Res Dev Phytochem 1:173–179
Google Scholar
Peralta JR, Torresdey JLG, Tiemann KJ, Gomez E, Arteaga S, Rascon E (2001) Uptake and effects of five heavy metals on seed germination and plant growth in alfalfa (Medicago sativa) L. B Environ Contam Toxicol 66:727–734
CAS
Google Scholar
Peralta-Videa JR, de la Rosa G, Gonzalez JH, Gardea-Torresdey JL 2004. Effect of the growth stage on the heavy metal tolerance of alfalfa plants. Adv Environ Res 8:679–685
CAS
Google Scholar
Piechalak A, Tomaszewaska B, Baralkiewisz D (2002) Accumulation and detoxification of lead ion in legumes. Phytochemistry 60:153–162
PubMed
CAS
Google Scholar
Piechalak A, Tomaszewska B, Baralkiewicz D (2003) Enhancing phytoremediative ability of Pisum
sativum by EDTA application. Phytochemistry 4:1239–1251
Google Scholar
Pinto AP, Mota AM, de Varennes A, Pinto FC (2004) Influence of organic matter on the uptake of cadmium, zinc, copper and iron by sorghum plants. Sci Tot Environ 326:239–247
CAS
Google Scholar
Poschenrieder CH, Gunse B, Barcelo J (1989) Influence of cadmium on water relations, stomatal resistance and abscisic acid content in expanding bean leaves. Plant Physiol 90:1365–1371
PubMed
CAS
Google Scholar
Poschenrieder C, Vazquez MD, Bonet A, Barcelo J (1991) Chromium-III-iron interaction in iron sufficient and iron deficient bean plants. 2. Ultrastructural aspects. J Plant Nutr 14(4): 415–428
CAS
Google Scholar
Prasad MNV (1995) Cadmium toxicity and tolerance in vascular plants. Environ Exp Bot 35: 525–540
CAS
Google Scholar
Prasad MNV (1997) Trace metals. In: Prasad MNV (ed) Plant ecophysiology. Willey, New York, pp 207–249
Google Scholar
Prasad MNV (2008) Trace Elements as Contaminants and Nutrients: Consequences in Ecosystems and Human Health. Wiley, New York
Google Scholar
Prasad MNV, Greger M, Landberg T (2001) Acacia nilotica L. bark removes toxic elements from solution: corroboration from toxicity bioassay using Salix viminalis L. in hydroponic system. Int J Phytoremed 3:289–300
CAS
Google Scholar
Pulford ID, Watson C (2003) Phytoremediation of heavy metal-contaminated land by trees- a review. Environ Int 29:529–540
PubMed
CAS
Google Scholar
Punz WF Sieghardt H (1993) The response of roots of herbaceous plant species to heavy metals. Environ Exp Bot 33:85–86
CAS
Google Scholar
Qureshi MI, Israr M, Abdin MZ Iqbal M (2005) Responses of Artemisia annua L. to lead and salt induced oxidative stress. Environ Exp Bot 53:185–193
CAS
Google Scholar
Rai UN, Chandra P (1992) Accumulation of copper, lead, manganese and iron by field populations of Hydrodictyon reticulatum (L.) Lagerheim. Sci Total Environ 116:203–211
PubMed
CAS
Google Scholar
Rai D, Sass BM, Moore DA (1987) Cr(III) hydrolysis constants and solubility of Cr(III) hydroxide. Inorg Chem 26:345–349
CAS
Google Scholar
Rai D, Eary LE, Zachara JM (1989) Environmental chemistry of chromium. Sci Total Environ 86:15–23
PubMed
CAS
Google Scholar
Rai UN, Tripathi RD, Sinha S, Chandra P (1995) Chromium and cadmium bioaccumulation and toxicity in Hydrilla verticillata (L. f.) Royle and Chara corallina Wildenow. J Environ Sci Health A 30(3):537–551
Google Scholar
Raskin I, Kumar PBAN, Dushenkov S, Salt DE (1994) Bioconcentration of heavy metals by plants. Curr Opin Biotechnol 5:285–290
CAS
Google Scholar
Raskin I, Smith RD, Salt DE (1997) Phytoremediation of metals: using plants to remove pollutants from the environment. Curr Opin Biotechnol 8:221–226
PubMed
CAS
Google Scholar
Ramos I, Esteban E, Lucena JJ Garate A (2002) Cadmium uptake and subcellular distribution in plants of Lactuca sp. Cd–Mn interaction. Plant Sci 162:761–767
CAS
Google Scholar
Reeves RD, Baker AJM (2000) Phytoremediation of toxic metals. In: Raskin I, Ensley BD (eds) Using plants to clean up the environment. Wiley, New York, p 193
Google Scholar
Rivetta A, Negrini N, Cocucci M (1997) Involvement of Ca2+- calmodulin in Cd2+ toxicity during the early phases of radish (Raphanus sativus L.) seed germination. Plant Cell Environ 20: 600–608
CAS
Google Scholar
Rocchetta I, Mazzuca M, Conforti V, Ruiz L, Balzaretti V, Rı´os deMolina MC (2006) Effect of chromium on the fatty acid composition of two strains of Euglena gracilis. Environ Poll 141:353–358
CAS
Google Scholar
Root RA, Miller RJ, Koeppe DE (1975) Uptake of cadmium -its toxicity and effect on the iron-to- zinc ratio in hydroponically grown corn. J Environ Qual 4:473–476
CAS
Google Scholar
Rout GR, Samantaray S, Das P (1997) Differential chromium tolerance among eight mungbean cultivars grown in nutrient culture. J Plant Nutr 20:473–483
CAS
Google Scholar
Rout GR, Samantaray S, Das P (1999) Chromium, nickel and zinc tolerance in Leucaena
leucocephala (K8). Silvae Genet 48:151–157
Google Scholar
Rout GR, Sanghamitra S, Das P (2000) Effects of chromium and nickel on germination and growth in tolerant and non-tolerant populations of Echinochloa colona (L). Chemosphere 40:855–859
PubMed
CAS
Google Scholar
Rout GR, Samantaray S, Das P (2001) Differential lead tolerance of rice and black gram genotypes in hydroponic culture. Rost. Výroba (Praha) 47:541–548
CAS
Google Scholar
Samantaray S, Rout GR, Das P (2001) Induction, selection and characterization of Cr and Ni-tolerant cell lines of Echinochloa colona (L) in vitro. J Plant Physiol 158:1281–1290
CAS
Google Scholar
Salt DE, Prince RC, Pickering IJ, Raskin I (1995) Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiol 109:1427–1433
PubMed
CAS
Google Scholar
Scebba F, Arduini I, Ercoli L, Sebastiani L (2006) Cadmium effects on growth and antioxidant enzymes activities in Miscanthus sinensis. Biol Plant 50:688–692
CAS
Google Scholar
Seregin IV, Ivanov VB (2001) Physiological aspects of cadmium and lead toxic effects on higher plants. Russian J Plant Physiol 4:523–544
Google Scholar
Shafiq M, Iqbal MZ (2005) Tolerance of Peltophorum pterocarpum D. C. Baker Ex K. Heyne seedlings to lead and cadmium treatment. J New Seeds 7:83–94
Google Scholar
Shah FR, Ahmad N, Masood KR, Zahid DM (2008) The influence of Cd and Cr on the biomass production of Shisham (Dalbergia sissoo Roxb.) seedlings. Pak J Bot 40(4):1341–1348
CAS
Google Scholar
Shanker AK (2003) Physiological, biochemical and molecular aspects of chromium toxicity and tolerance in selected crops and tree species. PhD Thesis, Tamil Nadu Agricultural University, Coimbatore, India
Google Scholar
Shanker AK, Pathmanabhan G (2004) Speciation dependant antioxidative response in roots and leaves of Sorghum (Sorghum bicolor (L) Moench cv CO 27) under Cr(III) and Cr(VI) stress. Plant Soil 265:141–151
CAS
Google Scholar
Shanker AK, Cervantes C, Loza-Tavera H, Avudainayagam S (2005) Chromium toxicity in plants. Environ Int 31:739–751
PubMed
CAS
Google Scholar
Sharma DC, Pant RC (1994) Chromium uptake and its effects on certain plant nutrients in maize (Zea mays L. cv. Ganga 5). J Environ Sci Health A 29:941–948
Google Scholar
Sharma DC, Sharma CP (1993) Chromium uptake and its effects on growth and biological yield of wheat. Cereal Res Commun 21:317–321
CAS
Google Scholar
Sharma DC, Sharma CP (1996) Chromium uptake and toxicity effects on growth and metabolic activities in wheat, Triticum aestivum L. cv. UP 2003. Indian J Exp Biol 34:689–691
PubMed
CAS
Google Scholar
Sharma DC, Chaterjee C, Sharma CP (1995) Chromium accumulation and its effects on wheat (Triticum aestivum L. cv. DH220) metabolism. Plant Sci 111:145–151
CAS
Google Scholar
Sharma DC, Sharma CP, Tripathi RD (2003) Phytotoxic lesions of chromium in maize. Chemosphere 51:63–68
PubMed
CAS
Google Scholar
Shen ZG, Liu YL (1998) Progress in the study on the plants that hyperaccumulate heavy metal. Plant Physiol Commun 34:133–139
Google Scholar
Sheoran IS, Singal HR, Singh R (1990) Effect of cadmium and nickel on photosynthesis and the enzymes of the photosynthetic carbon reduction cycle in pigeonpea (Cajanus cajan L.). Photosynth Res 23:345–351
CAS
Google Scholar
Shewry PR, Peterson PJ (1974) The uptake and transport of chromium by barley seedlings (Hordeum vulgare L.). J Exp Bot 25:785–797
CAS
Google Scholar
Shukla OP, Rai UN, Pal A (2005) Accumulation of chromium and its phytotoxic effects on Bacopa
monnieri L. J Ecophysiol Occup Health 5:165–169
Google Scholar
Shukla OP, Dubey S, Rai UN (2007) Preferential accumulation of cadmium and chromium: Toxicity in Bacopa monnieri L. under mixed metal treatments. B Environ Contam Toxicol 78:252–257
CAS
Google Scholar
Siedlecka A, Baszynski T (1993) Inhibition of electron transport flow around photosystem I in chloroplasts of Cd-treated maize plants is due to Cd-induced iron deficiency. Physiol Plant 87:199–202
CAS
Google Scholar
Singh AK (2001) Effect of trivalent and hexavalent chromium on spinach (Spinacea oleracea L). Environ Ecol 19:807–810
CAS
Google Scholar
Singh S, Eapen S, D’Souza SF (2006) Cadmium accumulation and its influence on lipid peroxidation and antioxidative system in an aquatic plant, Bacopa monnieri L. Chemosphere 62:233–246
PubMed
CAS
Google Scholar
Skeffington RA, Shewry PR, Peterson PJ (1976) Chromium uptake and transport in barley seedlings (Hordeum vulgare L.). Planta 132:209–214
CAS
Google Scholar
Skόrzyńska-Polit E, Baszynski T (1995) Photochemical activity of primary leaves in cadmium stressed Phaseolus coccineus depends on their growth stages. Acta Soc Bot Pol 64:273–279
Google Scholar
Skόrzyńska-Polit E, Baszynski T (1997) Difference in sensitivity of the photosynthetic apparatus in Cd-stressed runner bean plants in relation to their age. Plant Sci 128:11–21
Google Scholar
Skόrzyńska-Polit E, Tukendorf A, Selstam E, Baszyński T (1998) Calcium modifies Cd effect on runner bean plants. Environ Exp Bot 40:275–286
Google Scholar
Stephens WE, Calder A (2005) Source and health implications of high toxic metal concentrations in illicit tobacco products. Environ Sci Technol 39:479–488
PubMed
CAS
Google Scholar
Šimonova E, Imonová M, Henselová M, Masarovičová E, Kohanová J (2007) Comparison of tolerance of Brassica juncea and Vigna radiata to cadmium. Biol Plant 51(3):488–492
Google Scholar
Singh S, Sinha S (2004) Scanning electron microscopic studies and growth response of the plants of Helianthus annuus L. grown on tannery sludge amended soil. Environ Int 30:389–395
PubMed
Google Scholar
Stiborova M, Doubravova M, Leblova S (1986) A comparative study of the effect of heavy metal ions on ribulose 1,5-bisphosphate carboxylase and phosphoenol pyruvate caroboxylase. Biochem Physiol Pflanz 181:373–379
CAS
Google Scholar
Sujatha P, Gupta A (1996) Tannery effluent characteristics and its effects on agriculture. J Ecotoxicol Environ Monit 6:45–48
Google Scholar
Talanova VV, Titov AF, Boeva NP (2001) Effect of increasing concentrations of heavy metals on the growth of barley and wheat seedlings. Russian J Plant Physiol 48:100–103
CAS
Google Scholar
Tester M, Leigh RA (2001) Partitioning of nutrient transport processes in roots. J Exp Bot 52: 445–457
PubMed
CAS
Google Scholar
Tokalioglu S, Kartal S (2006) Statistical evaluation of the bioavailability of heavy metals from contaminated soil to vegetables. B Environ Contam Toxicol 76:311–319
CAS
Google Scholar
Tripathi AK, Sadhna T, Tripathi S (1999) Changes in some physiological and biochemical characters in Albizia lebbek as bio-indicators of heavy metal toxicity. J Environ Biol 20:93–98
CAS
Google Scholar
Tu C, Ma LQ (2005) Effects of arsenic on concentration and distribution of nutrients in the fronds of the arsenic hyperacumulator Pteris vittata L. Environ Pollut 135:333–340
PubMed
CAS
Google Scholar
Turner AP, Dickinson NM (1993) Survival of Acer pseudoplatanus L. (sycamore) seedlings on metalliferous soils, New Phytol 123:509
CAS
Google Scholar
Turner MA, Rust RH (1971) Effects of Cr on growth and mineral nutrition of soybeans. Soil Sci Soc Am Proc 35:755–758
CAS
Google Scholar
Turner JG, Ch E, Devoto A (2002) The jasmonate signal pathway. Plant Cell 14 (Suppl):153–164
Google Scholar
Vajpayee P, Sharma SC, Tripathi RD, Rai UN, Yunus M (1999) Bioaccumulation of chromium and toxicity to photosynthetic pigments, nitrate reductase activity and protein content of Nelumbo nucifera Gaertn. Chemosphere 39:2159–2169
CAS
Google Scholar
Vajpayee P, Tripathi RD, Rai UN, Ali MB, Singh SN (2000) Chromium (VI) accumulation reduces chlorophyll biosynthesis, nitrate reductase activity and protein content in Nymphaea alba L. Chemosphere 41:1075–1082
PubMed
CAS
Google Scholar
Vajpayee P, Rai UN, Ali MB, Tripathi RD, Yadav V, Sinha S (2001) Chromium induced physiological changes in Vallisneria spiralis L and its role in phytoremediation of tannery effluent. B Environ Contam Toxicol 67(2):246–256
CAS
Google Scholar
Van Assche F, Clijsters H (1983) Multiple effects of heavy metals on photosynthesis. In: Marcelle R (ed) Effects of Stress on Photosynthesis. The Hague: Nijhoff/Junk. pp 371–382
Google Scholar
Van Assche F, Clijsters H (1990) Effects of metals on enzyme activity in plants. Plant Cell Environ 13:195–206
Google Scholar
Vassilev A, Yordanov I, Tsonev T (1997) Effects of Cd2+ on the physiological state and photosynthetic activity of young barley plants. Photosynthetica 34:293–302
CAS
Google Scholar
Vassilev A, Lidon F, Scotti P, Da Graca M, Yordanov I (2004) Cadmium-induced changes in chloroplast lipids and photosystem activities in barley plants. Biol Plant 48:153–156
CAS
Google Scholar
Vazques MD, Poschenrieder C, Barcelo J (1987) Chromium (VI) induced structural changes in bush bean plants. Ann Bot 59:427–438
Google Scholar
Verloo M, Eeckhout M (1990) Metal species transformations in soil: an analytical approach. Int J Environ Anal Chem 39:170–186
Google Scholar
Verma P, Georges KV, Singh HV, Singh RN (2007) Modeling cadmium accumulation in radish, carrot, spinach and cabbage. Appl Math Model 31:1652–1661
Google Scholar
Vernay P, Gauthier-Moussard C, Hitmi A (2007) Interaction of bioaccumulation of heavy metal chromium with water relation, mineral nutrition and photosynthesis in developed leaves of Lolium
perenne L. Chemosphere 68:1563–1575
PubMed
CAS
Google Scholar
Vernay P, Gauthier-Moussard C, Jean L, Bordas F, Faure O, Ledoigt G, Hitmi A (2008) Effect of chromium species on phytochemical and physiological parameters in Datura innoxia Chemosphere 72:763–771
PubMed
CAS
Google Scholar
Wallace A, Soufi SM, Cha JW, Romney EM (1976) Some effects of chromium toxicity on bush bean plants grown in soil. Plant Soil 44:471–473
CAS
Google Scholar
Watmough SA (1994) Adaptation to pollution stress in trees: metal tolerance traits, Ph.D. thesis, Liverpool John Moore University, Liverpool
Google Scholar
Wei CY, Chen TB, Huang ZC (2002) Cretan bake (Pteris cretica L): an arsenic accumulating plant. Acta Ecol Sin 22:777–782
Google Scholar
Williams DE, Vlamis J, Purkite AH, Corey JE (1980) Trace element accumulation movement and distribution in the soil profile from massive applications of sewage sludge. Soil Sci 1292: 119–132
Google Scholar
Wong MH, Bradshaw AD (1982) A comparison of the toxicity of heavy metals, using root elongation of rye grass, Lolium perenne. New Phytol 91:255–261
CAS
Google Scholar
Wójcik M, Tukiendorf A (1999) Cd-tolerance of maize, rye and wheat seedlings. Acta Physiol Plant 21:99–107
Google Scholar
Wolfgang S (1996) Influence of chromium (III) on root-associated Fe(III) reductase in Plantago lanceolata L. J Exp Bot 47:805–810
Google Scholar
Wu FB, Zhang GP (2002) Genotypic variation in kernel heavy metal concentrations in barley and as affected by soil factors. J Plant Nutr 25:1163–1173
CAS
Google Scholar
Xiong L, Schumaker KS, Zhu JK (2002) Cell signaling during cold, drought and salt stress. Plant Cell 14(Suppl):165–183
Google Scholar
Yildiz N (2005) Response of tomato and corn plants to increasing cd levels in nutrient culture. Pak J Bot 37(3):593–599
Google Scholar
Zayed AM, Terry N (2003) Chromium in the environment: factors affecting biological remediation. Plant Soil 249:139–156
CAS
Google Scholar
Zeid IM (2001) Responses of Phaseolus vulgaris to chromium and cobalt treatments. Biol Plant 44:111–115
CAS
Google Scholar
Zhang GP, Fukami M, Sekimoto H (2002) Influence of cadmium on mineral concentration and yield components in wheat genotypes differing in Cd tolerance at seedling stage. Field Crop Res 4079:1–7
Google Scholar
Zurayk R, Sukkariyah B, Baalbaki R (2001) Common hydrophytes as bioindicators of nickel, chromium and cadmium pollution. Water Air Soil Poll 127:373–388
CAS
Google Scholar