Frequency-Tunable Capability

Part of the Analog Circuits and Signal Processing book series (ACSP)

Abstract

This chapter introduces the concept of frequency-tunable capability applied to RF power amplifiers, making some definitions and establishing the metrics for the evaluation of the design, which is the subject of Chap. 6. It also surveys the main techniques found in the literature that could be used in the design of the frequency-tunable amplifier. The advantages and drawbacks of each technique are discussed and the choice of the coupled-inductors technique is explained, together with the description of its use to implement a novel tunable output impedance matching network to be employed in multiband RF power amplifiers.

Keywords

Personal Digital Assistant Power Amplifier Silicon Area Match Network Variable Inductor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Agile Materials (2004) Tunability—An enabling technology for wireless. White Paper. URL http://www.agilerf.com/pdf/Tunability_WhitePaper.pdf
  2. 2.
    Albertoni F, Fanucci L, Neri B, Sentieri EA (2001) Tuned LNA for RFICs using boot-strapped inductor. In: IEEE Radio Freq Integr Circuits Symp (RFIC’01), Phoenix, AZ, pp 83–86 Google Scholar
  3. 3.
    Arell T, Hongsmatip T (1993) A unique MMIC broadband power amplifier approach. IEEE J Solid-State Circ 28(10):1005–1010 CrossRefGoogle Scholar
  4. 4.
    Bahl IJ (2004) Low loss matching (LLM) design technique for power amplifiers. IEEE Microw Mag 5(4):66–71 CrossRefGoogle Scholar
  5. 5.
    Ballweber BM, Gupta R, Allstot DJ (2000) A fully integrated 0.5–5.5 GHz CMOS distributed amplifier. IEEE J Solid-State Circ 35(2):231–239 CrossRefGoogle Scholar
  6. 6.
    Bantas S, Koutsoyannopoulos Y (2004) CMOS active-LC bandpass filters with coupled-inductor Q-enhancement and center frequency tuning. IEEE Trans Circ Syst II 51(2):69–76 CrossRefGoogle Scholar
  7. 7.
    Bantas S, Papananos Y, Koutsoyannopoulos Y (1999) Cmos tunable bandpass RF filters utilizing coupled on-chip inductors. In: Proc Int Symp Circ and Syst (ISCAS’99), Orlando, FL, vol 2, pp 581–584 Google Scholar
  8. 8.
    Bartlett JL, Chang MCF, Marcy HO, Pedrotti KD, Pehlke DR, Seabury CW, Yao JJ, Mehrotra D, Tham JLJ (2001) Integrated tunable high efficiency power amplifier. US Patent Google Scholar
  9. 9.
    Britannica (2010) Brittanica encyclopedia online. URL http://www.britannica.com/
  10. 10.
    Castro A (1966) Automatic tuning system for high-power amplifiers. IEEE Trans Commun Technol 14(6):824–834 CrossRefGoogle Scholar
  11. 11.
    Cegielski T, Matuszewski R (2004) The design of medium power C-band balanced amplifiers. In: Int Conf Microw Radar Wirel Commun (MIKON’04), Warsaw, Poland, vol 1, pp 107–110 Google Scholar
  12. 12.
    Cripps SC (2006) RF Power Amplifiers for Wireless Communications, 2nd edn. Artech House, Norwood Google Scholar
  13. 13.
    Cusmai G, Repossi M, Albasini G, Svelto F (2007) A 3.2-to-7.3 GHz quadrature oscillator with magnetic tuning. In: IEEE Int Solid-State Circuits Conf Dig Tech Pap (ISSCC’07), San Francisco, CA, pp 92–93, 589 Google Scholar
  14. 14.
    D’Angelo G, Fanucci L, Monorchio A, Monterastelli A, Neri B (1999) High-quality active inductors. Electron Lett 35(20):1727–1728 CrossRefGoogle Scholar
  15. 15.
    Eisele K, Engelbrecht R, Kurokawa K (1965) Balanced transistor amplifiers for precise wideband microwave applications. In: IEEE Int Solid-State Circuits Conf Dig Tech Pap (ISSCC’65), San Francisco, CA, vol VIII, pp 18–19 Google Scholar
  16. 16.
    Fernández-Bolaños M, Lisec T, Dainesi P, Ionescu AM (2008) Thermally stable distributed MEMS phase shifter for airborne and space applications. In: Eur Microw Conf (EuMC’08), Amsterdam, The Netherlands, pp 100–103 Google Scholar
  17. 17.
    Gee WA, Allen PE (2007) Cmos integrated LC RF bandpass filter with transformer-coupled Q-enhancement and optimized linearity. In: Proc Int Symp Circuits and Syst (ISCAS’07), New Orleans, LA, pp 1445–1448 Google Scholar
  18. 18.
    Georgescu B, Pekau H, Haslett J, McRory J (2003) Tunable coupled inductor Q-enhancement for parallel resonant LC tanks. IEEE Trans Circ Syst II 50(10):750–713 CrossRefGoogle Scholar
  19. 19.
    Gilbert B (2003) The beginning of translinear circuit design. IEEE Solid-State Circ Soc Newsl 8(1):6–7 Google Scholar
  20. 20.
    Ginzton EL, Hewlett WR, Jasberg JH, Noe JD (1948) Distributed amplification. Proc IRE 36(8):956–969 CrossRefGoogle Scholar
  21. 21.
    Gonzalez G (1997) Microwave Transistor Amplifiers: Analysis and Design, 2nd edn. Prentice-Hall, Upper Saddle River Google Scholar
  22. 22.
    Hara S, Tokumitsu T, Aikawa M (1989) Lossless broad-band monolithic microwave active inductors. IEEE Trans Microw Theory Tech 37(12):1979–1984 CrossRefGoogle Scholar
  23. 23.
    Hoarau C, Bailly PE, Arnould JD, Ferrari P, Xavier P (2007) A RF tunable impedance matching network with a complete design and measurement methodology. In: Eur Microw Conf (EuMC’07), Munich, Germany, pp 751–754 Google Scholar
  24. 24.
    Horowitz P, Hill W (1989) The Art of Electronics, 2nd edn. Cambridge University Press, Cambridge Google Scholar
  25. 25.
    Ikalainen PK (1989) An RLC matching network and application in 1–20 GHz monolithic amplifier. In: 1989 IEEE MTT-S Int Microw Symp Dig (IMS’89), Long Beach, CA, vol 3, pp 1115–1118 Google Scholar
  26. 26.
    Jin JD, Hsu SSH (2008) A 0.18-μm CMOS balanced amplifier for 24-GHz applications. IEEE J Solid-State Circ 43(2):440–445 CrossRefGoogle Scholar
  27. 27.
    Johnson KC (1949) Single-valve frequency-modulated oscillators—2.—Practical details of design and use. Wirel. World—Radio Electron LV(5):168–170 Google Scholar
  28. 28.
    Johnson KC (1949) Single-valve frequency-modulated oscillators—new principle giving wide coverage. Wirel World—Radio Electron LV(4):122–123 Google Scholar
  29. 29.
    Ker MD, Hsiao YW, Kuo BJ (2005) ESD protection design for 1 to 10-GHz distributed amplifier in CMOS technology. IEEE Trans Microw Theory Tech 53(9):2672–2681 CrossRefGoogle Scholar
  30. 30.
    Kobayashi K, Watanabe Y, Dal Fabbro P, Kayal M (2009) Tunable impedance matching circuit. International Patent, wO 2009/034659 A1 Google Scholar
  31. 31.
    Kobayashi KW, Oki AK, Umemoto DK, Block TR, Streit DC (1998) A novel self-oscillating HEMT-HBT cascode VCO-mixer using an active tunable inductor. IEEE J Solid-State Circ 33(6):870–876 CrossRefGoogle Scholar
  32. 32.
    Kulyk J, Haslett J (2006) A monolithic CMOS 2368±30 MHz transformer based Q-enhanced series-C coupled resonator bandpass filter. IEEE J Solid-State Circ 41(2):362–374 CrossRefGoogle Scholar
  33. 33.
    Liu RC, Lin CS, Deng KL, Wang H (2004) Design and analysis of DC–to–14-GHz and 22-GHz CMOS cascode distributed amplifiers. IEEE J Solid-State Circ 39(8):1370–1374 CrossRefGoogle Scholar
  34. 34.
    Lubecke VM, Barber B, Chan E, Lopez D, Gross ME, Gammel P (2001) Self-assembling MEMS variable and fixed RF inductors. IEEE Trans Microw Theory Tech 49(11):2093–2098 CrossRefGoogle Scholar
  35. 35.
    Mukhopadhyay R, Park Y, Lee CH, Nuttinck S, Laskar J (2004) Frequency-agile CMOS RFICs for multi-mode RF front-end. In: Proc Eur Conf Wirel Technol, Amsterdam, The Netherlands, pp 9–12 Google Scholar
  36. 36.
    Neo WCE, Lin Y, Liu XD, De Vreede LCN, Larson LE, Spirito M, Pelk MJ, Buisman K, Akhnoukh A, De Graauw A, Nanver LK (2006) Adaptive multi-band multi-mode power amplifier using integrated varactor-based tunable matching networks. IEEE J Solid-State Circ 14(9):2166–2176 CrossRefGoogle Scholar
  37. 37.
    Niclas KB, Wilser WT, Kritzer TR, Pereira RR (1983) On theory and performance of solid-state microwave distributed amplifiers. IEEE Trans Microw Theory Tech 83(6):447–456 CrossRefGoogle Scholar
  38. 38.
    Noren B (2004) Thin film Barium Strontium Titanate (BST) for a new class of tunable RF components. Microw J 47:210–220 Google Scholar
  39. 39.
    Okada K, Sugawara H, Ito H, Itoi K, Sato M, Abe H, Ito T, Masu K (2006) On-chip high-Q variable inductor using wafer-level chip-scale package technology. IEEE Trans Electron Devices 53(9):2401–2406 CrossRefGoogle Scholar
  40. 40.
    Papapolymerou J, Lange KL, Goldsmith CL, Malczewski A, Kleber J (2003) Reconfigurable double-stub tuners using MEMS switches for intelligent RF front-ends. IEEE Trans Microw Theory Tech 51(1):271–278 CrossRefGoogle Scholar
  41. 41.
    Pehlke DR, Burstein A, Chang MF (1997) Extremely high-Q tunable inductor for Si-based RF integrated circuit applications. In: IEEE Int Electron Devices Meet Tech Dig (IEDM’97), Washington, DC, pp 63–66 Google Scholar
  42. 42.
    Pozar DM (1998) Microwave Engineering, 2nd edn. Wiley, New York Google Scholar
  43. 43.
    Raab FH (2001) Electronically tunable class-E power amplifier. In: 2001 IEEE MTT-S Int Microw Symp Dig (IMS’01), Phoenix, AZ, vol 3, pp 1513–1516 Google Scholar
  44. 44.
    Raab FH (2007) Electronically tuned power amplifier. US Patent Google Scholar
  45. 45.
    Raab FH, Ruppe D (2003) Frequency-agile class-D power amplifier. In: Int Conf HF Radio Syst Tech, University of Bath, UK, pp 81–85 Google Scholar
  46. 46.
    Radmanesh MM (2001) Radio Frequency and Microwave Electronics Illustrated. Prentice-Hall, Upper Saddle River Google Scholar
  47. 47.
    Rong S, Luong HC (2007) A 1 V 4 GHz-and-10 GHz transformer-based dual-band quadrature VCO in 0.18 μm CMOS. In: Proc IEEE Cust Integr Circuit Conf (CICC’07), San Jose, CA, pp 817–820 Google Scholar
  48. 48.
    Scandurra G, Ciofi C, Zito D (2005) A new topology for transformer based CMOS active inductances. In: PhD Res Microelectron Electron (PRIME’05), Lausanne, Switzerland, vol 1, pp 27–30 Google Scholar
  49. 49.
    Scheele P, Goelden F, Giere A, Mueller S, Jakoby R (2005) Continuously tunable impedance matching network using ferroelectric varactors. In: 2005 IEEE MTT-S Int Microw Symp Dig (IMS’05), Long Beach, CA, pp 603–606 Google Scholar
  50. 50.
    Shin SH, Yoo HJ (2007) A multistandard RF front-end using varactor controlled tunable interstage matching network. In: IEEE Radio Wirel Symp (RWS’07), Long Beach, CA, pp 181–184 Google Scholar
  51. 51.
    Soorapanth T, Wong SS (2002) A 0-dB IL 2140+30 MHz bandpass filter utilizing Q-enhanced spiral inductors in standard CMOS. IEEE J Solid-State Circ 37(5):579–586 CrossRefGoogle Scholar
  52. 52.
    Strid EW, Gleason KR (1982) A DC–12 GHz monolithic GaAsFET distributed amplifier. IEEE Trans Microw Theory Tech MTT-30(7):969–975 CrossRefGoogle Scholar
  53. 53.
    Sullivan PJ, Xavier BA, Ku WH (1997) An integrated CMOS distributed amplifier utilizing packaging inductance. IEEE Trans Microw Theory Tech 45(10):1969–1976 CrossRefGoogle Scholar
  54. 54.
    Thanachayanont A, Payne A (1996) VHF CMOS integrated active inductor. Electron Lett 32(11):999–1000 CrossRefGoogle Scholar
  55. 55.
    Vicki Chen LY, Forse R, Chase D, York RA (2004) Analog tunable matching network using integrated thin-film BST capacitors. In: 2004 IEEE MTT-S Int Microw Symp Dig (IMS’04), Fort Worth, TX, vol 1, pp 261–264 Google Scholar
  56. 56.
    Vroubel M, Yan Z, Rejaei B, Burghartz JN (2004) Integrated tunable magnetic RF inductor. IEEE Electron Device Lett 25(12):787–789 CrossRefGoogle Scholar
  57. 57.
    Wu YC, Chang MF (2002) On-chip high-Q (>3000) transformer-type spiral inductors. Electron Lett 38(3):112–113 MathSciNetCrossRefGoogle Scholar
  58. 58.
    Xiao H, Schaumann R, Daasch WR, Wong PK, Pejcinovic B (2004) A radio-frequency CMOS active inductor and its application in designing high-Q filters. In: Proc Int Symp Circuits and Syst (ISCAS’04), Vancouver, Canada, vol 4, pp 197–200 Google Scholar
  59. 59.
    Yodprasit U, Ngarmnil J (2000) Q-enhancing technique for RF CMOS active inductor. In: Proc Int Symp Circuits and Syst (ISCAS’00), Geneva, Switzerland, vol 5, pp 589–592 Google Scholar
  60. 60.
    Ytterdal T, Cheng Y, Fjeldly TA (2003) Device Modeling for Analog and RF CMOS Circuit Design. Wiley, Chichester CrossRefGoogle Scholar
  61. 61.
    Zhang H, Gao H, Li GP (2005) Broad-band power amplifier with a novel tunable output matching network. IEEE Trans Microw Theory Tech 53(11):3606–3614 CrossRefGoogle Scholar
  62. 62.
    Zhang H, Gao H, Li GP (2005) A novel tunable broadband power amplifier module operating from 0.8 GHz to 2.0 GHz. In: 2005 IEEE MTT-S Int Microw Symp Dig (IMS’05), Long Beach, CA, pp 661–664 Google Scholar
  63. 63.
    Zhou S, Sun XQ, Carr WN (1997) A micro variable inductor chip using MEMS relays. In: Int Conf Solid-State Sens Actuators (TRANSDUCERS’97), Chicago, IL, vol 2, pp 1137–1140 Google Scholar
  64. 64.
    Zhu X, Chen X, Ling J (2000) 2–6 GHz GaAs MMIC power amplifier. In: Int Conf Microw Millim Wave Technol (ICMMT’00), Beijing, China, pp 134–137 Google Scholar
  65. 65.
    Zine-El-Abidine I, Okoniewski M, McRory JG (2003) A new class of tunable RF MEMS inductors. In: Int Conf MEMS NANO Smart Syst (ICMENS’03), Banff, Canada, pp 114–115 Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland

Personalised recommendations