Skip to main content

Design of the Frequency-Tunable CMOS RF Power Amplifier

  • Chapter
  • 1547 Accesses

Part of the book series: Analog Circuits and Signal Processing ((ACSP))

Abstract

This chapter presents the design of an integrated frequency-tunable RF power amplifier for operation in the 3.7 and 5.2 GHz frequency bands. A novel tunable impedance matching network based on coupled inductors is employed at the output of the amplifier. The design of the complete system is described, which includes the integrated planar coupled inductors, the circuit that controls the current flowing through the inductors, and the RF power amplifier. Simulation results for the complete system integrated in a CMOS technology are presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The term loaded describes the quality factor of a circuit element under loaded conditions [4, Chap. 2].

References

  1. Abrie PLD (1985) The Design of Impedance-Matching Networks for Radio-Frequency and Microwave Amplifiers. Artech House, Dedham

    Google Scholar 

  2. Agilent (2010) Momentum. URL http://eesof.tm.agilent.com/products/momentum_main.html

  3. Biondi T, Scuderi A, Ragonese E, Palmisano G (2005) Sub-nH inductor modeling for RFIC design. IEEE Microw Wirel Compon Lett 15(12):922–924

    Article  Google Scholar 

  4. Bowick C (1982) RF Circuit Design. Newnes, Burlington

    Google Scholar 

  5. Cassan DJ, Long JR (2003) A 1-V transformer-feedback low-noise amplifier for 5-GHz wireless LAN in 0.18-μm CMOS. IEEE J Solid-State Circ 38(3):427–435

    Article  Google Scholar 

  6. Cripps SC (2006) RF Power Amplifiers for Wireless Communications, 2nd edn. Artech House, Norwood

    Google Scholar 

  7. Dutta Roy SC (2000) Exact solution of a bandpass matching problem. Circ Systems Signal Process 19(1):59–69

    Article  MathSciNet  MATH  Google Scholar 

  8. Frlan E, Meszaros S, Cuhaci M, Wight JS (1989) Computer aided design of square spiral transformers and inductors. In: IEEE MTT-S Int Microw Symp Dig (IMS’89), Long Beach, CA, vol 2, pp 661–664

    Google Scholar 

  9. Gan H (2006) On-chip transformer modeling, characterization, and applications in power and low noise amplifiers. PhD thesis, Stanford University, Stanford, CA

    Google Scholar 

  10. Gee WA (2005) CMOS integrated LC Q-enhanced RF filters for wireless receivers. PhD thesis, Georgia Institute of Technology, Atlanta, GA

    Google Scholar 

  11. Helic (2010) VeloceRF. URL http://www.helic.com/index.php/velocerf/velocerf

  12. Long JR (2000) Monolithic transformers for silicon RF IC design. IEEE J Solid-State Circ 35(9):1368–1382

    Article  Google Scholar 

  13. Mason SJ (1953) Feedback theory—some properties of signal flow graphs. Proc IRE 41(9):1144–1156

    Article  Google Scholar 

  14. MathWorks (2010) Matlab. URL http://www.mathworks.com/

  15. Mohan SS (1999) The design, modeling and optimization of on-chip inductor and transformer circuits. PhD thesis, Stanford University, Stanford. URL http://smirc.stanford.edu/papers/Thesis-mohan.pdf

  16. Mohan SS, del Mar Hershenson M, Boyd SP, Lee TH (1999) Simple accurate expressions for planar spiral inductances. IEEE J Solid-State Circ 34(10):1419–1424

    Article  Google Scholar 

  17. Neitola M, Rahkonen T (2005) A fully automated flowgraph analysis tool for Matlab. In: Proc Eur Conf Circuit Theory Des (ECCTD’05), Cork, Ireland, vol 1, pp 185–188

    Google Scholar 

  18. Neitola M, Rahkonen T (2005) A fully automated flowgraph analysis tool for MATLAB. URL http://www.mathworks.com/matlabcentral/fileexchange

  19. Niknejad AM, Meyer RG (2000) Design, Simulation and Applications of Inductors and Transformers for Si RF ICs. Kluwer Acad, Boston

    Google Scholar 

  20. Ochoa JA (1998) A systematic approach to the analysis of general and feedback circuits and systems using signal flow graphs and driving-point impedance. IEEE Trans Circ Syst II 45(2):187–195

    Article  MathSciNet  Google Scholar 

  21. Phang K (2001) CMOS optical preamplifier design using graphical circuit analysis. PhD thesis, University of Toronto, Toronto, Canada

    Google Scholar 

  22. Pisani MB (2006) MLib—RF analysis and passive design toolbox. Matlab Toolbox. URL http://legwww.epfl.ch/pisani/mlib/

  23. Pisani MB (2007) Copper/low-K technological platform for the fabrication of high quality factor above-IC passive devices. PhD thesis, EPFL, Lausanne, Switzerland. URL http://library.epfl.ch/theses/?nr=3831

  24. Pisani MB, Hibert C, Bouvet D, Dehollain C, Ionescu AM (2005) Fabrication and electrical characterization of high performance copper/polyimide inductors. In: PhD Res Microelectron Electron (PRIME’05), Lausanne, Switzerland, vol 1, pp 185–188

    Google Scholar 

  25. Rabjohn GG (1991) Monolithic microwave transformers. M Eng thesis, Carleton University, Ottawa, ON, Canada

    Google Scholar 

  26. Spencer RG (2001) Analysis of the modified MOS Wilson current mirror: a pedagogical exercise in signal flow graphs, Mason’s gain rule, and driving-point impedance techniques. IEEE Trans Educ 44(4):322–328

    Article  Google Scholar 

  27. Sun Y, Fidler JK (1996) Design method for impedance matching networks. IEE Proc Circ Devices Syst 143(4):186–194

    Article  MATH  Google Scholar 

  28. Yue CP, Wong SS (1998) On-chip spiral inductors with patterned ground shields for Si-based RF IC’s. IEEE J Solid-State Circ 33(5):743–752

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Augusto Dal Fabbro .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Dal Fabbro, P.A., Kayal, M. (2010). Design of the Frequency-Tunable CMOS RF Power Amplifier. In: Linear CMOS RF Power Amplifiers for Wireless Applications. Analog Circuits and Signal Processing. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9361-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-9361-5_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-9360-8

  • Online ISBN: 978-90-481-9361-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics