Design of the Dynamic Supply CMOS RF Power Amplifier

  • Paulo Augusto Dal Fabbro
  • Maher Kayal
Part of the Analog Circuits and Signal Processing book series (ACSP)


This chapter presents the design of a dynamic supply RF power amplifier for operation in the 5.2 GHz frequency band. The system includes a class A RF power amplifier and a high-efficiency, fast, switched-mode modulator used to vary the supply voltage of the amplifier. This modulator comprises a high-speed, fully-differential comparator, an anti-overlapping circuit, a synchronous switch, and an LC filter. Simulation results are presented.


Maximum Output Power Switching Frequency Advance Design System Dynamic Supply Optimum Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    ADS (2004) ADS 2004 documentation—Measurement expressions. Manual, URL
  2. 2.
    ADS (2004) ADS 2004 documentation—Nonlinear devices. Manual, URL
  3. 3.
    ADS (2004) ADS 2004 documentation—System models. Manual, URL
  4. 4.
    ADS (2010) Advanced Design System (ADS). URL
  5. 5.
    Ahmed M (2004) Sliding mode control for switched mode power supplies. PhD thesis, Lappeenranta University of Technology, Lappeenranta, Finland Google Scholar
  6. 6.
    Allen PE, Holberg DR (2002) CMOS Analog Circuit Design, 2nd edn. Oxford University Press, New York Google Scholar
  7. 7.
    Asbeck P, Fallesen C (2000) A 29 dBm 1.9 GHz class B power amplifier in a digital CMOS process. In: IEEE Int Conf Electron Circuits Syst (ICECS’00), Jounieh, Lebanon, vol 1, pp 474–477 Google Scholar
  8. 8.
    Balsi M, Scotti G, Tommasino P, Trifiletti A (2006) Discussion and new proofs of the conditional stability criteria for multidevice microwave amplifiers. IEE Proc Microw Antennas Propag 153(2):177–181 CrossRefGoogle Scholar
  9. 9.
    Bühler H (1997) Réglage de systèmes d’électronique de puissance. PPUR, Lausanne Google Scholar
  10. 10.
    Büler H (1986) Réglage par mode de glissement. PPUR, Lausanne Google Scholar
  11. 11.
    Coilcraft (2005) Power chip inductors—1812PS series. Data Sheet, URL
  12. 12.
    Cripps SC (2006) RF Power Amplifiers for Wireless Communications, 2nd edn. Artech House, Norwood Google Scholar
  13. 13.
    Eo Y, Lee K (2004) A fully integrated 24-dBm CMOS power amplifier for 802.11a WLAN applications. IEEE Microw Wirel Compon Lett 14(11):504–506 CrossRefGoogle Scholar
  14. 14.
    Fager C, Pedro JC, de Carvalho NB, Zirath H, Fortes F, Rosário MJ (2004) A comprehensive analysis of IMD behavior in RF CMOS power amplifiers. IEEE J Solid-State Circ 39(1):24–34 CrossRefGoogle Scholar
  15. 15.
    Gonzalez G (1997) Microwave Transistor Amplifiers: Analysis and Design, 2nd edn. Prentice-Hall, Upper Saddle River Google Scholar
  16. 16.
    Gray PR, Hurst PJ, Lewis SH, Meyer RG (2001) Analysis and Design of Analog Integrated Circuits, 4th edn. Wiley, New York Google Scholar
  17. 17.
    Hanington G, Pin-Fan C, Asbeck PM, Larson LE (1999) High-efficiency power amplifier using dynamic power-supply voltage for CDMA applications. IEEE Trans Microw Theory Tech 47(8):1471–1476 CrossRefGoogle Scholar
  18. 18.
    Jackson RW (2006) Rollett proviso in the stability of linear microwave circuits-A tutorial. IEEE Trans Microw Theory Tech 54(3):993–1000 CrossRefGoogle Scholar
  19. 19.
    Komijani A, Natarajan A, Hajimiri A (2005) A 24-GHz, +14.5-dBm fully integrated power amplifier in 0.18 μm CMOS. IEEE J Solid-State Circ 40(9):1901–1908 CrossRefGoogle Scholar
  20. 20.
    Kularatna N (1998) Power Electronics Design Handbook: Low-Power Components and Applications. Newnes, Boston Google Scholar
  21. 21.
    Meys RP (1990) Review and discussion of stability criteria for linear 2-ports. IEEE Trans Circ Syst 37(11):1450–1452 CrossRefGoogle Scholar
  22. 22.
    Murata (2010) GRM1555C1H820JZ01—Monolithic ceramic capacitors (0402, C0G, 82pF, 50Vdc). Data Sheet, URL
  23. 23.
    Närhi T, Valtonen M (1997) Stability envelope-new tool for generalised stability analysis. In: IEEE MTT-S Int Microw Symp Dig (IMS’97), Denver, CO, vol 2, pp 623–626 Google Scholar
  24. 24.
    Ogata K (1970) Modern Control Engineering. Prentice-Hall, Englewood Cliffs Google Scholar
  25. 25.
    Ohtomo M (1995) Proviso on the unconditional stability criteria for linear twoport. IEEE Trans Microw Theory Tech 43(5):1197–1200 CrossRefGoogle Scholar
  26. 26.
    Rollett J (1962) Stability and power-gain invariants of linear twoports. IRE Trans Circ Theory 9(1):29–32 Google Scholar
  27. 27.
    Sahu B, Rincon-Mora GA (2004) A high-efficiency linear RF power amplifier with a power-tracking dynamically adaptive buck-boost supply. IEEE Trans Microw Theory Tech 52(1):112–120 CrossRefGoogle Scholar
  28. 28.
    Schlumpf N (2004) Adaptation dynamique de la compression d’un amplificateur RF pour des signaux modulés en amplitude et en phase. PhD thesis, EPFL, Lausanne, Switzerland, URL
  29. 29.
    Wang F, Kimball DF, Popp JD, Yang AH, Lie DY, Asbeck PM, Larson LE (2006) An improved power-added efficiency 19-dBm hybrid envelope elimination and restoration power amplifier for 802.11g WLAN applications. IEEE Trans Microw Theory Tech 54(12):4086–4099 CrossRefGoogle Scholar
  30. 30.
    Zargari M, Su DK, Yue CP, Rabii S, Weber D, Kaczynski BJ, Mehta SS, Singh K, Mendis S, Wooley BA (2002) A 5-GHz CMOS transceiver for IEEE 802.11a wireless LAN systems. IEEE J Solid-State Circ 37(12):1688–1694 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland

Personalised recommendations