Skip to main content

Efficiency Enhancement

  • Chapter
  • 1500 Accesses

Part of the book series: Analog Circuits and Signal Processing ((ACSP))

Abstract

This chapter presents some basic principles of RF power amplifiers, mainly dealing with the linearity–efficiency trade-off, to prepare the reader for the design of a dynamic supply CMOS RF power amplifier, subject of the next chapter. It also surveys the main efficiency-enhancement techniques found in the literature to establish a basis for comparison with the results presented in Chap. 4

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    But care should be taken to respect spurious emission limits.

  2. 2.

    Single-sideband signals have both amplitude and phase modulation and, hence, require linear amplification.

  3. 3.

    In [9], there is actually the elimination and restoration of the envelope. In [28], the author further separates polar transmitters in those using polar modulation prior to the PA and those using polar modulation with open-loop PA amplitude control.

  4. 4.

    IS-95—Interim Standard 95 (CDMA).

  5. 5.

    ACLR and ACPR are different names for the same linearity measurement.

References

  1. Akamine Y, Tanaka S, Kawabe M, Okazaki T, Shima Y, Masahiko Y, Yamamoto M, Takano R, Kimura Y (2007) A polar loop transmitter with digital interface including a loop-bandwidth calibration system. In: IEEE Int Solid-State Circuits Conf Dig Tech Pap (ISSCC’07), San Francisco, CA, pp 348–608

    Google Scholar 

  2. Buoli C, Abbiati A, Riccardi D (1995) Microwave power amplifier with ‘envelope controlled’ drain power supply In: Eur Microw Conf (EuMC’95), Bologna, Italy vol 1, pp 31–35

    Google Scholar 

  3. Chen JH, U-yen K, Kenney JS (2004) An envelope elimination and restoration power amplifier using a CMOS dynamic power supply circuit. In: IEEE MTT-S Int Microw Symp Dig (IMS’04), Fort Worth, TX, vol 3, pp 1519–1522

    Google Scholar 

  4. Chen JH, Fedorenko P, Kenney JS (2006) A low voltage W-CDMA polar transmitter with digital envelope path gain compensation. IEEE Microw Wirel Compon Lett 16(7):428–430

    Article  Google Scholar 

  5. Clifton JC, Albasha L, Lawrenson A, Eaton AM (2005) Novel multimode J-pHEMT front-end architecture with power-control scheme for maximum efficiency. IEEE Trans Microw Theory Tech 53(6):2251–2258

    Article  Google Scholar 

  6. Cripps SC (1999) RF Power Amplifiers for Wireless Communications, 1st edn. Artech House, Norwood

    Google Scholar 

  7. Cripps SC (2006) RF Power Amplifiers for Wireless Communications, 2nd edn. Artech House, Norwood

    Google Scholar 

  8. Dal Fabbro PA, Meinen C, Kayal M, Kobayashi K, Watanabe Y (2006) A dynamic supply CMOS RF power amplifier for 2.4 GHz and 5.2 GHz frequency bands. In: IEEE Radio Freq Integr Circuits Symp (RFIC’06), San Francisco, CA, pp 169–172

    Google Scholar 

  9. Elliott M, Montalvo T, Murden F, Jeffries B, Strange J, Atkinson S, Hill A, Nandipaku S, Harrebek J (2004) A polar modulator transmitter for EDGE. In: IEEE Int Solid-State Circuits Conf Dig Tech Pap (ISSCC’04), San Francisco, CA, vol 1, pp 190–522

    Google Scholar 

  10. Giannini F, Leuzzi G (2004) Nonlinear Microwave Circuit Design. Wiley, Chichester

    Book  Google Scholar 

  11. Hanington G, Chen PF, Radisic V, Itoh T, Asbeck PM (1998) Microwave power amplifier efficiency improvement with a 10 MHz HBT. In: IEEE MTT-S Int Microw Symp Dig (IMS’98), Baltimore, MD, vol 2, pp 589–592

    Google Scholar 

  12. Hanington G, Pin-Fan C, Asbeck PM, Larson LE (1999) High-efficiency power amplifier using dynamic power-supply voltage for CDMA applications. IEEE Trans Microw Theory Tech 47(8):1471–1476

    Article  Google Scholar 

  13. Kahn LR (1952) Single-sideband transmission by envelope elimination and restoration. Proc IRE 40(7):803–806

    Article  Google Scholar 

  14. Kenington PB (2000) High-Linearity RF Amplifier Design. Artech House, Boston

    Google Scholar 

  15. Kitchen JD, Deligoz I, Kiaei S, Bakkaloglu B (2006) Linear RF polar modulated SiGe class E and F power amplifiers. In: IEEE Radio Freq Integr Circuits Symp (RFIC’06), San Francisco, CA, pp 475–478

    Google Scholar 

  16. Kundert KS (1999) Introduction to RF simulation and its application. IEEE J Solid-State Circ 34(9):1298–1319

    Article  Google Scholar 

  17. Larson L, Asbeck P, Kimball D (2007) Multifunctional RF transmitters for next generation wireless transceivers. In: Proc Int Symp Circuits and Syst (ISCAS’07), New Orleans, LA, pp 753–756

    Google Scholar 

  18. McCune JEW (2003) Multi-mode and multi-band polar transmitter for GSM, NADC, and EDGE. In: IEEE Wirel Commun Netw Conf (WCNC’03), New Orleans, LA, vol 2, pp 812–815

    Google Scholar 

  19. Petrovic V, Gosling W (1979) Polar-loop transmitter. Electron Lett 15(10):286–288

    Article  Google Scholar 

  20. Popp J, Lie DYC, Wang F, Kimball D, Larson L (2006) A fully-integrated highly-efficient RF class E SiGe power amplifier with an envelope-tracking technique for EDGE applications. In: IEEE Radio Wirel Symp (RWS’06), San Diego, CA, pp 231–234

    Google Scholar 

  21. Raab FH, Sigmon BE, Myers RG, Jackson RM (1998) L-band transmitter using Kahn EER technique. IEEE Trans Microw Theory Tech 46(12):2220–2225

    Article  Google Scholar 

  22. Raab FH, Asbeck P, Cripps S, Kenington PB, Popovic ZB, Pothecary N, Sevic JF, Sokal NO (2002) Power amplifiers and transmitters for RF and microwave. IEEE Trans Microw Theory Tech 50(3):814–826

    Article  Google Scholar 

  23. Reynaert P, Steyaert MSJ (2005) A 1.75-GHz polar modulated CMOS RF power amplifier for GSM-EDGE. IEEE J Solid-State Circ 40(12):2598–2608

    Article  Google Scholar 

  24. Riccardi D, Abbiati A, Buoli C (1995) Linear microwave power amplifier with supply power injection controlled by the modulation envelope. International Patent, WO 95/34128

    Google Scholar 

  25. Schlumpf N (2004) Adaptation dynamique de la compression d’un amplificateur RF pour des signaux modulés en amplitude et en phase. PhD thesis, EPFL, Lausanne, Switzerland. URL http://library.epfl.ch/theses/?nr=3020

  26. Schlumpf N, Declercq M, Dehollain C (2003) A fast modulator for dynamic supply linear RF power amplifier. In: Proc IEEE Eur Solid-State Circuits Conf (ESSCIRC’03), Estoril, Portugal, pp 429–432

    Google Scholar 

  27. Schlumpf N, Declercq M, Dehollain C (2004) A fast modulator for dynamic supply linear RF power amplifier. IEEE J Solid-State Circuits 39(7):1015–1025

    Article  Google Scholar 

  28. Sowlati T, Rozenblit D, Pullela R, Damgaard M, McCarthy E, Koh D, Ripley D, Balteanu F, Gheorghe I (2004) Quad-band GSM/GPRS/EDGE polar loop transmitter. IEEE J Solid-State Circ 39(12):2179–2189

    Article  Google Scholar 

  29. Staudinger J (2002) An overview of efficiency enhancements with application to linear handset power amplifiers. In: IEEE Radio Freq Integr Circuits Symp (RFIC’02), Seattle, WA, pp 45–48

    Google Scholar 

  30. Staudinger J, Gilsdorf B, Newman D, Norris G, Sadowniczak G, Sherman R, Quach T, Wang V (1999) 800 MHz power amplifier using envelope following technique. In: IEEE Radio Wirel Conf (RAWCON’99), Denver, CO, pp 301–304

    Google Scholar 

  31. Staudinger J, Gilsdorf B, Newman D, Norris G, Sadowniczak G, Sherman R, Quach T (2000) High efficiency CDMA RF power amplifier using dynamic envelope tracking technique. In: IEEE MTT-S Int Microw Symp Dig (IMS’00), Boston, MA, vol 2, pp 873–876

    Google Scholar 

  32. Su DK, McFarland WJ (1998) An IC for linearizing RF power amplifiers using envelope elimination and restoration. IEEE J Solid-State Circ 33(12):2252–2258

    Article  Google Scholar 

  33. Wang F, Ojo A, Kimball D, Asbeck P, Larson L (2004) Envelope tracking power amplifier with pre-distortion linearization for WLAN 802.11g. In: IEEE MTT-S Int Microw Symp Dig (IMS’04), Fort Worth, TX, vol 3, pp 1543–1546

    Google Scholar 

  34. Wang F, Kimball D, Popp J, Yang A, Lie DYC, Asbeck P, Larson L (2005) Wideband envelope elimination and restoration power amplifier with high efficiency wideband envelope amplifier for WLAN 802.11g applications. In: IEEE MTT-S Int Microw Symp Dig (IMS’05), Long Beach, CA, pp 645–648

    Google Scholar 

  35. Wang F, Kimball DF, Popp JD, Yang AH, Lie DY, Asbeck PM, Larson LE (2006) An improved power-added efficiency 19-dBm hybrid envelope elimination and restoration power amplifier for 802.11g WLAN applications. IEEE Trans Microw Theory Tech 54(12):4086–4099

    Article  Google Scholar 

  36. Wang F, Kimball DF, Lie DY, Asbeck PM, Larson LE (2007) A monolithic high-efficiency 2.4-GHz 20-dBm SiGe BiCMOS envelope-tracking OFDM power amplifier. IEEE J Solid-State Circuits 42(6):1271–1281

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Augusto Dal Fabbro .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Dal Fabbro, P.A., Kayal, M. (2010). Efficiency Enhancement. In: Linear CMOS RF Power Amplifiers for Wireless Applications. Analog Circuits and Signal Processing. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9361-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-9361-5_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-9360-8

  • Online ISBN: 978-90-481-9361-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics